Optimizing
C86™ Compiler

' data
| systems

COMPUTER INNOVATIONS, INC.
Optimizing
C86™@ Compiler

Fewrw |Gata HEATH

NOTICE
This software is licensed (not sold). It is licensed to sublicensees, including end-users, without either
express or implied warranties of any kind on an “as is” basis.

The owner and distributors make no express or implied warranties to sublicensees, including end-users,
with regard to this software, including merchantability, fitness for any purpose or non-infringement of
patents, copyrights or other proprietary rights of others. Neither of them shall have any liability or responsi-
bility to sublicensees, including end-users, for damages of any kind, including special, indirect or conse-
quential damages, arising out of or resulting from any program, services or materials made available
hereunder or the use or modification thereof.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of this publication.

Technical consultation is available for any problems you encounter in verifying the proper operation
of this product. Sorry, but we are not able to evaluate or assist in the debugging of any programs
you may develop. For technical assistance, write:

Zenith Data Systems Corporation
Software Consultation

Hilltop Road

St. Joseph, Michigan 49085

orcall:

(616)982-3884 Application Software/SoftStuff Products
(616) 982-3860 Operating Systems/Languages/Utilities

Consultation is available from 8:00 AM to 7:30 PM (Eastern Time Zone) on regular business days.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph
(b)3XB) of the Rights in Technical Data and Computer Software clause in DAR 7-104.9(a).
Contractor/Manufacturer is Zenith Data Systems Corporation of Hilltop Road, St. Joseph, Michigan
49085.

Trademarks and Copyrights

(86 and Optimizing C86 are trademarks of Computer Innovations, Inc.
CP/M-86, MP/M-86 and ASM-86 are trademarks of Digital Research, Inc.
IBM is a registered trademark of International Business Machines.

MS is a trademark of Microsoft Corporation

SB-DOS is a trademark of Lifeboat Laboratories

UNIX is a trademark of Bell Telephone Laboratories.

Copyright © 1981, 82, 83, 84 by Computer Innovations, Inc.

Copyright © 1984 by Zenith Data Systems Corporation.

Essential Requirements for using Optimizing C86 Compiler:

a. Distribution Media: Three 5.25-inch, soft-sectored, 48-tpi disks

b. Machine Configuration (minimum): Z-100 PC, 192K memory, two floppy disk drives and CRT

HEATH COMPANY ZENITH DATA SYSTEMS CORPORATION
BENTON HARBOR, MICHIGAN 49022 ST. JOSEPH, MICHIGAN 49085

Copyright (c) 1981,82,83,84 Computer Innovations, Inc.

All rights reserved. Printed in the United States of America.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of Computer Innovations,
Inc. and Zenith Data Systems Corporation.

C86 is a Trademark of Computer Innovations, Inc.
OPTIMIZING C86 is a Trademark of Computer Innovations, Inc.
MS-DOS is a Trademark of Microsoft Inc.

SB-DOS is a Trademark of Lifeboat Associates.

UNIX is a Trademark of Bell Telephone Laboratories.
CPM-86, MpPM-86 and ASM-86 are Trademarks of Digital Research.
IBM a Registered Trademark of International Business Machines.
PLINK86, and PFIX86PLUS are Trademarks of Phoenix Software
Associates Ltd.

September 1984

This document describes the OPTIMIZING C86 compiler, associated
programs, and support library. It is not a language reference
manual. It will assist users in preparing C programs, for
compilation and execution under CPM-86, MPM-86, IBM PC-DOS, MS-
DOS, SB-DOS and 86DOS.

OPTIMIZING C86 USER'S MANUAL

Document Version: 2.20

Software vVersion: 2.20 {(and later)

COMPUTER INNOVATIONS, INC

980 Shrewsbury Ave, Suite 310
Tinton Falls, N.J. 07724

1.

TABLE OF CONTENTS

GENERAL INFORMATION.....c.cevveecnossccccecesonnonnns eseel-=1

1.

10.

11.

Introduction....... e tssesacssesnresssectas et snsanns 1-1
1. Information..... essereecesann seeeasecaessrenanen . 1-1
2. Language featureS.....seceesessvscsoscascscnnonenes 1-1
3. Operating SystemS....ceeeaven. Cerereencaserneaena Le1-1
4. Hardware..... et e tsesecsteceesaranonsr o anononane .o1-1

5. SUPPOrt SErVicCeS..iiesesseccsssanancans I
Optimizing C86 featureS.....cciessersescosoncaannans e l-2
Version 2,20 FeatUreS..eseesseasescscnsens O)
l. Ctype.hevieerrnnnnnns teessscerineerenaen ceeeas veesel=3
2. New switches...... cetrrsereseses [P seeeeae vessal-4
3. New functions........c... Sttt ssesessentnsnsennsanna 1-4
Installation guide...iieierennnnnnnns s heesiaeerenenne .1-4
1. Unsqueeze the files..... T
2. DOS fileS.vieievioteeossnsnnannanas teseesersransesal=5
3. Transfer files...... O K Y)
4., Create a test pProgram..svececscsceses sesassscssansel=b
5. Compilation....... creseseraiennananas tecassecenaans 1-7
6. Linking...ecevuee. S
7. Execution....... S]
Using the compiler...... et everesnsteneccnenossasoannns .1-7
1. Batch fileS.veesnanana ceseransenssen resssarensans ool
2. Using the DOS 1inker...uieeeeseornenoeneoesenannan .1

3, Using CHKDSK..vveesoneanes eesesecatnsean tesesessenelm

1
1

File system....... T ceevean
1. Basic services.....ieeeceeenns e eeeesseeansseannane
2. Stream SeIVICeS..ivveseeerseassssonsosscanannnnns .e
3. The DOSALL 1/0 library......... Ceseertsavsanesanaen
4, The DOS2 I/0 library..cieeeuieeiecnscccossnannannns eal-
5. File opening modes...... Cesesacesasseaanss ceeseesesl-9
6. DOS character deviCeS..cierneeeennncennnnns reessesl-10
7. Console input.......... fieseseanonnn treersascnns ..1-10
8. Standard files..... s essrsasaeuenean sensrensasssl=10
Language information....ceeeeueneereneneoseccaaase vesal-11
1. DAta@ LYPOS.veeensuocecosessnssasnseasaans seseessnn .1-11
2. Storage typeS......ss.. cesencns chssesecerenscsnans 1-11
3. Definition Of @XteINiieesiieeeoanecnsenenennnnnnne 1-12
4. DEDUGGING e ieieiiaeneenecnoeeenannnsonnsosonannss .1-12

. Converting to v2.20 from Vl 33 ieteneenccsrossanrsnns 1-12

1. PointerS..cceececsnccnss tessecesecssraanea cesereceas 1-13
2, 8087 sSupport...ceceeecacs Chesesiaestseseassssnnnen 1-13
3. 2.0 I/0 library....eeeeeeea. tetesseresatertananens 1-13
Assembly language funcCtionS..i.iieeeeerevecenerecenena 1-13
1. Header files.....cvtvennecanase ceeeseecsesananna ..1-14
2. MOdeLl.Nyiuenonorenseononcanssncacessssassnnanens ..1-14
3. Prologue.h.sieerieenennsonnnens ceseeressneaans eeasl-14
4. Calling conventions for functions............... ..1-15
5. Returned reSultS...eeeeeenneroresesoncsocssncecans 1-15
Compiler options......... et etenccesresresnesansan ...1-16
1. Big model switCh....iveerienereneoasonosanssnonns .1-16
2. 8087 SWIitCh.i.i..viiniriievnonsnnnsannananans [P 1-17
VeI laAYS e vereseaseosencoacssscsaacasasoasoananosson 1-17
L. Plink86. . vt ivennscnooaasoneannnnnnas cenenan ve1-17

12. Hints and other commeNntS....ccceeeesscacsocacccnsassl=1l?
1. Kernighan and Ritchi€...eeeeeececcccecocscnceesaal=17
2. Initializing structures and arrayS......cecc.....1-18
3. String initializers for character arrays in stru.l-18
4, Structure and union member nNamMeS......cecceeee.0.1-18
5. Assigning pointer and int data typeS.............1-18
6. Redefinition of function name error message......l-19
7. Run time Error mMeSSageS.....ceoeeesecsscoacscecassal=19
8. Undocumented functionS......ceeeeeeeeeccsccceessal=19
9. Eliminating the standard functions........cceee..1-19
10.. Trig 1iDLrary. s ssiee siee sioie sisis erese o ase siaia o050 siae on o 6120
11. Creating COM fileS..eeeecsccceccccccrscarsccesssl=-20
12. Creating ROM fileS...ceeeeesesceccccsnsananssaaal=20
13. Using 8 bit characters in strings...............1-20
14. Converting BDS-C PrOgramS...eeeeeecesscssssessssl=20
15. PathnameS...ceesceccesccccanccscsscssssessssssssl=2l
16. Porting code to OPTIMIZING C86..cceeevcecccaessal=2l

13. Memory layout under DOS......oececscccccsscansaonssal=22

14. What to do if things go WIONg..eceeeeeccecncescoasssl=23
1. Problems with functions in the library...........1-23
2. Big Model and memory limitS.....ceceeececcsccaassl=23
3. Problems with opening a file....eeeeeceeecenoecsal=23
4, System function......eceeeees cesecoscscsssescssssal=23
5. Interrupts and intrinit....eeeeceeccccccecencesaal=24
6. Serial port communicationS......eeeeeccccccceasssl=24
7. Funny errors out Of CCl.iceeeeeeececccsnssccccenaeal=-24
8. Big model pointer arithmeticC.....ceeerecececacsssl=24
9, Undefined results, (or a lesson in uninitialized.l-25
10. Scanf and it'S USE..eeeeeeseccenrooseccssacascssl=25
11, StINCPY.ccessccescccacsssancsssscscccsossssensensl=25
12. "Fixup offset exceeds field width".......... eeesl=25
13. If all else failS.iieeeeoenes seews aninesee s sive ssl=26

2. PROGRAM DESCRIPTIONS...ccososcsssesscsscccscncsssssosssses2=l
1. CCl, PreproCeSSOr.ccceeccscccscccsssosssssessssssscneed=l

1« FUNCELON: seis siare saisie wiozs o5 G & 6808 6 § a6 & BURIE wisie wE 4 Wreeiee @2k
s USAGS a4 sieis s 515 & wisis 61678 6 68 ¢ 9056 eiee seis 9ioie ajeis o e winge oe o wie 0 2L
3. PlagSi.essecsscccns o siee euele s eib 6 $id e % T Ir LIt
4, NOtES.cereocsiosasssssnsssosscssssscscscscsccssssnnse cesd=2
5. FeatureS..ccescocscccscsossssrss eioin einie o sieie wie 00 8 wis 0 923
6. Line continuation,.sseeeecsescssrssssessssnsssas eee2-4
7. EXTOr MESSAJEeS.eveesssacnsans § e B e e 8 o

B. NOLES.ceosessosocssssssssssenssasnse

2¢ CC2, DALSEL .0 s a0 one sienensssins sossiess ssameenssnesnsinssd=b
Lo FUNCEIONG s sias sisie siere s sie s sinie aisis sisrs siers, siaie u wis) o s 9o 8 w1 9:9:2 =0
2. USAGCeceresssasosaasiiosssesiossnssosssesssssianssssssd=b
3. Flags..::. T YT L o ' Ty
45 EXTOY MEeSSAGES s siirs s ais ¢ a5/ sis sisie /6l aivie & va o wys o6 vies o020
5e NOLE@S.:oesosossnsssnssiosssssssssossisssssosisesesssssd=b
3. cc3, code generatOr.ceecesoccsccsssssssssscassssssssssd=T
l. FUNCtiON.coevesescovsescsssesossessoscnsssvesssenssl=T
2, USAGC.ccsssosessnssenssanssssossnsssssscsssesssssield=]
3. FlagS.sesesosesscssosesscossocsssssosorssanscsssssnseeed=?
4. ELYOr MESSAJE@Sceessoococssnccscssasassncssssacssessl=?
4, ccd, OpPtimMizer.veveosessevesscccrssocsscsscacssoasossssel=B

1: EUNCUIi00knms 3606 8 5006 i a6 3 506 6,656 & 606 546 & 216 Blbhe @ ne ecove e:0. 258
2, USAGe, e v sarors sqe wions siuie s w56 ¢ 676 6 si816 oiae ¥o1s & wes wws oie o6 28
35 FlagSien: e s s 55 siend aiiih 6008 6504 5 5406 0,08 bl & aidle saie eae 00 228
4, EILOr MESSAJES..ececscssscsscasossccosoccscsscnnneeeal8
5. Arch, source librarian.....cceeeceeeceeeesceeecacscsasa2=9
L., FUNCEION s « sias sisss sues smms smis s sies siss 1608 5 5is 86 & w2 o929
2 USagQ@iuus s sisios a5 5508 o816 & 5715 $Y615 SUHIE 0706 S15LE 38TELE 655 v wre 0ne 20
3. FlagS..icecesececesssseancsscssessssssasasssssancsesal=9
4i NOKEEE! e yiois o wiae sisis arars o wisse Sisie siate siajs siane misis s wivis syavs sie sjs2=9)
6. Mation, object Librardan. s sww s s os e e s s s s salb2=11
L. BUnNctdion syes eams suie s wis o srove sise svems s's5e ovuis sisisis says sievs avs o 2=
20 USAGE, suevse siere siare s rars sisrs eisse e-sis ¢ giais Siois o6 & 87816 slate & s s 2= 10
Bie ELAGSciuie s srsrstomere sinm6 sesw § 55508 570 e1els ereie 8906 wias & sieis e stesa2=1Y
4 NOLES sioie wnets o566 696 596 246 4 575 8 69,6 556 956 858 broé o ww e we 2211
7. USQ, File UNnSQUeezZer.....cveeeevcvcccsescncscaannansa2=12
1. PUNCELON. yiere suins asuis sisia sinver s wiss sisie sisie svas siess sre & o7e sisrs 2=1.2
20 USAGEs v s sias sruw s 5156 5o sia7s o50% 5. 95606 616 8 9768 sies weie avee aiee 212
3 ELags . sies sims s as s aase sie5s 516 & $I6 6196 s186 S0E 55355 0n saie 212
4 NOEEE. aie o sioie siorm » wio's wisie siois oisrs aimie & win's o7s o aseia wiws aiee siose 2—1.2

LIBRERY PUNCTIONS. s svs sws sioe s 5ws sid oinie sws ahe 0ae wiie s 505 & eee3-1
L. INTRODUCTION. ws suze sww s smvis sisis a5 & siais sios o7 ¢ sl7s sioje sis5e a7es $3=1
L& Sourcerlibrariesie. sk swes ves s aws wos s ses s ot oo s3=1
2. -Recompiling library functionS..:.ecssssssssesessessld=2
3. Understanding the library descriptions....
2. _default, Define default conditionS..........
3. Sentry, Entry to a funCtioN.....eeeeeeeesseceesceseasa3=6
int Sentry()
4. _exit, Terminate program execution without closing fi.3-7
int _exit(status)
5. _main, Initialize for program executioN...............3-9
int main()
6. abort, Abort execution of a program with a message...3-10
int abort(format,args...)
7. abstoptr, Absolute memory address to pointer.........3-11
char *abstoptr(address)
8. alloc, Allocate a storage region on the heap.........3-12
char *alloc(size)
9. atof, Convert ASCII to floating point......ee.eee....3-14
double atof(string)
10. atoi, Convert ASCII to integer (long)........ vs wow wed—10
long atoi(string)
11. basicget, Get a "record" written by a basic program.3-17
int basicget(stream,buff,bufflen,fieldptr,fieldcnt)
12. bdos, Execute a basic DOS function........eeeeveee..3-19
int bdos(fcode,dx) /* SMALL MODEL */
int bdos(fcode,dx ds) /* BIG MODEL */
13. calloc, Allocate a bIock Of MEMOIY..evesueeennesoasa3=21
char *calloc(nelem,elsize)
14. ceil, Ceiling function.iiiuieeeeeeeeeeeeroceaneoeneeald=22
double ceil(arqg)
15. chdir, Change to a new working directory............3-23
int chdir(pathname)
16. chmod, Change the mode of @ fil€..v.iveeveweeenaenesa3=-24
int chmod(filename,mode)

17.
18.

19.

20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

clearerr, Clear a stream error indicator............3-25
int clearerr(stream)

close, Close @ fil€.veeessecosocaacsccsscscacscnssessld=26
int close(fd)

2-100 PC Communications Functions: (Z-100 PC ONLY!) .3-27
int com flsh(channel)
int com_getc(channel)
int com putc(channel,ch)
int com_rdy(channel)
int com_rst(channel ,baud,parity,stop,length)
unsigned int com stat(channel)

coreleft, Get size Of unused StaCK...eceecececeeeesssa3=30
unsigned int coreleft();

creat, Create a new empty fil€....coeeeeeececsassssa3=-31
int creat(filename,mode)

Z-100 PC video display routines: (Z-100 PC ONLY!)...3-33
crt cls()
crt home()
crt_gmod()
int crt line(xl,yl,x2,y2,color)
int crt_mode(mode)
int crt_rdot(row,column)
int crt_roll(top,bottan,left,right,n)
int crt_srcp(row,column,page)
int crt_wdot(row,column,color)

envfind, search enviromment for defined name........3-36
unsigned char *envfind(name) /* dos 2.0+ only */

exit tsr - exit, terminate and stay resident........3-37
exit_tsr()

exit, Terminate program execution........eceeeeeees.3-39
int exit(value)

exp, Exponential function.......eeeveveceeacccnosesss3-40
double exp(val)

fabs, Floating absolute valu€..e.ceeeessecncassosssss3-4l
double fabs(val)

farcall, Call a "far" function.....vceeveeeceoceessal-42
int farcall(offset,segment,srv,rrv)

fclose, ClOSe a SLreaMi s« i sl sioie s ss oo s wiai s o5 o505 s 3-43
int fclose(stream)

feof, Return end of file statuUS....cveeeeeecescsesss3-44
int feof(stream)

ferror, Return error status of a stream.............3-45
int ferror(stream)

fflush, Flush a stream to diSK...eeeveeeeesocecseoesal3-46
int fflush(stream)

fgetc, Get a character from a stream.......cceeee...3-47
int fgetc(stream)

fgets, Read a string from a stream......ceeeeseesss.3-48
char *fgets(buffer,bufleng,stream);

filedir, return a list of matching file names.......3-49
unsigned char *filedir(filespec,mode)

fileno, Get file handle.....ceoeeeeeeeencecessaseessl=5l
int fileno(stream)

floor, FLoor functioN.sesesessrwssmesneswe vy o wey 3702
double floor(val)

38.
39.
40.
41.
42,
43.
44.
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

57.

58.

59.

fopen, Open a StreaM.....eceeesescessssccacseecenesesld=53
FILE *fopen(filename,fomode)

fprintf, Print to a istream..: s swi v s sais siss o5.63=55
int fprintf(stream,format,args...)

fputc, Output character to a stream.........ecees...3-58
int fputc(byte,stream)

fputs, Output a string to a stream........ceceees..o3=59
int fputs(string,stream)

fread, Read items from a StreaM......eceeeeeeeeeesse3=60
int fread(where,elsize,nelem,stream);

free, Return a region to the heap.....eeeeeeeeeeeesea3=-61
int free(pointer)

freopen, Close and reopen a fil€....eveeeeeessneeasald=63
FILE *freopen(filename,fomode,stream)

frexp, Split double into mantissa and exponent......3-64
double frexp(val ,eptr)

fscanf, Scan fields from a stream........ sessisenesed=65
int fscanf(stream,format,args)

fseek, Seek using a 1ong OffSet...ceeeeeeceeceesease3-68
long fseek(stream,offset,base)

ftell, Tell R/W position in a Stream.....eoceeeeeecese3=-70
long ftell(stream)

ftoa,; Convert float to ASCIT.we swis sisis oisss s srais siss s 5is's 63~ T
int ftoa(value,buffer,iplaces,fplaces)

fwrite, Write tO @ StreamM.i.eeeeeeeeeeereneneneneeeald=T2
int fwrite(where,elsize,nelem,stream)

gcdir, Get the current directoOry......eeeeeeeeeeesesa3=73
char *gcdir(drivename)

getc, Read a character from a stream.......ceeeee...3-74
int getc(stream)

getchar, Get a character from stdiN.....eeeeeeeeeess3=75
int getchar()

gets, Read a string from standard input.............3-76
char *gets(buffer,bufleng);

getw, Get a word from a Stream....ceeeeeeecscsasceaald=77
int getw(stream)

index, Find a character in a string...... & aneid s o siale o 3=78
char *index(string,cc)

inportb, inportw - Input a byte or word from a port.3-79
char inportb(portno)
int inportw(portno)

intrinit, intrrest - Init and restore for interrupt.3-80
intrinit(func,stack,vecno)

intrrest(vecno)

issomething, Character class testS.......c.eeveeo...3-83
int isalnum(cc) /* alpha-numeric */
int isalpha(cc) /* alphabetic */
int isascii(cc) /* a defined ASCII character */
int iscntrl(cc) /* a control character */
int isdigit(cc) /* a digit */
int islower(cc) /* a lower case alphabetic */
int isprint(cc) /* a printable character */
int ispunct(cc) /* a punctuation character */
int isspace(cc) /* a white space character */

int isupper(cc) /* an upper case character */

60.
61.
62.

63.

64.
65.
66.

67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
8l.
82.
83.

84.

85.

iswap, Swap two integerS.......eceeeeeeccsccssccsesss3-85
int iswap(inta,intb)

itoa, Convert an integer to ASCII.....ceeceescsessss3-86
int itoa (n,buffer)

itoh, Convert an integer to hexadecimal.............3-87
int itoh(n,buffer)

key getc,key_scan,key shft- 2z-100 PC keyboard funct.3-88
int key getc()
int key scan()
int key shft()

longjmp, Restore an enviromment......cececeseeosesss3=-89
int longjmp(envp,value);

ldexp, Load eXpoNent.....ceeeeeessessccssssscasssses3=90
double ldexp(mantissa,exponent)

loadexec, Load Or execute a PrOgraM....ceeeeosesssss3=9l
int loadexec(filename,param,funcode)

log, logl0, Logarithm functions.......cecceecesecsss3=-92
double log(val)
double loglQ(val)

lower, Convert a string to lOWer CaS€.....ceeseessceea3=93
char *lower(string)

lseek, Position R/W pointer in a fil€...eeeeeeoesss.3-94
long lseek(fd,offset, base)

ltell, Tell the R/W position within a file.......... 3-96
long ltell(£fd)

ltoa, Convert a long integer to ASCII....ceceessssss3=97
int ltoa(n,buffer)

ltoh, Convert a long integer to hexadecimal.........3-98
int ltoh(n,buffer)

ltos, Convert a long integer to a string........ veee3-99
int ltos(n,buffer,base)

main, Entry point for a C program........eeeeeses..3-100
int main(argc,argv)

makefcb, Make a file control block...eeeeeeeaanns ..3-102
char *makefcb(filename)

makefnam, Make a file NAME.c.ceeseseesrosscecncesss3=104
char *makefnam(input,default,result);

malloc, Allocate uninitialized memory from the hea.3-106
char *malloc(size)

mkdir, Make a new subdirectory......eeeeeeeecsssesas3=-107
int mkdir(pathname)

modf, Split double into integer and fraction.......3-108
double modf(val,iptr)

movblock, Move a block Of MEMOIrY..ceeesseeareasssesa3=109
int movblock(soffset,sseg,doffset,dseg,count)

movmem, Move memory within a program........ eeeeees3=110
int movmem(source,dest ,count)

open, Open an existing file....eieeeeeeeeeeenaaeses3=112
int open(filename,mode)

outportb, outportw - Output a byte or word to a p.3-114
unsigned char outportb(portno,value)
int outportw(portno,value)

peek, Examine the content of a word in memory......3-116
int peek(offset,seq)

poke, Store data in MEMOLY..eeeeereoevoaccosssesssa3=117

86.
87.

88.

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.

109.

pokeb(offset,seg,byte); /* poke a byte */
pokew(offset,seqg,word); /* poke a word */
pow, Return X to the power Y...iieeecececececeesssa3d-118
double pow(x,y)
printf, Print to stAoutiwssssswssnsesssessesssvees3=119
int printf(format,args...)
2-100 PC printer functions (2-100 PC ONLY!)3-120
int prt busy(printer)
int prt err(printer)
int prt putc(printer,character)
int prt_rst(printer)
prt_scr()
int prt_stat(printer)
ptrtoabs, Convert a pointer to an absolute address.3-122
long ptrtoabs(address)
putc, Output a character to a stream.......eecees..3-123
int putc(cc,stream)
putchar, Output a character to StdoUt.....eeeeee...3-124
int putchar(c)
puts, Output a string to a stdout....eceeeeeeeesssa3=-125
int puts(string)
putw, Output a word to a StreamM...cccceceeeeceeeeseald=126
int putw(w,stream)
gsort, Sort an array of records in memory..........3-127
gsort(array,number,width,cmpf)
read, Read characters from a fil€.....eeeeeeeeesess3=129
int read(fd,buffer,count)
realloc, Change size of a heap area.......eoeeee...3=-131
char *realloc(oldp,size)
rename, Change the name of a fil€..ue.veeeeeeonaasaeald=132
int rename(from,to)
rewind, position to the beginning of an open file..3-133
long rewind(stream)
rindex, Reverse index SearCh...........e.eeeeeese..3-134
char *rindex(string,cc)
rmdir, Remove a specified directory...............3-135
int rmdir(pathname)
sbrk, Request memory at string break..............3-136
char *sbrk(size)
scanf, Scan fields from StdiN......eeeeeeeeesesssa3=-138
int scanf(format,args)
segread, Read the segment registers...............3-140
int segread(rv)
setjmp, Save the environment for longjmp..........3-142
int setjmp(envp)
setmem, Set memory to a byte value................3-144
int setmem(address,count,value)
sprintf, Print to a string in memory..............3-145
int sprintf(string,format,args)
SQrt, Square TOOE .. s s s ses s3e e & b6 & siais 56 o ese.3-146
double sqrt(val)
sscanf, Scan fields from a String......eeeeeeee...3-147
int sscanf(string,format,args)
SETiNg EunctionSHu. sew s ¢ sas s & vesEn i Enavedbasesdm149
char *strcat(stringl,string2)

unsigned char *strchr(s,c)

int strcomp(stringl,string2)

char *strcpy(to,from)

unsigned strlen(string)

char *strncat(stringl,string2,max)
int strnamp(stringl,string2,n)
char *strncpy(to,from,n)

unsigned char *strpbrk(sl,s2)
unsigned char *strrchr(s,c)

110. sysint, Execute an INT instruction...........cc0..3-155

int sysint(vec,sreg,rreq)

111. sysint2l, Execute an INT 21H instruction..........3-157

int sysint2l(sreg,rreq)

112. system, Execute a PrograM....c.eecesecseessssssssas3=l59

int system(string)

113. toascii, tolower, toupper - Convert characters...3-161

char toascii(c)
int tolower(c)
int toupper(c)

114. trigonometric functionS..ceeeeeeecescccccccescssse3-163

double sin(val)
double cos(val)
double tan(val)
double asin(val)
double acos(val)
double atan(val)
double atan2(x,y)

115. ungetc, Push back an input character..............3-165

int ungetc(c,stream) /* unget to stream */
int ungetch(c) /* unget to stdin */

116. unlink, Erase a disk file...ceesecececesennceeeesad=167

int unlink(filename)

117. upper, Convert a string to upper Cas€.............3-168

char *upper(string)

118. utoa, Unsigned integer to ASCII conversion........3-169

int utoa(value,buffer)

119. wgsort, Sort a set of records in memory...........3-170

int wgsort(n,cmpf,xchgf,data)

120. write, Write characters to a fil€..ceeeeesessesses3=172

int write(fd,buffer,count)

Appendices

A. APPLICATION NOTES..eceececeocencosnsseossssaasssosnsoaseshA=l

1.
2.

PLINK DEMONSTRATION. .eveoocecocosssssessassassasonssssA=l
CREATING <COM FILES«s s ws sisis siave aisie sias s a7 = sis a'sis sinis o ove sieie HE2
1. New Prologue.N.cceeececececscacoccscccocsccccsossossssesh=2
2. New SmMain.asSMeccecesssssssceceocconcacccoscvssoeseseh=3
3. Notes on getting com files created:................A-8
TECHNICAL NOTES ON THE 8087 FLOATING POINT FORMAT.....A-9

. Variable length tables at run time.......ceccceeeo...A=-10

Calling a function with a pointer........ceeeeeeee.A-12

. TECHNICAL NOTES ON READING A NUMBER FROM THE CONSOLE.A-13
TECHNICAL NOTES ON THE USE OF MOVBLOCK.....e0s00s0s04..A-14

[s e BEN RN,

. TECHNICAL NOTES ON DEFAULT MEMORY VALUES.............A-15
9. TECHNICAL INFO ON THE CORRECT USE OF FOPEN().........A-16
10. TECHNICAL INFORMATION ON LOW-LEVEL 2-100 PC ROM CAL.A-17
11. TECHNICAL INFO ON BIG MODEL POINTERS.....eeeveessss BA=l7

12. TECHNICAL INFO ON DOING SEND / RECEIVE FOR Z-100 PC.A-18
13. TECHNICAL INFORMATION ON USING THE ANSI.SYS DEVICE .A-19

INDEX....... [Ceseesasanarens sestessaesesceranaa .. Index-1

OPTIMIZING C86 USER'S MANUAL GENERAL

1. GENERAL INFORMATION

1.1. Introduction.

Welcome to the world of "C" and the OPTIMIZING C86 C Compiler.
We hope you will find this a useful and satisfactory product. If
you have any questions, or problems, please call, telex or write.

1.1.1. Information.

This manual provides the information needed to use the Computer
Innovations OPTIMIZING C86 implementation of the C Programming
Language. It assumes a basic knowledge of C, your machine and
your operating system. You will also need a copy of "The C
Programming Language"™ by Kernighan and Ritchie.

If you are learning C, you will find that the examples in K&R
will usually run without change. Although K&R is a very good
book, we suggest that you also obtain some of the other books now
available on the language. They provide valuable perspective.

1.1.2. Language features.

All language features are supported, and all programs in
Kernighan and Ritchie should run. Our library includes all the
standard library functions mentioned in K&R, a selection of UNIX
V7 routines, and a set of machine and operating system dependent
functions, Together they should let you exploit the full power
of your computer, and the portability of most C code.

1.1.3. Operating systems

The OPTIMIZING C86 compiler runs on an 8086 or 8088 processor
under two different operating systems. Throughout this manual we
use "CPM" to refer to CPM-86, CONCURRENT-CPM86 and MPM-86 and
"DOS" to refer to MS-DOS.

The documentation provided with your operating system is needed
for a full understanding of some library functions. We have
found that it is very important to have a technical reference for
your operating system. The Z-100 PC technical reference manuals
or similar ones for MS-DOS machines have some invaluable
information concerning operating system interfacing from C. This
information is not readily found in most DOS manuals.

1.1.4. Hardware.

To run the compiler you will need 128Kb of memory. This includes
an allowance of 16Kb of memory for your operating system. You
will also need at least 256Kb of disk space for the compiler,
utility programs and some working space. Two disk drives are
recommended. The compiler can be run on a singe drive 2-100 PC,
but this may be hazardous to your sanity.

OPTIMIZING C86 USER'S MANUAL GENERAL

1.1.5. Support services.

If you have difficulty with the C86 compiler or documentation, we
would like to hear from you. Zenith maintains a software support
line for all of our software products which operates from 8:00 AM
to 7:30 PM Eastern Time. This support line should be used only
for questions or bug reports concerning the compiler and its
documentation - we cannot help you with programming tasks. If
you need assistance, or wish to report a problem with the
compiler, call (616) 982-3860. This support line is provided to
you at no cost so that you can make best use of the C86 compiler.

When calling our software support line, please try to have all
pertinent information regarding your problem at hand, including:-

* The C86 compiler version and serial number. To obtain the
version number, TYPE the file "VERSION.C86" (this file is
located on the first distribution disk).

* Any options you are using to invoke the compiler.

* Mames of any object libraries you link with your code.

* The type of computer you are using, along with any
optional hardware which is installed in your machine.

* The version of the operating system you are using.

* The version of the ROM in your computer.

Also, please try to isolate the problem you are having as much as
possible, since this will help us in solving the problem. If it
is at all possible, try to have your machine available when you
call - this can be very helpful to us when we are diagnosing your
problem report.

For more complex issues you should send the problem to us in
written form along with a listing of the code sequence which is
not working, as it is very difficult to communicate long portions
of code over the phone. When writing, please remember to include
the information shown above. Our customer support address is:-

Zenith Data Systems
Software Consultation
Hilltop Road

St. Joseph, MI 49085

1.2. Optimizing C86 features.

Features of the C86 compiler since version 2.10:-

* Code is typically 10% to 20% smaller and twice as fast as
the code generated by our version 1.33D compiler. Speed
gains of up to 4 times have been noted.

OPTIMIZING C86 USER'S MANUAL GENERAL

* The big model switch allows programs up to the limit of
your memory size in both code and data regions.
Performance testing indicates that typical big memory
model programs with fairly heavy pointer usage run at
about the same speed as under our old 1.33 compiler.

* The compiler now produces Microsoft type object files.
These files may be linked using the regular DOS linker.
Thus we no longer supply our own linker or the programs
that convert object codes as we did in CPM versions and
older versions of the DOS compiler.

* The compiler has an option which will cause it to produce
assembly source that can be assembled with MASM.

* Floating point operations using in-line 8087 code run
substantially faster.

"* The 8087 Trig and math library has been re-coded in
assembly language to use the full power of the 8087.
Speed gains in this area are impressive.

* A I/O0 package that takes full advantage of DOS V2.00 is
now included. This gives full access to files in other
directories, and is substantially smaller and faster than
the DOSALL I/0 package.

* Machine dependant support for DOS and the 2Z-100 PC has
been extended with basic graphics support. A number of
other functions have been added to the libraries.

* We supply DOS format object libraries, and a program
(marion) to maintain these libraries. We also have a
source code archiver (arch).

1.3. Version 2.20 Features

There were many new additions to version 2.20 of C86. There is
improved documentation (note new section 1.14 - What to do if
things go wrong), improved 8087 code generation, pathname support
on include files, optimization switches for the 80186 and 80286
processors, optimizations for the compiler itself, and many new
functions for the run-time libraries.

1.3.1. Ctype.h

We have added ctype.h. If you include this file the table lookup
of the simple character testing functions will override the
source code function calls in the run-time library. The table
has what we consider to be the most used of the character testing
routines and is much faster than calling the functions to do the
same job.

1-3

OPTIMIZING C86 USER'S MANUAL GENERAL

1.3.2. New switches

There have been three new switches added to the compiler in this
release as follows:

-1 produces code that is optimized to take advantage of
the 80186/80286 architecture. Code produced by this
switch will NOT run on the 8086 or 8088.

-h where to search for #include files (see ccl).

-e extended ASCII enabled. All characters with their 8th
bits set will be converted to a 3 digit octal escape
sequence \XXx.

For more information on the switches see the ccl documentation.
1.3.3. New functions

There were many new functions added to the C86 libraries. There
were many functions added to take advantage of the Z-100 PC bios
calls. For example, we added more graphics functions,
communications functions, printer and keyboard functions that
work on 2Z-100 PC, and MS-DOS machines. We have also added
functions to make our library more compatible with version 5.0
UNIX. The following list shows the new functions:

com_flsh com getc com_putc
com_ rdy com rst com_stat
crt cls crt gmod crt_home
crt roll envfind exit_tsr
filedir freopen intrrest
key getc key scan key shft
prt busy prt err prt_putc
prt rst prt scr prt_stat
rewind strchr strpbrk
strrchr toascii

For a full description of the functions see chapter 3.

1.4. Installation guide.

The OPTIMIZING C86 C Compiler package is delivered on one or more
write protected diskettes. DON'T ever write on your distribution
disk(s) .

1.4.1. Unsqueeze the files.

You should format one or more diskettes, which will be used to

hold your unsqueezed master copies of the compiler. Follow your
operating system instructions to do this.

<C86 USER'
OPTIMIZING S MaNvuAL GENERAL

Then place _Your -forma.ttEd_diSkette in drive X and one of the
compiler maﬁ::r disks in drive v, [0 the following instructions,
you should =!UPStitute the actual drive letters on your system for
X and y, OU=>Y3lly they will be A and B,

Set X as yo"r default drive by typing "x:w,

G Bhe dir:ectcl:'ry of the distribution disk one in drive y by
entering w3 ix Y: 1 You should see file.names that are similar to
the file n=es listed under the heading "pos FILES". For all
except thi 'flrst‘ three files, the second character of the file
name e Eat dvf'llfl be the l.etter “on, indicating that the files
are in "squeT I fomat. This fomat reduces the ameunt g disk
Pl requi_rl Ship the files, ang also provides checksums to
check the £3i 1€ content,

Find the @i sk co.ntaxnir'm.g the file "read.men", Type this file -
entering "ty F*® %;ead.@e © If we need _to provide any additional
information» this file will contain 1€, Follow any such
instructions <

Copy the unmSdueeze program "usq.exe" to your working disk by

ing "coPY Yiusq.exe/v"., vyoy yi1] need to do thi
sl'f‘tye::rngunsqeezed master diskettes, # Lor gich

Then for each file on the master diskette with a "gn
second lette¥ Of it's file name extention run the unsqueeze
program. FOE 8xam§1e, to unsqueeze the file "stdio.hg" on the
master disk ©MNter "usq Y:stdio.hg", 7he unsqueezed version of
this file will be placed on drive " with the name "stdio.h",
Repeat this P”ce.sflf“ each of the squeezed master files, The
unsqeeze Fu:ogram wi take wildcards for the filenames but this

e carefully. younm t -t i i
d be don) us ake into account t
z;;’;e]- limitations on your computer, he e

i .
Note that the *'unsqueezed" files are usually much larger than the
"squeezed" f;lefs- Any problems reporteq indicate some machine
mal function, SOftware prOb'lem or f§u1 ty distribution disks, If
you conclude that. your distribution disks are faulty, Please
contact your supplier. If all else fails, call us,

Finally write protect and label Your unsqueezed master diskettes.

1.4.2. pos files-

ME-D08 distribution dis:;ks contain .the following files. Note that
only the first three files are shipped in "unsquee zeg" format,

version.c86 The version of the files on this disk,
HBad. A8 Final Instructions angd notes,
usq.exe Unsqueeze program,

. stdio.h Stant_iard header file,

N ool exe Compiler pass 1,

OPTIMIZING Cc86 USER'S MANUAL GENERAL

* cc2.exe Compiler pass 2.

* cc3.exe Compiler pass 3.

& cc4.exe Compiler pass 4.
arch.exe source library maintenance program.
marion.exe Relocatable 1ibrary maintenance program.
base.arc The basic support library.
dosall.arc 1/0 library for all versions of DOS.
dos2.arc 1/0 library for DOS 2.0+ (includes pathnames)
mathbase.arc ~ The basic math library.
mathsft.arc Software 8087 math routines.
math87.arc Hardware 8087 math routines.
zdspc.arc 7-100 PC routines (non-portable)

* cg86sas.lib Library; small, dosall, mathsft.
c86san.lib Library; small, dosall, math87.
c86s2s.1lib Library; small, dos2, mathsft.
c86s2n.lib Library; small, dos2, math87.
c86bas.lib Library; big, dosall, mathsft.
cg86ban.lib Library; big, dosall, math87.
c86b2s.lib Library; big, dos?2, mathsft.
c86b2n.1lib Library; big, dos?2, math87.
2dspcs.1ib Library; small, 7-100 PC routines.
zdspcb.lib Library; big, 7-100 PC routines.
prologue.h Assembly header file.
epilogue.h Assembly trailer file.
model .h Assembly big/small control file.
error.h Error definition header file.
ctype.h Character class table

1.4.3. Transfer files.

copy the files you need from your unsqueezed master disks to
working disks. For your initial use you will need the files
marked with an asterisk ("*") above. The remaining files are not
needed at this time.

you should also cOPY any other needed utility programs, such as a
text editor, to your working disk.

1.4.4. Create a test program.

Create a source program. We suggest you use the editor supplied
with your operating system, although any editor that creates
standard text files should be satisfactory. since C is a case
sensitive language "main" is different from "MAIN". You will
need to type your source code in lower case for it to work
properly. As an example we will use "hello.c", which contains:-

#include "stdio.h"

main()

{

printf("Hello, world\n");

1-6

OPTIMIZING C86 USER'S MANUAL GENERAL

1.4.5...Campilation: =2 |
To compile the program, type the following four lines:-

X:ccl Y:hello
X:cc2 Y:hello
X:cc3 Y:hello
X:cc4 Y:hello

where disk drive "X:" contains the compiler and disk drive "y:"
contains the source program. You should substitute the correct
designators for your system in the above command lines. These
are usually "A:" and "B:". They may be omitted for files
residing on the default drive (Usually drive "A:").

The result of this process will be the file "yY:hello.obj".

1746 Linking. ?

Link the program to get the executable version by typing:-
X:link Y:hello,,con/map,X:c86sas

We assume that the library ("c86sas.lib") resides on the same
disk as the programs. More information on the use of the linker
may be obtained by consulting you DOS manual.

1.4.7. Execution.

The program should be executed by typing "Y:hello" (without the
quotes), followed by a carriage return (or enter). The program
will then type the message "Hello, World" on the console.

1.5. Using the compiler.
1.5.1. Batch files.

The commands required to run the compiler may be placed in a
"batch" file to reduce typing and errors. All the programs
return termination status, so that under DOS 2.0+ the batch file
may be arranged to terminate on error. We use the following
batch file (named cc.bat) for most compilations.

ccl %2 %1

if errorlevel 1 goto done
cc2 31

if errorlevel 1 goto done
cc3 %1

if errorlevel 1 goto done
ccd %1

if errorlevel 1 goto done
goto allok

:done

pause error in compilation
tallok

1-7

OPTIMIZING C86 USER'S MANUAL GENERAL

The first argument is the name of the source file, the second is
optional, and is any compiler switches. for example:-

cCc xyz Would do a simple compilation.
cc xyz -nb Compile "big" and "8087".

See your Operating System documentation for more information.
1.5.2. Using the DOS linker.

The standard DOS linker should be used to link your compiled code
with one of our libraries. Multiple ".obj" files and multiple
libraries may be used to create one ".exe" file.

As far as we have been able to check, an object file will always
over-ride a library member which has the same public symbols.
However, library searching is performed once only, from left to
right. Therefore, if you link with the libraries "a+B+C",
library B cannot call out any modules from library A, and library
C cannot call out anything from A or B. As a result, you should
always place our library last, since it will never call out any
module from any other 1library.

See your link documentation for information on producing maps and
on automatic response files.

1.5.3. Using CHKDSK.

Aborting any program that has an open output disk file causes DOS
to "forget" that part of your disk space. If you do it often
enough, you will have no usable disk space left. This space may
be reclaimed by the DOS program CHKDSK. We suggest that you run
CHKDSK once a day on your working disks.

1.6. File system.

The i/o packages are intended to present a UNIX like interface to
the programmer. This section provides information that will help
you understand the implications of the design.

A standard UNIX system has two groups of input/output functions.
The basic group provides i/o buffered by the operating system,
and very few services for programmers. The second group provides
within-program buffering and a large collection of services.

We have provided both sets of functions. They react as a UNIX
based program would expect. The following sections provide more
information.

OPTIMIZING C86 USER'S MANUAL GENERAL

1.6.1. Basic services,

The basic services are provided by the functions:-

open Open an existing file.

creat Erase any existing file, then open a new (empty) file.
close Close a file.

read Read bytes from a file.

write Write bytes to a file

lseek Position in a file.

ltell Report current position in file.

All the above functions identify the file by a file descriptor,
which is returned by open and create, and input to all other
functions. By UNIX convention, file descriptors are small non-
negative integers, and open/create must return the smallest
possible file descriptor for any call. You can depend on this.
As a result, you can predict the file descriptors returned by a
sequence of open/creat/close calls.

1.6.2. Stream services.

All other input/output functions use a stream identifier. This
provides a variety of useful services including formatted input
and output. These functions should be used by your programs for
portability, and generality.

A stream identifier is returned by the function "fopen". Stream
identifiers are by UNIX convention pointers to type "FILE", where
"FILE" is defined in "stdio.h". The actual definition is
implementation dependent, and our DOSALL and DOS2 libraries have
different definitions. You should not assume any relationship
between file descriptors and stream identifiers in your programs.

1.6.3. The DOSALL I/0 library.

This I/0 library will run on all versions of DOS. It provides all
the services available under DOS 1.1, along with correct
redirection handling under any version of DOS. It does support
path names when executed under DOS 2.0. You should use this
library if you are writing programs that will have to run under
pos 1.0, 1.1 or 1.25,

1.6.4. The DOS2 I/0 library.

You should use this library if you can. It is smaller, faster
and more extensive than the DOSALL library, and will have more of
our attention. It provides full use of the DOS 2.0 I1/0 system,
including path names, but can only be used with DOS 2.0+
operating systems. The choice is yours.

1.6.5. File opening modes.
Because DOS and UNIX have different end of line and end of file

conventions, we have had to make a distinction between binary and

1-9

OPTIMIZING C86 USER'S MANUAL GENERAL

ASCII data. This was done in the file opening logic to minimize
program conversion effort. Thus we have ASCII and BINARY open
modes for files. Once the mode is chosen, the remainder of the
program should work without problems, unless youmix ASCII and
binary data in one file.

1.6.6. DOS character devices.

We provide special processing for "CON:", "PRN:" and "AUX:",
which refer to the console, printer and auxiliary communications
port respectively. These files may not be opened in update mode,
but may be opened more than once in a program. Under the DOSALL
library bdos calls 1 through 5 are used to transfer this data in
unbuffered mode. These are treated as regular files under the
DOS2 library. We have heard of some bugs in DOS 2.0 that cause
some problems when treating the serial port as a file. You
should use the new functions that communicate with the serial
port in the v2.20 C86 library if you possibly can.

1.6.7. Console input.

Special processing is provided for the CONSOLE ("CON:") if it is
opened in ASCII input mode. 1In this case we always input a
complete line of input from the keyboard. Thus the line editing
characters are available to the user. Note that files open to
the keyboard do NOT share a common buffer, so that interlaced
reads on more than one file opened to the keyboard may give
surprising results. This may change in a future release.

This mechanism provides that console input is read a line at a
time. Thus your program will wait until a return has been input
before proceeding. If you want to input single characters, and
do not require the carriage return, you should open another
channel to the console in binary mode, or use bdos() calls, which
will also give you control of echoing.

1.6.8. Standard files.

Three files, named stdin, stdout and stderr, are opened at
program initiation. These files are available to the program for
the function indicated by their names. By default, these files
are opened to the console ("CON:") in ASCII mode.

The defaults for stdin and stdout may be changed by a process
known as redirection on the command line that invokes the
program. Redirection is specified in the command line as
follows:-

progname <newin >newout other arguments

Which causes "progname" to read its input from the file "newin"
instead of the keyboard and write its output to the file "newout"
instead of the console. The filenames may be any legal filename
or any of the character device file names. Of course, you can't
open the printer for input.

OPTIMIZING C86 USER'S MANUAL GENERAL

If stdin and stdout are both redirected to the same disk file,
THE INPUT FILE WILL BE DESTROYED, USUALLY BEFORE ALL THE INPUT
HAS BEEN READ.

You may also append data to the end of an existing ASCII file,
using the command:-

progname >>appout other arguments

If file "appout" does not exist, it will be created.
1.7. Language information.
The following information is needed for a full definition of the
C86 programming enviromment. It should be used in conjunction
with K&R.

1.7.1. Data types.

The supported data types and their sizes are:-

char 8 bits

unsigned char 8 bits

short 16 bits

unsigned short 16 bits

int 16 bits

unsigned int 16 bits

pointer 16 bits or 32 bits
long 32 bits

unsigned long 32 bits

float 32 bits (8087 format)
double 64 bits (Used for f.p. calculations)

Pointers are 16 bits long in the small model and 32 bits in the
big model. All pointers in a single program must be the same
length.

The floating point data storage uses the 8087 data formats, even
if you are using the floating point software. Our bulletin board
has a complete description of the floating point formats. To
have access to the bulletin board you need to join our user
group, which can be done by contacting Computer Innovations.
Float data has an 8 bit exponent, allowing numbers up to
approximately le+38. Double precision has an 11 bit exponent,
allowing numbers up to approximately 1le+308. Floats are ALWAYS
converted to double before being used or passed to a function.
ALL floating point calculations are done in double precision.

1.7.2. Storage types.

RAuto, extern and static are as defined in KaR. Register class is
converted to auto for the moment, but this will change as we
enable more of our optimization logic., If you are writing new
code, then you should apply register class where appropriate in

1-11

OPTIMIZING C86 USER'S MANUAL GENERAL

preparation for future releases of the compiler.
1.7.3. pDefinition of extern.

The use of the keyword "extern" varies radically from compiler to
compiler. Our definition is taken from K&R page 206 item 11.2.
It is:-

Any external data item must occur exactly once without the
keyword "extern". This entry may have an initializer. It
causes storage to be reserved for the data item.

All other entries must include the keyword "extern" and may
not contain an initializer. They do not cause storage to be
reserved.

1.7.4. Debugging.

Most debugging should be done by adding print statements and re-
compiling the program.. However, your standard debugging package
may be used to debug programs. You can obtain a memory map from
your linker. You may then place break points on the first
instruction of a function, and examine local variables and
arguments. We have found that the DOS debug package is much more
difficult to use under the big model than the small, so work with
the small model if you can.

Wwhen all else fails, the assembly source output from the compiler
should help you to find bugs. Note that because of problems in
the assembler, the assembled assembly source code may not match
the direct object code exactly, although functionally it will be
identical. Typically the assembler may chose another op code for
the same instruction. For example it may use a regular three
byte jump instruction, where the compiler will use a two byte
short jump.

In the generated assembly code, labels lines take the form:-

. 0XXX s NNN

where the xxx is the approximate address of the label in the
assembled code and NNN is the approximate line number of the
source code that resulted in the surrounding assembly code.

It is usually easier to add a few print statements and recompile.
A symbolic debugger is available. It is called PFIX86 PLUS and
is a very useful symbolic debugger. For more information contact
Computer Innovations.

1.8. Converting to Vv2.20 from V1.33.
All changes made to the library are intended to make OPTIMIZING

C86 conform to the standards in K&R. If you find unusual things
happening, you should examine the library documentation, or even

1-12

OPTIMIZING C86 USER'S MANUAL GENERAL

the library source code for changes in definitions. Very few
changes have occurred, but it is probable that the 2.0 and DOS-
ALL libraries have minor differences. In particular, the
definition of STRNCPY was incorrect, and has been changed to
conform to UNIX usage.

1.8.1. Pointers.

If you are converting running code to the big model, your most
probable errors will be mis-use of pointers. Since the big model
uses 16 bit ints and 32 bit pointers, pointers and ints are no
longer equivalent. You must declare pointers as pointers for the
correct code to be generated. You must also declare functions
that return pointers to be returning pointers. This has caused
us significant problems, as the compiler does not provide much
help in detecting such errors.

Code that uses the function "segread" under the small model
almost certainly should NOT use it in the big model. Examine
library functions, such as " open" in DOSALL, for examples of the
correct code. -

1.8.2. 8087 support.

This version of the compiler generates in-line 8087 code and also
includes a trig and math package for direct use of the 8087.
Note that this library is distinct from our C language trig and
math functions for use with floating point software. This should
result in your floating point code running about three times
faster.

1.8.3. 2.0 1/0 library.

This is provided as an alternative to the standard DOSALL

library. It provides additional functions, such as change
directory, make directory and full path name support. This will
finally emerge as our standard library, and most I/O performance
enhancements will be done to this library only. Use this library
if you can. The DOS2 libraries all have a "2" as the middle
character in the library descriptor (e.g. C86s2s) .

1.9. Assembly language functions.

This section provides basic information required to write
assembly language functions. This information may change with
future versions of the compiler. If you must use assembly code,
keep the function short and to the point. Most things can be
done in C.

Something we should point out now is that the layout and format
for assembly language source files that you are linking with C86
are important. You should follow the layout of some of our
assembly functions in the run-time archives. It would be a very
good idea if you could read and understand such things as where
local data goes, how to interact with the big model, segment

1-13

OPTIMIZING C86 USER'S MANUAL GENERAL
names, etc. from our source code. A very good example is the
"write.asm" source in the DOS2 run-time source archive.

1.9.1. Header files.

Three header files are provided to support assembly language
programming. They are:-

model .h pefines the model to assemble.
prologue.h Defines segment names.
epilogue.h Closes the assembly file.

These files are intended to make your assembly code easier to
convert if any changes are needed for future releases. You
should include each of these three files in any assembly code you
write. Your code should be placed after the inclusion of
prologue. See a small library routine like peek.asm for an
example.

We would like to note that common versions of masm have a number
of problems, and that the code you write may not be the code you
get. You must check the resultant code with the debugger in a
test program. The most common problems are:-

Incorrect data addresses. (bad relocation)
Incorrect instructions. (wrong op code or address fields)
Incorrect code addresses (segment nesting fails)

1.9.2. Model.h

This file should be included at the head of any assembly language
function. It is used to define the assembly language switch
"@BIGMODEL", which currently takes the value "0" for a small
model assembly, and "1" for big model assemblies. Note that we
plan other values for later releases.

1.9.3. Prologue.h

The file "prologue.h" should be included immediately after
"model.h". It defines all the basic segment names in the correct
order to result in a correct link and also defines the symbol
"@AB" which is the argument base for the chosen model, provided
you have used the standard entry logic, which consists of:-

PUSH BP
MoV BP,SP

The standard return logic consists of:-

MOV SP,BP
POP BP

1-14

OPTIMIZING C86 USER'S MANUAL GENERAL

The segment names defined by prologue.h and the order that they
have to occur in memory after linking are:-

@CODE Code goes here in the small model.
@DATAB Beginning of data segment.

@DATAC Character strings and constants.
@DATAI Initialised global data.

@DATAT To find out where DATAU begins.
@DATAU Uninitialised global data.

@DATAV To find out where DATAU ends.

The compiler will create additional code segment names if you are
compiling with the big model switch. These segments will always
preceed the data area in memory when the code is 1inked.

All your code should be placed in @CODE, and any data in @DATAI.
You can put your data in the other segments, as long as you
qualify all references by "DGROUP:". Note that the DATAU area is
initialized to zero at program startup time,

The file PROLOGUE.H should be included in all assembly language
code. If you invent any additional segment names, make sure they
are linked into reasonable places. The run time system makes
assumptions about the order of segments in memory.

1.9.4. Calling conventions for functions.

Calls to functions, in C or assembly language, use the following
conventions:-

Calling C functions push the left-most argument last, and
the right most argument first. Thus the left-most argument
is at the "top" of the stack.

All character arguments are converted to int before being
placed on the stack.

Registers ax,bx,cx,dx,si and di may be used by the called
function, and do not have to be saved or restored. THIS MAY
CHANGE IN A FUTURE RELEASE.

The called function is entered by a "near" call in the small
model and a "far" call in the big model.

Registers cs, ss, ds, es and bp must be preserved. Register
bp is the frame pointer.

1.9.5. Returned results.
char, short and int are returned in register ax.

long is returned in registers ax and dx, ax is least
significant.

OPTIMIZING C86 USER'S MANUAL GENERAL

Doubles are returned in ax, dx, bx and cx where ax is least
significant and cx contains the exponent. This WILL change
in the near future.

Big model pointers are returned in ax, dx.

Arguments are popped from the stack by the calling function,
since the called function does not know how many arguments
were supplied.

FUNCTIONS WHOSE NAMES BEGIN WITH A DOLLAR SIGN ARE INTERNAL
COMPILER KNOWN FUNCTIONS AND DO NOT NECESSARILY FOLLOW THESE
CONVENTIONS. These may be changed but be careful to read the
existing code to determine the conventions used. They vary from
function to function.

See the distributed archives for samples of assembly language
code.

1.10. Compiler options.
1.10.1. Big model switch.

If you do not use this switch, you will generate a small model
program, which allows you up to 64Kb of code plus 64Kb of data.
Over 90% of all C programs will run in the small model, and they
will be smaller and run faster.

The big model switch will allow the whole program to be up to
1000Kb in size, but the following additional limits apply:-

No one source file may generate more than 64Kb of code.
This limit would be hard to exceed.

The total of global and static data must not exceed 64Kb.
This limit may be exceeded by having large arrays in your
program. The way around that is to create a pointer to the
array data and allocate space to the pointer at run time.
As a result, no single array may contain more than 64Kb of
data. But you can have more than one array. This should
not result in having to change much of your code.

The total stack space is limited to 64Kb. BAgain, local
arrays could use up all available stack space, and the
solution is to use dynamic allocation.

The remainder of memory is available from the heap in
chunks just less than 64Kb in length.

In the big model pointers are 32 bits. The pointers hold both
the segment and offset parts of the address. The most
significant two bytes of the double word pointer holds the
segment and the least significant word hold the offset. The
following shows how to break up the pointer into its parts:

1-16

OPTIMIZING CB86 USER'S MANUAL GENERAL

/* big model example */
char *bigpointer;
int segment, offset;

segment = ((unsigned long)bigpointer)>>16;
offset = bigpointer;

There are examples on how to get the proper formats all through

the run-time library source code. Look at the code for further
examples.

1.10.2. 8087 switch.

This switch generates code to use 8087 hardware instead of the
software package. The result is much faster execution., Note
that 8087 code run on a machine without an 8087 will cause the
machine to hang, and you will have to re-boot.

1.11. Overlays.

We no longer support our 1.33 overlay mechanism. The only
available solution is to use PLINKS6.

1.11.1. Plink8é.

It will handle overlay systems under both the small and big
models, but we have had some reports that it is unable to handle
really complex overlay structures. You will need to obtain
version 1.30 (or later) of PLINK86, which apparently cures a
number of problems in the previous versions,

It is important that you use a "class" statement, to force the
data areas to be placed after ALL your code, and that the data
segments be in the correct order. To get this to work you must
therefore put the "class" statement at the end of your PLINKS86
commands. Do not put the "class" statement in your PLINK86 file
if you are not using overlays, it will not work. We used the
following "class" statement:-

class DATAB,DATAC,DATAI,DATAT,DATAU,DATAV, HEAP, STACK
1.12. Hints and other comments.

The following notes may help you with coding problems that are
frequently reported to us.

1.12.1. Kernighan and Ritchie.
Many of the programs in K&R will not compile and/or 1link
correctly unless you insert the following as the first line of

the program:-

#include "stdio.h"

OPTIMIZING C86 USER'S MANUAL GENERAL

You will also have to change "open" and "fopen" calls to match
our conventions, which differ slightly from the standard UNIX
conventions.

1.12.2. Initializing structures and arrays.

K&R do not point out that local arrays and structures (ie defined
inside a function) cannot be initialized at compile time unless
they are declared static. Thus inside the function main() the
following is valid:-

main()

{

static char *days[]={"mon","tue","wed"};
}

Without the word static, you will get the warning "initializer
needs lval". This type of initialization is always valid at a
global level, with or without the word "static".

1.12.3. String initializers for character arrays in structures.

I1f you have a character array as a member of a structure, and you
wish to initialize it with a string, enclose the string in
braces. eg {"initializer string"}.

1.12.4. Structure and union member names.

In this version of the compiler, all structure and union member
names share the same name space. Therefore, the compiler
considers that any member can be part of any structure/union.
The alternative is to assume that each structure/union defines a
separate name space, and to provide much tighter checking of
member names. We plan to add a switch to provide this checking
in a future release.

To remain fully portable, we recommend that each member name be
unique. We always begin each member name with some mnemonic for
the structure/union that contains it.

1.12.5. Assigning pointer and int data types.

In most C Compilers integers and pointers are of the same size
(in bits). Programmers frequently save an integer in a pointer,
or a pointer in an integer. This is NOT a portable construction,
and K&R specifically warns against this practice.

In this version of C86, if a program is compiled with the big
model option, pointers are 32 bits, and these type of assigmments
will provide interesting debugging experiences. You should also
make sure that any function that returns a pointer (including
library functions), is declared before it's first use. The
compiler does not warn about these constructs, because in some

1-18

OPTIMIZING C86 USER'S MANUAL GENERAL

cases they are legal. Take care.
1.12.6. Redefinition of function name error message.

A number of users have had problems with this error message. It
is caused by calling a function before it is defined. When a
function is used before it is defined, the compiler assumes that
the function returns an int. If you later define the function to
return any other data type, then you really have redefined the
function. To eliminate this error message, add an extern
definition of the function, with the correct data type, before
its first use.

1.12.7. Run time error messages.

There are a number of run time error messages embedded deep
within the system. The message is the name of a function or
generic type of function in upper case. For example “WRITE", or
"ALLOC". These are used to deal with totally impossible error
situations, which should only be encountered dur ing debugging.
These error messages are always written to the console, and are
always followed by an abort. See " exit" for help in locating
these problems. -

We would also like to mention the "BAD FILE" error message, which
is caused by trying to use a file that is not currently open.
This message will only appear in DOSALL libraries.

Unusual error messages can also be produced by programs that have
destroyed memory.

1.12.8. Undocumented functions.

We often add functions to the library before we add library
documentation. An examination of the 1library source archives may
be interesting. It will also be useful to read the source code
in our libraries when you need some examples of C code.

1.12.9. Eliminating the standard functions.

If you don't need any of the standard library functions, you
should modify the functions " exit", "Smain" and " main". These
functions call in most of the standard library code. You can
probably eliminate all of " main", since it is mainly responsible

for file redirection and argument parsing.

You should see the function "“_fmtout" and " fmtin" if you want to
eliminate the floating point support library. This will save
about 1.5Kb of code.

Since the linker only includes functions needed by the program
being linked, this will reduce the size of the final program,

OPTIMIZING C86 USER'S MANUAL GENERAL

1.12.10. Trig library.

The C language versions of the trig functions were written using
the book "Software Manual for the Elementary Functions" by Cody
and Waite (Prentice-Hall 1980). You may find this book to be a
useful reference for more information on the algorithms used in
these functions. The 8087 assembler trig functions were created
from code donated by a number of generous compiler owners.

1.12.11. Creating CoM files.

The only reason that we have found to create a COM file is for a
device driver. If you are writing a device driver and would like
to know all of the procedures on how to create a COM file the
information is on our user group bulletin board. To find out
more about our user group contact our sales staff for more
information. Also check future versions of our user group
newsletter for the description on how to do this, it might just
show up there also.

1.12.12. Creating ROM files.

We are now selling a set of routines to help you create “"romable"
code at a nominal fee. This package is called ROMPAK and to find
out more about it contact Computer Innovations.

1.12.13. Using 8 bit characters in strings.

There is now a new switch for the compiler which allows extended
ascii characters to appear in your C programs. The '-e' will
convert all characters with their 8th bit set to a 3 digit octal
escape sequence \xxx. There is now no need for the "allbits"
program of earlier versions of C86. Be warned that some text
editors will not work with this switch. See ccl documentation
for more details.

1.12.14. Converting BDS-C programs.

You will have to modify some library function calls and the
global data definitions.

If you have a number of programs, it may be quicker to modify our
library functions to match the BDS-C definitions. We hope that
the C86 users group will be able to provide such a library.

We recommend the following method of converting the global data
definitions. We assume that the global definitions are in one
file which is "#included" with each of the source files.

add the word "EXTERN" in front of each existing definition.

1-20

OPTIMIZING C86 USER'S MANUAL GENERAL

In one file, before the "§include" statement for the global
definitions, add the definition:-

$¢define EXTERN
In all other files add the definition:-
#define EXTERN extern
You should also use the "-u" switch with program cc2.
1.12.15. Pathnames.

There is now full pathname support in both the DOSALL and DOS2
libraries. There are also full pathnames available for the
#include preprocessor statement. See the documentation for ccl
for more details. One other note under this section, if you ever
include a pathname in a character string constant make sure that
you have two backslashes for every one in the string. 1In other
words, the backslash is the escape character in C.

1.12.16. Porting code to OPTIMIZING C86.

A number of users have transported code that compiled under UNIX
and other C Compilers to OPTIMIZING C86. Generally there was
little or no conversion effort involved, except for the very non-
standard i/o libraries provided with some compilers.

Some of our compile time switches are intended to reduce the
problems of portability. See the program description sections
for details.

OPTIMIZING CB6 USER'S MANUAL

1.13. Memory layout under DOS.

The following shows the layout of memory when a
program (such as the compiler)

interrupt vectors

program segment prefix

code of c program

data (static) of c program

heap (dynamic) Expands towards stack

unused, available for heap or stack
growth

is executing under DOS.

GENERAL

typical C

With the small model, code and data areas are limited to 64Kb
In the big model, total code and data are limited by the
size of memory, but the static and stack sub-sections of data are
limited to 64Kb each.

each.

OPTIMIZING C86 USER'S MANUAL GENERAL

1.14. What to do if things go wrong.

This section of the manual will be the place where hints and help
will be given out for what we consider to be the most recurring
problems with C86 usage.

1.14.1. Problems with functions in the library.

In general, if you are having problems with a library function,
try and create a sample program. You could try to run the
example program found in chapter 3 under the function
description. Sometimes it is as simple as not declaring a
function that returns a non-integer.

1.14.2. Big Model and memory limits.

A common problem with C86 big model users is that they say that
they have "a 256K machine and I can only allocate about 80 or
90K". The reason why is that we only access 96K for the stack
and ‘the heap as a default. This way users of C86 can both use
the big model on just about all machines and also use the
"system()" function. Since the "system()" function needs unused
memory outside of where the program is loaded you cannot access
all of the machine's memory for the data segment if you want to
use the function. You can change the value of _MAXFMEM in
default.c, (see _default in ch. 3) recompile the function, and
Tnclude the object module in your link edit step to access more
memory for the big model. The number in MAXFMEM is the number of
16 byte paragraphs. If you access all of memory you will not be
able to use the system function,

1.14.3. Problems with opening a file.

Make sure you always check the returns on a file open. Also make
sure that when you include a path name that you use two
backslashes for one inside double quotes. Sometimes you will
also run into a file limit when using the DOS2 libraries. The
DOS2 file limit defaults to 8 and 3 or 4 files are already opened
before your program starts to execute. This default can be
changed in your DOS config.sys file. Fopen also needs about 1K
on the heap in the small model and 2K in big model for the file
buffer.

1.14.4. System function.

If you are having problems with fitting your program into memory
when using the system function there are some things you can do.
If you can somehow use less data space for you programs (either
the one calling the system function or the program called by it)
you can shrink the size needed by changing default.c. The
default variable that you want to change is _MAXFMEM. When you
shrink this value, make sure you are careful. It is much better
to err on the side of having extra unused memory than to make the
program unusable.

1-23

OPTIMIZING C86 USER'S MANUAL GENERAL

If nothing happens when you invoke the system function, make sure
that command.com is found either in your path or on the default
drive and directory.

Also system will not work with your switchar set to another
character. You can either modify the source to the system
function to cope with your switch character or you can reset it
to the default.

1.14.5. Interrupts and intrinit.

Since this is a somewhat tricky area you should really understand
the documentation and examples in chapter 3 under the intrinit
function. Something that is very important to mention again here
is that the functions that will be invoked by the interrupt
handler must be very, very short. Don't ever do a printf() call
inside one of those functions. It will be too much code.
Certain interrupts are so frequent (the timer tick for instance)
that you can hardly do anything inside the interrupt function.

1.14.6. Serial port communications.

The new functions added to version 2.20 of C86 should help
greatly with the communications problem. If youcan live with
the buffering and speed limitations this is definitely the way to
go. Treating the COM ports as a file and using the 1/0 system
are hazardous under DOS 2.0, so that should be avoided. On
faster machines we have achieved 9600 baud rates using our
library functions, so it can be done. If you really need to get
high data transfer rates you should write your own interrupt
driven communications package.

1.14.7. Funny errors out of ccl.

If you are getting funny errors out of ccl, run that pass of the
compiler over again with the '-p' switch set on so you can see
what the preprocessor is generating. mUsually it becomes apparent
what is wrong when you see this output. Some of the more common
mistakes are that you have a "/*" in your program. A beginning
of comment inside double quotes must be esacaped when it appears
in the program (i.e. "/*"). Also check that all included files
have a newline at the end of the file. This would cause a line
wrapping problem.

1.14.8. Big model pointer arithmetic.

Version 2.20 of C86, assumes that big model programs do all
pointer arithmetic in the same data segment. There is a good
chance this may change in later versions. But for now you must
do pointer arithmetic in absolute addresses by using the
ptrtoabs() and abstoptr() functions if you cannot assume the same
data segment in the big model.

OPTIMIZING C86 USER'S MANUAL GENERAL

1.14.9. Undefined results, (or a lesson in uninitialized pointers)

If you find that you are getting memory corruption or that some
other strange, undefined results are happening, you should check
for uninitialized pointers. 1In C when you declare a variable to
be a pointer to a certain data type you must then have it point
to a reserved space in memory to hold that data type. Just
declaring a pointer does not save space for the variable. If you
are confused by this whole area of C, there is a clear discussion
of pointers in the book "The C Programming Tutor" by Leon A.
Wortman and Thomas O. Sidebottom. Chapter 7 of this book is very
well written.

Another very common cause of strange results and memory
corruption is array subscripts out of bounds. This should be
checked very carefully when tracking down strange results,

1.14.10. Scanf and it's use.

Scanf and fscanf are for formatted input. Since humans are not
formatted individuals scanf should not be used to gather human
inputs. Scanf works best when it is reading inputs that were
formatted by machines (e.g., from printf). When dealing with
human input it is much better to use gets or fgets to read the
input into a buffer. The buffer can then be handled much easier
by the programmer for error checking, formatting, etc. than if
you were trying to do the same thing from stdin.

Scanf also works on ascii representations of the data. To read a
binary file of integers for example, you would not use scanf. To
read the binary formats you would have to use read or fread to
read the data directly into a memory location.

1.14.11. Strncpy

You should be very careful of the use of the strncpy function.
It does not always put a NULL after the destination string. Make
sure you carefully read the description of the function in
chapter 3 if you think you are having trouble with it. You may
want to rewrite this function to suit your needs.

1.14.12. "Pixup offset exceeds field width"...

If you are getting this message from the DOS linker that you are
using you are most likely doing one of the following things:

* You have mixed near calls with far calls. This means you
are linking together object code compiled with the big
model and object code compiled with the small model.
Double check this and re-compile if you are not sure how
some of your object modules were compiled.

OPTIMIZING C86 USER'S MANUAL GENERAL

*If you are linking in any assembler modules you probably
are not following the layout and formats needed for the
assembler source code. You should definitly understand the
section on assembly language functions in this chapter.
Also, make sure you follow the layout and format of one of
our assembler functions that make up the run-time 1library.
A good example is "write.asm" in the DOS2 archive. The
local data of the assembler function must be put in one of
the data segments defined by our prologue.h file. Also,
the names of the code and data segments have changed from
previous versions of C86. Double-check to make sure that
all of your assembler code is in the correct format.

* For some strange reason the linker gives this error message
if you exceed the 64K limit in global and static data.
wWhat this usually means is that you either have one large
global array or many small ones which when added up exceed
the 1imit. The best way to check this out is to add the
sizes of the data segments from the 1link map output. If
this exceeds 64K you must shrink it down by dynamically
allocating some of the data regions rather than having
then be global.

1.14.13. If all else fails...

We would appreciate it if you did a few things for us before you
called with a problem with C86. First try and read the manual
again in the appropiate places for some information. As strange
as it may seem, the answer to your problem might be found that
way. If you feel you have found a bug after this, please have an
example that is as simple as possible. This helps us greatly.
Also, include in your correspondence your serial number or have
it ready if you call. If you send a letter please include a
phone number so we can call you if we need more information.

1-26

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2. PROGRAM DESCRIPTIONS

2.1. ccl, preprocessor.

2.1.1. Function.

This pass of the compiler reads the source program, processes
lines beginning with the preprocessor control character M"#m,
and outputs a file of lexemes.

2.1.2. Usage. .

The command line required to execute the preprocessor is:-

ccl [-labcdehinpstu] filename

If the file name does not include a period, a default extension
of ".c" is assumed. The output file has a ".§c1" extension,

2.1.3. Flags.

All compiler flags, for all passes of the compiler may be input
to ccl, which makes batch files less compl ex. The flags
are:-

-1

-b

-C

-d

Produce code that is optimized to take advantage of the
80186 or the 80286 architecture. Code produced by this
switch WILL NOT run on the 8088 or the 8086.

(Effects ccd4) Generate assembly source code instead of a
".0obj" output file.

Big memory model switch. If this switch is on all pointers
are four bytes in length and functions that return pointers
MUST be declared before use. all parts of an executable
program MUST be compiled or assembled with the same setting
of this switch.

Indicates that comments are nested. With this flag the
compiler expects each opening comment token ("/*" to have a
matching closing comment token ("/". Without it, comments
are processed as specified in K&R. We recommend AGAINST the
use of this switch. If you wish to comment out blocks of
code, use an #ifdef with a symbol that is never defined.
Because this switch exists, comment tokens inside quotes in
your program have to be separated with a back-slash.
WARNING: this switch will go away in the near future.

Defines the characters that follow, up to the next white
space, as if they had been specified in a "§define"
statement before the first line of the source program. More
than one of these flags may be present in the command line.
You can only define the presence of the name; you cannot
give it a value.

enables processing of C source files with extended ASCTI

2-1

OPTIMIZING C86 USER'S MANUAL PROGRAMS

characters in them. Any character encountered in the source
file with it's 8th bit set will be converted to a 3 digit
octal escape sequence. This flag may cause very strange
results when used with certain editors. You should note
that the only safe place to include extended ascii
characters is inside character strings.

-h where to search for #include files. (See notes)

-i Identifiers are significant to 31 characters instead of 8.
The result is non portable but more maintainable.

-n (Effects cc3) Generate code to use the 8087 Numeric data
processor chip for all floating point operations. Otherwise
code will be produced for the floating point package.

-p print a listing of the source program to stdout after all
preprocessor actions have been performed. This is a
valuable debugging tool for problems caused by #define
statements.

-s (Effects cc2) Process string literals as an array of
"unsigned char" instead of an array of "char".

-t (Effects cc3) Generate calls for program tracing. This
currently generates a call to $entry before any other code
for each function. The $entry function may be changed as
desired to assist in program debugging. See the description
of $entry in the library.

-u (Effects cc2) Treat all occurrences of the reserved word
“char" as an occurrence of "unsigned char". This is
provided for compatibility with some 8080 C Compilers. It
also sets the "-s" flag.

2.1.4. Notes.

How to use the '-h' switch:

-hsystem[,project]
system is the name of the path to search for system files.

project is the name of the path to search for project files.

These places will be searched if the filename does not contain a

drive or pathname specifier. The order of searching is as

follows:

For files which are #included with "" :

search the path specified by the source file. (e.g. if you
are compiling c:\c86\program.c and you #include "stdio.h" the
compiler will attempt to open c:\c86\stdio.h first).

For files which are #included with <> or "" :

2-2

OPTIMIZING C86 USER'S MANUAL PROGRAMS
search according to the path specified by the project
pathname.
search according to the path specified by the system
pathname.
Example:
ccl program -h\c86\,\new\
program.c contains: #include <stdio.h>

the compiler will attempt to open stdio.h in the following
order:

"\new\stdio.h"
" c86\stdio.h"

Example:
ccl \c86\program -hc:\system\,\project\
program,c contains #include "stdio.h"

the compiler will attempt to open stdio.h in the fol lowing
order:

"\c86\stdio.h"
"\project\stdio.h"
"c:\system\stdio.h"

Remember that if you have a ':', '/', or '\' in the #include
filename, the compiler will try to open it "as is" and no other
searching will be done. It is also important to remember that
project and system path names must be termination by "\".

2.1.5. Features.

All preprocesscr lines begin with a "#" in column one of a line,
As a special feature of the current version of ccl, this
character may NOT be followed by any spaces.

The preprocessor implements the following features:-

#include "filename" - Include the content of a file. To find out
how to use it with the '-h' switch see the notes above. If
you do not use the '-h' switch it will look in the fol lowing
places for the filename to be included:-

1. The directory that the C source file is in.
2. The default directory.

#include <filename> - See notes above.

2-3

OPTIMIZING C86 USER'S MANUAL PROGRAMS

#define name XXX - Replace each instance of "name"
(name must be an identifier) by xxx in all the
following text of the program. The replacement
text, "xxx" may be any sequence of characters,
spaces and tabs, terminated by the end of the
source line.

#define name(args) replacement text - Replace each
instance of "name(args)" by the replacement text.
The args in the defined replacement text are
replaced by the supplied arguments. The number
of supplied arguments must match the number of
actual arguments.

#ifdef name - Include following code if "name" has been defined
in a "#define" statement.

#ifndef name - Include following code if "name" has not been
defined in a "#define" statement.

#if expr - Include the following code if the expression is "true"
(not zero). Only constants are allowed in the
expression.

#else - Include or exclude the following code based on the
inversion of the matching previous conditional
expression.

#endif - Terminate the action caused by the previous conditional.
#undef name - Remove the most recent definition of name, if any.
2.1.6. Line continuation.

All lines, not just quoted literals, may be continued by placing
a backslash as the last character of the line. This is handy for
long literals and macro definitions. No line or literal may be
longer than 512 characters.

2.1.7. Error messages.

We hope they are self explanatory. We report the line number at
which we detected an error, which may not be the same as the line
that contained the cause of the error. If the message does not
seem to apply to the line reported, look at the previous line(s).

We report out of balance (), [] and {} pairs withina file. The
message contains the line where the error was detected and the
line containing the opening (, [or {. Depending on the type of
error these may be hundreds of lines apart. If you can not find
the problem, add a closing),] or } at the end of the range and
run through cc2. It will report the unbalanced condition with
more precision.

We find that the "-p" flag is handy for problems related to the

2-4

OPTIMIZING C86 USER'S MANUAL PROGRAMS

expansion of macro text. It will also help find problems caused
by two lines of code separated by many lines of comments or
preprocessor statements,

2.1.8. Notes.
Avoid circular definitions such as:-
#define gwerty qwerty

They will cause ccl to crash, possibly without an error message.
The "-p" option will probably help you find the cause.

The defined constant "_C86 _BIG" is useful for conditionally
compiling big and small model source code. Specifying '-b
automatically defines " C86 BIG" so you do not have to use
#define to define it. Examples of it's use are shown throughout
the run-time source code archives.

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.2. cc2, parser
2.2.1. Function.

Reads the lexemes output by ccl, parses the program and outputs
files of initialized data, a symbol table and parse trees.

2.2.2. Usage,
cc2 [-su] filename
2.2.3. Flags.

NOTE: All flags should go in ccl for simplicity. The following
flag effects this pass of the compiler:

-u Treat all occurrences of the reserved word "char" as an
occurrence of "unsigned char". This is provided for
compatibility with some 8080 C Compilers. It also sets the
"-s" flag.

-s Process string literals as an array of "unsigned char"
instead of an array of "char".

Both the above switches should be avoided unless you are porting
code from other systems.

2.2.4. Exrror messages

Most of these should be obvious. The most difficult is "syntax
error", which means you added or omitted a required reserved word
or operator. 1In this case, the parser will report an error when
it sees a word that could not legally follow the valid phrase
already processed. We intend to provide better diagnostics and a
listing of error messages and corrective actions in the near
future.

If you cannot see the cause of the error, re-run ccl with the -p
option. This frequently makes the cause obvious.

2.2.5. Notes.

In 8080 compilers, character variables are frequently used to
minimize code size. For the 8086 they should be changed to int,
as character variables lead to awkward code sequences. Of
course, this does not apply to character strings, or places where
character variables are natural.

We also recommend the use of "unsigned char" in preference to
"char". The optimizer can produce much better code for the
unsigned variety on the 8086.

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.3. cc3, code generator.
2.3.1. Function,

Inputs a file of parse trees, and generates intermediate object
code for cc4.

2.3.2. Usage.
ced [-nt] filename
2.3.3. Flags.

NOTE: All flags should go in ccl for simplicity. The following
flag effects this pass of the compiler:

-n Generate code to use the 8087 Numeric data processor chip
for all floating point operations. Otherwise code will be
produced for the floating point package.

-t Generate calls for program tracing. This currently
generates a call to $entry before any other code for each
function. The $entry function may be changed as desired to
assist in program debugging. See the description of $entry
in the library.

2.3.4. Exrror messages.

Any error messages output by this pass are fatal. They are there
in case we forgot something. If some invalid C code does get
past cc2 it is reported in this pass. We have added a line
number to errors reported in this pass, but we are unable to
determine the filename. This should help in locating your
problem,

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.4, cc4, optimizer.
2.4.1. Function.

Inputs a file of basic code information, performs optimization
and outputs object code or assembly source code,

2.4.2. Usage.
cc4 [-a] filename
2.4.3. Flags.

NOTE: All flags should go in ccl for simplicity. The following
flag effects this pass of the compiler:

-a Generate assembly source code instead of a ".obj" output
file.

2.4.4. Error messages.

Any error messages output by this pass are fatal. Most are
internal control messages. The only message caused by your code
is the "name case conflict" message. Since the masm assembler
converts all names to upper case, we do too, and we report if two
names map into the same name. We do this test here, since it
only applies to global names, and this should reduce the changes
to your source code if this condition should arise.

If you had the infamous 'ALLOC' message come out of this pass of
the compiler it means that the optimizing pass ran out of data
space. It is usually an indication that you have either one
gigantic function or switch statement. The "work-around” is to
split up your source file, large function, or statement and
compile the separate parts.

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.5. Arch, source librarian.
2.5.1. Function.

This program allows you to maintain a single library file
containing a number of individual source files. You avoid
cluttering up a disk directory with a number of tiny source
files. It is provided to enable you to maintain the system
source library archive file.

2.5.2. Usage.
arch [-dmprtux] libname filenames....
2.5.3. Flags.

Only one of the following flags may be used for a single
execution of the program:-

-d Delete the filename(s) from the library.
-m Just like '-t' flag but just the filenames, one per line.

-p Just like '-x' flag except that the file doesn't get written
to disk and is displayed at the console.

-r Read files from stdin, one per line.

-t Table (print) the content of the library on stdout. Only
the library name is allowed. Prints the file header lines,
which are described below.

-u Update the library by adding or replacing the filenames to
the library. Creates a new copy of libname and renames the
old copy to ".bak". Will create a new library if it does
not exist.

-X Extract a copy of the named files from the archive and place
in files with the same names.

2.5.4. Notes.

The default extension for the library is ".arc".

The default extension for the filenames is ".c". Note that the

extension is considered part of the filename within the library,

but a drive specification is not.

The archive file is a standard ascii file, and may be printed

without any editing other than tab expansion, except if you have
“2's (End-of-file) in your C files.

OPTIMIZING C86 USER'S MANUAL

PROGRAMS

The following is a handy way to extract all of the files in an
archive using the flags cleverly:

arch -m ARCHNAME | arch -rx ARCHNAME

ARCHNAME is the name of the archive file.

Within the library, each module consists of a header
followed by a file body. The header line contains:-

*
*
*x
*
*

The
The
The
The
The

letters "-ARCHIVE-" or "+ARCHIVE+"
name of the file

number of characters in the file body.
date the file was last changed.

time the file was last changed.

line

OPTIMIZING CB86 USER'S MANUAL PROGRAMS

2.6. Marion, object librarian.
2.6.1. Function.

Maintains a Micro-Soft format library of object modules., This
avoids cluttering up the disk with a large number of file names,
and typing all those names on the link command line.

2.6.2. Osage.
marion [-bdelmux] libname filename...
2.6.3. Flags.

You may use the "-b", "-e" and one other flag from the fol lowing
list for each execution of the program.

The flags are:-

-b Create a backup library before doing anything else. If the
flag is followed by a letter, the new version of the library
is created on the drive designated by the letter.

-d Delete the files from the library.

-e Suppress checksum error messages for record types 80, f0 and
fl. These messages can be ignored because the Microsoft
equivalent of marion does not calculate correct checksums
for these record types. When marion updates a module, all
checksums in that module and all following modules are
correctly calculated, and written to the file.

-1 List the names of modules, module sizes and defined global
symbols in the library.

-m List the names of modules in the library in their order of
occurrence in the library. This option is useful for
constructing batch files,

-u Update the library by adding/replacing modules in the
library. A new library will be created if one does not
exist. Module names are the input filenames without any
extension.

-X Extract copies of the named modules from the library.
2.6.4. Notes,

The backup flag and the error flag may be used in conjunction
with one other flag. Since the library update is done OVER the
input library, we strongly recommend that you have a safe copy of
your input library, or use the backup switch. If this program
should fail or be aborted, the library is likely to be UNUSABLE.

OPTIMIZING C86 USER'S MANUAL PROGRAMS

2.7. Usq, File unsqueezer.
2.7.1l. Function,
Transforms a squeezed file into the original unsqueezed version.
2.7.2. Usage.
usq filename
2.7.3. Flags.
None.
2.7.4. Notes.
The filename may include a drive designator and/or wildcards.
The input is a squeezed file, the output is (we hope) a copy of
the original file, before it was squeezed. The output file will
be written to your default drive and directory.
To unsqueeze all the compiler files use:-

usqg X:cc?.ege
This program will produce an error message if the output file
does not checksum correctly, and has been modified to report
errors if the output file will not fix on the disk. However, we
would advise that you check that there is some free disk space
after performing the unsqueeze, just in case.
This is a copy of a public domain program by Dick Greenlaw. The

source of sq.c and usq.c is available on our user group bulletin
board.

OPTIMIZING C86 USER'S MANUAL PROGRAMS

NOTES:

OPTIMIZING CB6 USER'S MANUAL LIBRARY FUNCTIONS

3. LIBRARY FUNCTIONS
3.1. INTRODOCTION

The following pages describe the functions provided in the
library. There are equivalents of most of the commonly used UNIX
functions, plus various functions which let you have full control
of your operating enviromment. Note that some of the functions
are only supported under DOS 2.00 and later.

Most of the operating system and hardware dependent functions are
by definition non portable, however most operating enviromments
offer similar capabilities, With same care, you can write code
that may be ported to other systems with few problems.

3.1.1. Source libraries.

The following source libraries are distributed in squeezed,
archived form on your distribution disk:-

* base,arc Basic support code for a C program.

* dosall.arc DOS 1.1 level 1/0 library.
* dos2.arc DOS 2.0 level 1/0 library.

* mathbase.arc Basic math support.

* mathsft.arc Software 8087 support code.
* math87.arc Hardware 8087 support code.

* zdspc.arc Z-100 PC specific routines (non-portable)

The distributed libraries contain the complete content of one of
the archives from each of the above four groups {this excludes
the non-portable zdspc.arc). The DOS and math options are made
by the appropriate archive selection, in conjunction with the
setting of the big model and 8087 compiler switches,

The 2-100 PC specific routines are all in "zdspc.arc". They are
in a library that is separate from the standard C86 libraries.
THESE FUNCTIONS ARE HIGHLY NON-PORTABLE. They should not be used
if direct portability is a major concern. Also, because of the
way some linkers work you will need to include the Z-100 PC
library before the standard libraries. An example is as
follows:-

link program+object,,/map,zdspcs+c86s2s

3-1

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

3.1.2. Recampiling library functions.

All the functions in one library must be compiled with the same
settings of the big model switch (-b) and the numeric data
processor switch (-n), and these are the only switches you should
use for library functions. Note that the big model switch for
assembly code is in the file "model.h".

In some cases, an archive will contain both C and assembly
language versions of the same function. In this case please
inspect the assembly code for any usage restrictions (eg small
model only). Usually the assembly version is the one to use.

You should try to update an existing library with those functions
that need re-compilation, rather than re-compiling the whole lot.

3.1.3. Understanding the library descriptions.

Each function, or related group of functions, is described on a
separate page. The first entry on the page is the name of the
function and a brief description of its purpose. The remaining
information is presented under a set of standard headings. The
headings are:-

* Synopsis. A definition of the calling sequence for the
function, the order and type of the arguments of the
function, and the type of value it returns (if any).

This information is presented from the perspective of a
person about to write the function being described, so
that you may know what type of data to provide in a
call to the function.

For example, if an argument is described as being a
pointer to int (int *), then you should use one of the
following forms for that argument in a call to the
function:-

& integer variable
name of an array of int
pointer_to_int variable (suitably initialised).

Faulty call arguments are one of the most common
problems we encounter.

* Function. What the library function does.
* Returns. What the return values are and what they mean.
* Notes. Information that did not fit anywhere else, and

any information that might help you in your usage of
the function.

* Example. Some samples of the use of the function.

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

* DOS. Special notes about interactions with your operating
system.

* QOperating System. Which operating systems the functions works
with.

* See also, Names of other functions that provide supporting
or eguivalent services.

* Use with. Functions that are tightly related to this
function. Usually indicates that other functions which
cannot be used in conjunction with this function are
also included in the library.

OPTIMIZING C86 USER'S MANUAL _default

3.2. _default, Define default conditions.
3.2.1. Function

This file is used to establish run time default values for aC
program. We may add entries to this file from time to time, so
look at the source code for more up to date information.

When running a program that was compiled with the big model the
default is only about 90K+ for the data segment. We do not
access all of memory so that there is enough memory for the
system function (load and execute a progam) to run. You should
change the default value in _MAXFMEM if you need more data space
than 96K in the big model.

You may change these values to suit your needs, but if you do so
include the complete source of __default.c in your program. You
can also just link in the recompiled object module.

Values currently defined are:-

_MAXFMEM The maximum number of paragraphs of
stack+heap space that the program will use.
This will allow you to control the size of
programs that use the terminate and stay
resident calls., Unused memory may be used
for other purposes. If more memory is needed
in the big model this default should be
changed. This is the value you are most
likely to change in this file.

_STAKMEM The minimum number of bytes that must be left
as stack space after a successful call to
sbrk(). Remember that there are no other run
time stack checks.

_MINRMEM The number of Paragraphs at the top of memory
that may not be used by the program. We
intended this to be used to preserve
command.com, but command.com has grown to
about 15K, and that is too much memory to
skip in 128Kb and smaller systems. For now
our default value is zero paragraphs. This
control could be used to create a
communication region between programs, by
reserving additional space.

_MINFMEM The minimum number of paragraphs of
stack+heap space that must be available for
the program to run. Checked at start-up
time.

3-4

OPTIMIZING C86 USER'S MANUAL _default

_BUFSIZE The buffer size for the 1/0 system in the
DOS2 library. It is different for the small
and big models. You can vary this default
and make the buffers any size that you want.

3.2.2. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.2.3. See also

Smain() .

OPTIMIZING CB6 USER'S MANUAL Sentry

3.3. Sentry, Entry to a function.

3.3.1. Synopsis

int Sentry()

3.3.2. Function

This function is called as the first instruction of any function
that was compiled under the trace flag ("-t"). The supplied
version does a stack overflow check, and reports "NO CORE" on an
error.

3.3.3. Returns

Nothing.

3.3.4. Notes

You may modify this function to provide any checking that you
need. . It could also be modified to call a C function if the code
is extensive. Just be careful that the called C function is NOT
compiled with the "-t" flag.

3.3.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING CB6 USER'S MANUAL _exit

3.4. _exit, Teminate program execution without closing files.

3.4.1. Symopsis

int _exit(status)
int status;

3.4.2. Function

Performns the standard program termination procedure. No cleanup
procedures are performed, file buffers are NOT flushed and files
are NOT closed. The supplied status value is returned to the
operating system as the termination status of the program.

Normally the function "exit" should be used to terminate a
program. This procedure should only be used in cases of extreme
emergency.

By convention, non zero termination status values indicate
abnormal program temmination,

3.4.3. Debugging feature

This routine provides a debugging feature that has proved to be
very useful. At the time " exit" is called, the value provided
to exit and the global character variable " ' exittbc" are tested
according to the following condition table:-

_exittbe value action

zero any no stack trace
negative any stack trace
positive non-zero zero no stack trace
positive non-zero non-zero stack trace

The resulting print out is a list of call addresses, showing the
addresses of all active calls at the time " exit" was called.
This list may be compared with the linker map output to determine
the names of the active functions.

The flag "_exittbc” may be set using code at the beginning of
your program, or using your debugger.

3.4.4. Notes

Your operating system may close your files anyway.

3.4.5. DOS before v2.00.

Terminates by issuing interrupt 0x20. The termination status is

not available. The version of dos is detemined at run time and
saved in the variable "_SYSVERS" by the function Smain().

OPTIMIZING C86 USER'S MANUAL _exit

3.4.6. DOS 2.0+,

Terminates by issuing interrupt 0x21, sub code 0x4C. The exit
status is placed in register AL. This status may be tested in
batch files or by the invoking program. Note that only one byte
of status is returned.

3.4.7. Example
To turn on the debugging feature.
main()

{

extern char _exittbc;

_exittbc=0xff; /* turn it on */

. /* run the code of the program, the */

oo /* trace will be printed on most crashes */
return 0; /* return all ok (trace done anyway) */

3.4.8. Operating System
Dpos 3.0, DOS 2.0+, DOS 1.1+
3.4.9. See also

exit

OPTIMIZING C86 USER'S MANUAL _main

3.5. main, Initialize for program execution.
3.5.1. Synopsis

int main()

3.5.2. Function

This function initializes memory for the execution of a C
program, It performs the following actions:-

* Builds the argc and argv data for the function "main".

* Detects any re-direction of stdin and/or stdout. (Not DOS 2.0)

* Opens stdin, stdout and stderr in ASCII mode.

* Executes the program by performing the statement:-
exit(main(argc,argv));

3.5.3. Returns

Never returns.

3.5.4. Error messages.

The following error messages may occur. The program will abort.

"TOO MANY ARGS" More than 20 parameters occurred on the
comnmand line.

"REDIRECTION ERROR" One of stdin, stdout or stderr could
not be opened,

3.5.5. Notes

Since the name of the program being executed is not available,
the first argument provided to "main" is always the lower case
letter "c". Therefore "main" will always have at least one
argument.

The length of the command line is limited to about 128 characters
by the operating system, and generally no indication is prov ided
that the cammand line is too long. Be careful.

3.5.6. DOS

If the program is running under DOS 2.0+, stdin, stdout and
stderr will use the default files and redirection provided by
DOS. Under earlier versions of DOS, this function creates stdin,
stdout and stderr and processes the redirection information.

3.5.7. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL abort

3.6. abort, Abort execution of a program with a message.
3.6.1. Synopsis

int abort(format,args...)

char *format;

int argsS...;

3.6.2. Function

Prints a newline and the message "ABORT:- " to stderr. It then
prints the abort message to stderr., Finally it prints another
newline and calls exit with a hex value of "7FFF".

This is a convenient way to terminate a program when unexpegted
errors occur.

3.6.3. Notes
See fprintf for details of available format control codes.
This function is provided in most UNIX systems, but it does not
take any arguments. There it causes a core dump and program
termination, and not the output of a message.
3.6.4. Example
To abort a program if a required file is not available:-
#include "stdio.h"
main()
{
FILE *fopen();
FILE *fd;

fd=fopen("filename.dat","r");
i f(fd==NULL) abort("could not open filename.dat");
}
3.6.5. Operating System
Dos 3.0, DOS 2.0+, DOS 1.1+
3.6.6. See also

exit, printf, fprintf, sprintf

OPTIMIZING C86 USER'S MANUAL abstoptr

3.7. abstoptr, Absolute memory address to pointer.
3.7.1. Synopsis

char *abstoptr(address)
long address;

3.7.2. Punction

Convert a 20 bit absolute memory address to the standard big
pointer format. The offset part of the pointer returned by this
function will always be in the range 0 through 15 (decimal).
Thus the resultant pointer provides access to the next 64Kb of
memory.

3.7.3. Return

Returns a big model pointer for the 20 bit absolute memory
address.

3.7.4. Notes

This function is not usable in the small memory model.

If you are doing big model pointer arithmetic you will need this
function along with the ptrtoabs() function. Without these
functions big model pointer arithmetic assumes that the data
segments are the same for the pointers, Since this function is
very non-portable you should not use it in the big model if it is
at all possible. We may change the way pointer arithmetic is
done in future versions.

Pointers returned by this function should not be decremented, as
you will wrap to the end of the segment. If you need to
decrement such a pointer see ptrtoabs.

This function was written mainly for use in malloc and free.
3.7.5. Example

To obtain the absolute memory address of a buffer.

char buffer[23];
extern long abstoptr();

printf("address of buffer is 3$D\n" ,abstoptr(buffer));
3.7.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.7.7. See also

ptrtoabs

OPTIMIZING C86 USER'S MANUAL alloc

3.8. alloc, Allocate a storage region on the heap.
3.8.1. Synopsis

char *alloc(size)
unsigned int size;

3.8.2. Function

Allocates a region "size" bytes in length in the heap and
initializes it to zeros. If there is not enough space on the
heap to allocate a region of the required size, it prints the
message "ALLOC" to stderr and calls " exit".

3.8.3. Returns
The address of the first byte of the allocated region.
3.8.4. Notes

Using the big memory model, blocks of up to 65516 (0XFFEB) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of memory on your machine
or decreased to leave more unused memory) by editing the file
default.c. We have found that most users of C86 can live with
about 96K of heap and stack space in the bigmodel.

Total memory available using the small memory model is about
64000 bytes.

Obtains memory from the free list (maintained by "free") if
possible. Otherwise obtains memory using the function sbrk. See
the description of "free" for more information.

The function "coreleft" may be used to check that memory is
available before calling "alloc".

WARNING: In the big model this function must be declared (see the
example below). In general, you should get used to the idea of
declaring all functions which do not return an integer.

3.8.5. Example

To allocate space for a 1000 byte array:-

char *alloc(); /* define alloc to return a pointer */

char *array;
array=alloc(1000);

3-12

OPTIMIZING C86 USER'S MANUAL alloc

3.8.6. Example
To obtain a buffer dynamically for string storage

{
extern char *alloc(); /* important in the big modell!l */
extern char *fgets(); /* important in the big modell! */
extern int fputs(), free();
char *buffer;
extern unsigned int coreleft();

if(coreleft() < 1000)abort("you need to buy more core");
buffer = alloc(255); /* buffer points to 255 byte cells */

fputs("Enter a line of data > ",stdout);

fgets(buffer,255,stdin); /* for example */
fputs(buffer,stdout);
free(buffer); /* free makes this memory available */

/* on successive memory allocations */

}

3.8.7. Operating System
Dos 3.0, DOS 2.0+, DOS 1.1+
3.8.8. See also

malloc, calloc, realloc, sbrk, free, coreleft

OPTIMIZING CB86 USER'S MANUAL atof

3.9. atof, Convert ASCII to floating point
3.9.1. Synopsis

double atof(string)
char *string;

3.9.2. Function

Convert a string containing a 'scientific notation' floating
point number to a double precision floating point number.

The string can contain optional leading whitespace, an integer
part, a fraction part, and an exponent part. The integer part
consists of an optional sign followed by zero or more decimal
digits. The fraction part is a decimal point followed by zero or
more decimal digits. The exponent part consists of an 'E' or 'e
followed by an optional sign followed by a sequence of decimal
digits. There must be an integer part or a fraction part at
least, The exponent part is optional.

3.9.3. Returns

The converted number.

3.9.4. Notes

This function must be declared, since it returns a double. Use:-

extern double atof();

The largest number that may be entered is about "+1E+300", and it
can have about 15 significant digits.

Preceeding plus signs in the number are not allowed. They will
return zero in the software floating point run-time code.

3.9.5. Example
To convert an input string to double:-

{
char buffer(132];
double dnum;
extern double atof();

fgets (buffer,sizeof buffer,stdin);
dnun=atof (buffer) ;

OPTIMIZING CB6 USER'S MANUAL atof

3.9.6. Example
{

extern double atof(); /* atof converts string to float */
double result;
char *string;

string = "-1.56678899";
result = atof(string);
printf("™\nATOF\n%s = %g\n",string,result);
/* up to 15 significant digits allowed */
string="3,54009e10";
result = atof(string);
printf("¥s = %$g\n",string,result);
}
3.9.7. Operating System
pDos 3.0, DOS 2.0+, DOS 1.1+
3.9.8. See also

ftoa, sscanf

OPTIMIZING C86 USER'S MANUAL atoi

3.10. atoi, Convert ASCII to integer (long).
3.10.1. Synopsis

long atoi(string)
char *string;

3.10.2. Function

Convert a string containing the ASCII representation of a number
to an int or long,

The string can contain optional leading whitespace, an optional
sign and a series of decimal digits.

3.10.3. Returns

The converted number as a long. If the number is in the range
+32767 to -32768 the function may be used as though it returned
an integer.

3.10.4. Notes

This function does not test for errors during the conversion
process. Thus if the input number is too large, or any illegal
character is encountered in the input string, the function will
silently return an incorrect result.

3.10.5. Example
{

extern long atoi(); /* atoi converts an ASCII string to long */
long lresult;

char str[255];

strepy(str,"32767");
lresult = atoi(str)
printf({"\nATOI\n%s

%D\n" ,str,lresult);

/* the ASCII string can have a sign */

lresult = atoi("-45000™);

printf("\nATOI\n%s = $1d\n","-45000" ,lresult);
}
3.10.6. Operating System

pos 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL basicget

3.11. basicget, Get a "record" written by a basic program.

3.11.1. Synopsis

int basicget(stream,buff,bufflen,fieldptr,fieldcnt)

FILE *stream; /* where to read data */
unsigned char buff; /* where to put it */

int bufflen; /* how much to put */
unsigned char *fieldptr[]; /* field pointers */

int fieldcnt; /* max number of fields */

3.11.2. Function

Reads a line of up to "bufflen" characters from file "stream"
into the buffer "buff", Then constructs an array of up to
"fieldent" pointers in "fieldptr".

If the first character of a field is a quotation mark, the field
terminates at the next gquotation mark, otherwise the field
terminates at the next comma. In either case, the field
termination characters are stripped from the field.

3.11.3. Returns

* Minus one at end of file.

* Minus two if the input line was too long to fit in “buff",.
* Zero if there were more than "fieldent" fields.

* Otherwise the number of fields in the record.

OPTIMIZING C86 USER'S MANUAL basicget

3.11.4. Example
#include "stdio.h"

#define BSIZE 128
#define MAXFIELD 10

main()

char bf[{BSIZE+2];
char *fp[MAXFIELD];
int j;

j=basicget(stdin,bf,BSIZE,fp,MAXFIELD);
printf("number of fields was %d\n",j);
for(j=0; j{MAXFIELD;++3) {

printf("Field %4 is %s\n",j,fpl(3]);

I1f you enter the following input:-
This,is,"a field with a , enbedded",in,it
You should get back:-

number of fields was 5

Field 0 is This

Field 1 is is

Field 2 is a field with a , embedded
Field 3 is in

Field 4 is it

3.11.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING CB86 USER'S MANUAL bdos

3.12. bdos, Execute a basic DOS function.

3.12.1. Symopsis

int bdos(fcode,dx) /* SMALL MODEL */

int fcode; /* the function code for your 0/S */
unsigned dx; /* an optional argument */

int bdos(fcode,dx ds) /* BIG MODEL */

int fcode; - /* the function code for your 0/S */
unsigned long dx_ds; /* an optional argument */

3.12.2. Function

This function lets you execute most basic operating system
defined functions. The value "fcode" specifies the requested
action. The value "dx" is optional, and will be placed in
register dx before calling your operating system,

3.12.3. Returns

The value returned by your operating system in register ax.
3.12.4. Notes

Operating functions that need input in registers other than dx or
return values in registers other than ax may be called using the
function "sysint", or "sysint21",

If you are using the big model, the value supplied is assumed to
be a pointer. The first word of the value is placed in dx, and
the second word in ds. This produces a correct call for
functions that need an fcb address. If you don't need the ds
value, you may pass an int or omit the value altogether.

DOS

The value "fcode" is placed in register ah.

3.12.5. Example

To check the console to see if the user wants to abort the
program:-

Under DOS use:-

bdos(11);

OPTIMIZING C86 USER'S MANUAL bdos

3.12.6. Example

{
extern int bdos();
char disk, status,a character;
a_character=bdos(l)&0xff; /* get a character from keyboard */
bdos(2,'A'); /* display the letter 'A' on the crt */
a_character=bdos(3)&0xff; /* get a character from comm line */
bdos(4,'A'); /* writes the letter 'A' to the comm line */

bdos(9,"Print this dollar terminated string on the crt$™);

/* to set default disk: */

disk = 'b';
bdos(14,disk - 'a'}); /* will select disk b: */
/* to get console status: */
status = bdos(11)&0xff; /* if status, char is ready */

}

3.12.7. Operating System
DOsS 3.0, DOS 2.0+, DOS 1.1+
3.12.8. See also

makefcb, sysint, sysint2l

OPTIMIZING CB6 USER'S MANUAL calloc

3.13. calloc, Allocate a block of memory.

3.13.1. Synopsis

char *calloc(nelem,elsize)
unsigned nelem; /* number of elements */
unsigned elsize; /* size of each elament */

3.13.2. Function

Obtains a region nelem*elsize bytes in length from the heap, sets
the area to zero and returns its address. If no such area is
available, returns zero.

3.13.3. Notes

Using the big memory model, blocks of up to 65516 (OxFFE8) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of mamory on your machine
or decreased to leave more unused memory) by editing the file
default.c. We have found that most users of C86 can live with
‘about 96K of heap and stack space in the bigmodel.

WARNING: You need to declare this function in the big model!

3.13.4. Example
#define NUMBER 255
#define SIZE 1

extern char *calloc(); /* needed in big model!! */
extern char *fgets(); /* needed in big model!! */
extern int fputs();

extern int free();

char *buffer;

/* to allocate NUMBER*SIZE bytes : */
buffer = calloc(NUMBER,SIZE) ;
if(tbuffer)abort("ug, TOO BIG\n");
fputs("Enter data followed by CTRL-Z >",stdout);
/* buffer can now be used: */
while(fgets(buffer,NUMBER,stdin))
fputs(buffer,stdout);
/* the above will echo console input until EQF */
free(buffer);
/* free returns the area of store to the heap for
later mamory allocation calls */

}

3.13.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.13.6. see also
alloc, malloc, realloc

OPTIMIZING C86 USER'S MANUAL ceil

3.14. ceil, Ceiling function.

3.14.1. Synopsis

double ceil(arg)
double arg;

3.14.2. Returns

The a double precision number which contains the smallest integer
greater or equal to arg.

3.14.3. Notes
WARNING: This function needs to be declared to work properly.
3.14.4. Example

(
extern double ceil(); /* returns double */
double dval, dresult;

/* ceil returns the smalles integer >= argument */

dval = 178.3456;
dresult = ceil(dval);

/* dresult contains 179. */
printf("\nCEIL\nceil %e = %e\n",dval,dresult);

dval = -34.2333e3;
dresult = ceil(dval);

/* dresult contains -34233 */
printf("\nceil %e = %e\n",dval ,dresult);

dval = 12,00 ;
dresult = ceil(dval);
/* dresult contains 12.00 */
printf(™\nceil %e = %e\n",dval,dresult);
}
3.14.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.14.6. See also

floor

OPTIMIZING C86 USER'S MANUAL chdir

3.15. chdir, Change to a new working directory.
3.15.1. Synopsis

int chdir(pathname)
char *pathname;

3.15.2. Punction

Calls the operating system to set a new working directory. The
path name must be reachable from your current directory, and is
operating system dependent. You should refer to your operating
system documentation for more information.

3.15.3. Returns

EOF if an error is detected, otherwise zero.

3.15.4. Notes

This function is only usable on a system running DOS V2.0+.

If you code path names in strings, don't forget that you need two
backslash characters to enter one backslash in the string.

3.15.5. Example

To change to directory \c86 on your default disk.
chdir("\\c86");

To change to directory "xxx\yyy\zzz" on drive A:.
chdir("A:xxx\\yyy\\zzz");

3.15.6. Operating System

pOS 3.0, DOS 2.0+

3.15.7. Use with

mkdir, rmdir, all file i/o logic

OPTIMIZING CB86 USER'S MANUAL chmod

3.16. chmod, Change the mode of a file.

3.16.1. Synopsis

int chmod(filename,mode)
char *filename;
int mode;

3.16.2. Function

Calls the operating system to set the mode bits for the file to
those requested. The available mode bits and their meanings are
operating system dependent, and you should refer to your
operating system technical reference manual for more information.

3.16.3. Returns

EOF if an error is detected, otherwise zero.

3.16.4. Notes

This function is only usable with DOS V2.0 and later.

Using undocumented bits in the requested mode is not recommended.

Legal file modes:
01H Read Only
02H Hidden
04H System
08H vVolume label
10H Subdirectory
20H Archive

3.16.5. Example

{

int mode;

tdefine NORMAL 0x00 /* normmal file */
#define READONLY 0x01

#define HIDDEN 0x02

tdefine SYSTEM 0x04

#define VOLUME 0x08

#define SUBDIR 0x10

#define ARCHIVE 0x20

mode = NORMAL; /* set to a nomal file */
mode |= READONLY; /* set to readonly */

mode (= HIDDEN; /* set hidden attribute */
mode [= SYSTEM; /* set system attribute */

ctmod (" filename.dat" ,mode) ; /* set the file's attributes */
}
3.16.6. Operating System
DOS 3.0, DOS 2.0+

OPTIMIZING C86 USER'S MANUAL clearerr

3.17. clearerr, Clear a stream error indicator.

3.17.1. Synopsis
#include "stdio.h"
int clearerr(stream)
FILE *stream;
3.17.2. Returns
Nothing

ACTION

Clears an error indicator maintained for the stream. The error
indicator may be read using the function "ferror".

3.17.3. Example

{
extern int clearerr(); /* clears a stream error indicator */
extern int ferror();
extern FILE *fopen();
extern int fclose();
FILE *stream;
stream = fopen("a:foo.bar","a");
if(stream==NULL) abort("can't open a:foo.bar\n");
‘e /* more processing of stream */
if(ferror(stre;m))[
printf("\nError associated with foo.bar\n");
clearerr(stream); /* clears the error for stream */
... /* take corrective action */
}
}

3.17.4. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.17.5. See also

ferror, fopen, fclose, fread

3-25

OPTIMIZING C86 USER'S MANUAL close

3.18. close, Close a file.

3.18.1. Synopsis

int close(fd)
int £4;

3.18.2. Function

Flushes any outstanding output data to the file, and then closes
the file designated by file descriptor fd. Returns the file
control block and buffers to the heap, and makes fd available for
the next call to open or creat,

3.18.3. Returns

.zero if successful
minus one if any error was detected

3.18.4. Notes

The use of this routine is discouraged. Use the alternative
routine fclose. 1In this release, even if an error is reported,
the file buffers and control blocks are released, so the file is
really 'closed'.

3.18.5. Example
{

extern int open();
extern int close();
int fptr, success;

fptr = open("CON:" ,AREAD);
if(fptr<0)abort{"can't open CON:\n");

/* console gets read here */

success = close(fptr);

/* if success==0, close was successful,
if success==-1 error occured */

}

3.18.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.18.7. Use with
open, creat, read, write

3.18.8. See also
fopen, fclose

OPTIMIZING C86 USER'S MANUAL com functions

3.19. Z2-100 PC Cammunications Functions: (Z-100 PC ONLY!)
com flsh, cam_getc, com_putc, com_rdy, com rst, com_stat

3.19.1. Synopsis

int com_flsh(channel)
int channel;

int com_getec(channel)
int channel;

int com_putc(channel,ch)
int channel;
char ch;

int com_rdy(channel)
int channel; /* 0=COML 1=COM2 */

int com_rst(channel ,baud,parity,stop,length)
int channel ,baud,parity,stop,length;

unsigned int com_stat(channel)
int channel; /* 0 = COM1 1 = COM2 */

3.19.2. Function

com_flsh attempts to flush the channel associated with the
function and returns the modem status word also.

com_getc will wait until a character is ready at the channel and
then return it., It does no conversion on the character.

com_putc outputs a character to the channel specified and returns
the status word (see notes) after the attemt to send it.

com rdy returns a 1 if a character is waiting or a zero if not.

com_stat gets the communication channel status and returns the
modem status word. See the notes section for a description of
what com_stat returns.

com rst resets the baud rate, parity, stop bit and length of the
channel specified and returns the modem status word. See the
notes for a description of the format for the parameters.

OPTIMIZING C86 USER'S MANUAL com functions

3.19.3. Notes

com stat modem status words:

bit position

NN S W N O

mEoOOom>» oo

mask (Hex) meaning

0x0001 delta clear to send
0x0002 delta data set ready
0x0004 trail edge ring detector
0x0008 delta rec. line sgnl dtct
0x0010 clear to send

0x0020 data set ready

0x0040 ring indicator

0x0080 rec. line signal detect
0x0100 data ready

0x0200 overrun error

0x0400 parity error

0x0800 framing error

0x1000 break detect

0x2000 xmitter holding reg empty
0x4000 xmitter shift reg empty
0x8000 timeout occurred

Notes on com rst parameters:

BAUD RATES:

value

~None WO

PARITY:

value

wN - o

STOP BITS:

value

0
1

baud rate (bits / second)

110
150
300
600
1200
2400
4800
9600

Parity setting

NONE
oDD

NONE
EVEN

Number of stop bits

OPTIMIZING C86 USER'S MANUAL com functions

WORD LENGTH:

value Word length (bits)
0 5
1 6
2 7
3 8

All of the above information is available in your friendly
neighborhood technical reference manuals or programmer's guide.

3.19.4. Examples

* Here is a small piece of code to illustrate the use of com_rdy,
com getc, key scan, and com rst.

com_rst(0,7,0,1,3); /* 9600, no parity, 1 stop, 8 data */

for(;;) /* display characters when they come */
{
while(com_rdy(0) == 0) /* wait for a character */
i
ch = com_getc(0); /* read it */
putchar(ch); /* write it to the screen */
if(key_scan() != EOF) /* a key was pressed */
break;

}

In order to see if a character is ready:

ready = com_stat(0) & 0x0100;

In order to see if clear to send signal is set:
clear = com_stat(0) & 0x0010;

* To set COM1 to 9600 baud, no parity, 1 stop bit,
8 data bits use:

com_rst(0,7,0,1,3);

* To set COM2 to 300 baud, odd parity, 2 stop bits, 7 data
bits use:
com_rst(1,2,1,1,2);

3.19.5. Operating System

PC DOS 3.0, PC DOS 2.0+, PC DOS 1.1+

OPTIMIZING C86 USER'S MANUAL coreleft

3.20. coreleft, Get size of unused stack.

3.20.1. Synopsis

unsigned int coreleft();
3.20.2. Function

Returns the number of bytes unused on the stack. This 1is the
number of bytes between s-break and the content of register 'sp'.

3.20.3. Notes

The number returned is frequently negative, so that the function
should be declared to return an unsigned integer if correct sign
operations are to be perfommed.

This function makes no allowances in the returned number. You
should subtract a safety margin from the returned value for files
to be opened and local storage in functions. After this the
value may be used to allocate memory.

Free areas in the heap are not considered. Thus after performing
an alloc it is possible that the coreleft value has not been
altered.

A major use of this function is with algorithms that can use all
available core, such as text editors for text storage. Thus the
size of buffers can be set dynamically at run time.

In the big model this function returns 64K until there is less
than 64K of heap space available. When there is less than 64K of
heap space available it will return the amount of memory
available.

3.20.4. Example
{

extern unsigned int coreleft(); /* returns available memory */
unsigned int core;

core = coreleft(); /* memory available */
printf("\nCoreleft: %$x Hexadecimal\n",core);
printf("Coreleft: %u Unsigned decimal\n",core);

}

3.20.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.20.6. See also

alloc, malloc, calloc, realloc, free

OPTIMIZING C86 USER'S MANUAL creat

3.21. creat, Create a new empty file.

3.21.1. Synopsis

int creat(filename,mode)
char *filename;
unsigned mode;

3.21.2, Function

Filename must be valid for your operating system or one of the
special names defined below.

If a file with the name "filename" exists it is deleted. A new
file is then created. valid open modes are defined in "stdio,h",
and have the values:-

AREAD 0 open for ASCII read
AWRITE 1 open for ASCII write
AUPDATE 2 open for ASCII update
BREAD 4 open for binary read
BWRITE S open for binary write
BUPDATE 6 open for binary update

Please use the names in your code, because the values are subject
to change without notice.

3.21.3. Returns

-A negative number if any error was detected
A positive number (a file descriptor) otherwise

3.21.4. Notes
The use of this routine is discouraged. Use fopen.

The open mode is not recorded with the file, therefore when the
file is next used it may be opened in any one of the six modes.

If a file is created in ASCII mode:-

* Carriage return/linefeed pairs in the file will be
converted to newlines ('\n') on input.

* Newlines will be converted to carriage return/linefeed
pairs on output.

* Control-z in the file will be returned as end of file on
input.

If a file is created in binary mode only physical end of file (as
returned by your operating system) can be returned by the i/o
system. Logical EOF conventions must be implemented by the user
programmer .,

OPTIMIZ ING C86 USER'S MANUAL creat

3.21.5. DOS

The following names are processed specially by the i/o system:-

. The console "CON:"
. The printer "PRN:"
The com device "aux:"

If the above names are used (including the colon), data is
processed in unbuffered mode (except for console input).

if the console is opened in ASCII input mode, input data must be
terminated by a carriage return (just like UNIX). If it is
opened in binary mode, input is character by character (raw
mode) .

3.21.6. Example
{

extern int creat(); /* opens a new file */
extern int close();
int f4;

fd = creat("foo.bar" ,AUPDATE};
if (£fd<0) abort("\ncreat error occured\n");
printf("\nfoo.bar created\n"); /* use file here */
close(fd);

}

3.21.7. Operating System

posS 3.0, DOS 2.0+, DOS 1.1+

3.21.8. Use with

open, read, write, close, lseek, 1tell

3.21.9. See also

fopen, fclose

OPTIMIZING C86 USER'S MANUAL crt functions

3.22. Z-100 PC video display routines: (Z-100 PC ONLY!)
crt cls, crt gmod, crt _home, crt_line, crt mode, crt_rdot,
crt roll, crt scrp, crt_wdot

3.22.1. Synopsis

crt cls()

crt_home()

crt _gmod()

int crt_line(xl,yl,x2,y2,color)

unsigned int x1,yl; /* from co-ordinate */
unsigned int x2,y2; /* to co-ordinate */
int color; /* color of line */

int crt_mode(mode)
int mode; /* desired mode code */

int crt_rdot(row,column)
int row;
int column;

int crt_roll(top,bottom,left,right,n)
int top;

int bottom;

int left;

int right;

int n;

int crt_srcp(row,column,page)
int row;

int column;

int page;

int crt wdot(row,column,color)
int row;

int column;

int color;

3.22.2. Function

crt_cls clears the screen on page 0 on the Z-100 PC and brings
the cursor home.

crt _home positions the cursor to the upper left hand corner of
the 7Z-100 PC monitor on page 0.

crt_gmod returns the mode of the crt for the 2Z-100 PC (see
notes) .

crt_line draw a line on the monitor in graphics mode (see
crt mode). It takes two coordinates and a color as parameters.

3-33

OPTIMIZING C86 USER'S MANUAL crt functions

crt_mode sets the mode of the monitor. For valid modes see the
notes description.

crt rdot returns the 'color' of the specified point on the
monitor (Only in graphics mode) .

crt_roll scrolls a section of what is on the monitor. The
section from the top and left corner and the bottom and right
corner is scrolled either up or down n lines. You might
experiment with this function in a small test case first.

crt_srcp sets the cursor to the specified row, column and page on
the monitor. Page is usually set to zero. If you want to use
the other pages be warned that some other functions in this group
assume the use of page zero.

crt_wdot writes a dot of the specified 'color' at thegiven row
and column (Only in graphics mode) .

3.22.3. Notes

valid modes for the 2Z-100 PC monitor:

mode meaning

0 40 x 25 BW (default)
p 40 x 25 COLOR

2 80 x 25 BW

3 80 x 25 COLOR

4 320 x 200 COLOR

S 320 x 200 BW

6 640 x 200 BW

7 80 x 25 BW CARD

For the functions crt_line, crt_rdot, and crt_wdot the monitor
must be in a graphics mode. The limiting values of all supplied
arguments (e.g. coordinates) are a function of the chosen mode.
Using out of range values will get you into problems for any of
these functions. The default colors for these functions are as
follows:

COLOR PALETTE 0 PALETTE 1
0 bckgrd bckgrd
1 green cyan
2 red magenta
3 brown white

The default palette is 1 and the default background is black. To
change the palette and background see your Z-100 PC Technical
Reference manual for more information.

3-34

OPTIMIZING C86 USER'S MANUAL

3.22.4. Example

* simple graphics example

crt functions

200 color graphics */
draw a line */
another... */

and another... */

to make a squarel! */

draw dotted line */

crt mode(2); /* reset monitor back to normal */

{

int i;
crt mode(4); /* set 320 X
crt_1ine(100,150,200,150,2); /*
crt line(200,150,200,100,2); /*
crt_1ine(200,100,100,100,2); /*
crt _line(100,100,100,150,2); /*
for (i=0;i<50;i+=3)

crt_wdot(125+i,150,1); /*
}

3.22.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL envfind

3.23. envfind, search enviromment for defined name.
3.23.1. Synopsis

unsigned char *envfind(name) /* dos 2.0+ only */
unsigned char *name;

3.23.2. Function
Searches the DOS 2.0+ enviromment for a defined name.
3.23.3. Returns

If the name is found, it returns the translation of that name.
Otherwise it returns a NULL pointer.

3.23.4. Notes

The returned string is obtained from malloc, so you must free it
when you are finished with it.

The input to envfind() is case sensitive.
3.23.5. Example

{
unsigned char *envfind();
unsigned char *cp;
unsigned char s(255];

while(gets(s,255)) {
upper(s);
if (cp=envfind(s)) {
puts{cp);
free(cp) ;
} else puts("NOT FOUND");

3.23.6. Operating System

DOS 3.0, DOS 2.0+

OPTIMIZING C86 USER'S MANUAL exit_tsr
3.24. exit tsr - exit, temminate and stay resident

3.24.1. synopsis

exit tsr()

3.24.2. Function

Exit your program and then make it resident. This will allow it
to be executed later by a certain system interrupt defined by the
user,

3.24.3. Notes
The function will stay in memory until a re-boot.

Interrupts 0 thru 3F and 80 thru FO are reserved for DOS, Intel
and Basic. You obviously can not use any of these for you
teminate and stay resident function.

A very handy tool to read and understand whenever you venture
into this area is the tecnical reference manual of your favorite
computer., We highly recommend purchasing one of these for your
sanity's sake. To get a copy check with your computer dealer.

Since most of the programs that you would like to terminate and
stay resident should be small, you probably will want to shrink
the size of the default data segment in a C86 program that is
going to use this function. The default value MAXFMEM found in
_default.c in base.arc should be changed. See the default
function for more information, -

OPTIMIZING CB6 USER'S MANUAL exit_tsr

3.24.4. Example

—————————————————— how to set up resident program ---——————=--—-

$define VECNO 0x50 /* use a free interrupt vector */
#define STACK 3000 /* save some space for stack */
int hello()

bdos(9,"\r\nHello world\r\n$");

/*

use this program to load "hello" into memory so that it can
be called through interrupt 0x50. hello() could be written

in C or assembler. Remember that 'main' and 'hello' will both
be loaded into memory. If these programs are not going to use
a lot of data space, you may wish to decrease the amount of

data space allocated to your program. See the documentation
on _default for more information.

*/
main()
{

extern int hello();

intrinit(hello,STACK,VECNO) /* set up vector to point
to your routine */
exit tsr(); /* terminate, stay resident */

/*

use a program such as this to call the resident process
*/
#include <stdio.h>

main()

{

struct regval { int ax,bx,cx,dx,si,di,ds,es; } srv;

sysint (VECNO,&stv,&SIV);

}
3.24.5. Operating System

DOS 3.0, DOS 2.0+
3.24.6. See also

exit, _exit, sysint, sysint2l

OPTIMIZING CB6 USER'S MANUAL exit

3.25. exit, Terminate program execution.

3.25.1. Synopsis

int exit(value)
int value;

3.25.2. Punction

This function is called to terminate the execution of a program,
It flushes any output buffers and then closes any open files. It
then calls " exit" with the supplied value. By convention, non
zero values indicate that the program terminated abnormally.

The advantage of this function is that a program may be
terminated without returning through all the currently active
calling functions.

3.25.3. Returns

Never returns.

3.25.4. Notes

The value is returned to the operating system as the termination
status of the program. Currently only DOS 2 uses this
infomation,

3.25.5. Example
{

/* exit terminates program execution */
/* an example: */

) if(FATAL_ERROR) exit(7);

3.25.6. Operating System

DOs 3.0, DOS 2.0+, DOS 1.1+
3.25.7. See also

_exit

OPTIMIZING C86 USER'S MANUAL exp

3.26. &xp, Exponential function.
3.26.1. Synopsis

double exp(val)
double val;

3.26.2. Returns
The exponential function of the argument "val".

3.26.3. Notes

Returns a large value (le+300) if the result would be too large.
3.26.4. Example

main()

extern double exp(); /* exp{val) raises e to the val power */
double dval, dres;

dval = 10;

dres = exp(dval);

/* dres contains e "~ 10 */

printf(™\ne to the %g = %g\n",dval,dres);

dval -15.0;

dres exp(dval);

/* dres contains e (-15.0) */
printf("\ne to the %g = %g\n",dval ,dres);

N

}

3.26.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.26.6. See also

log, logl0, pow, sgrt

OPTIMIZING C86 USER'S MANUAL fabs

3.27. fabs, Floating absolute value.
3.27.1. Synopsis

double fabs(val)
double val;

3.27.2. Returns

The absolute value of val.
3.27.3. Example

main()

{
extern double fabs();
double value, avalue;

value = 1,5e25;

avalue = fabs(value);

/* in this case avalue contains value */
printf("\nFABS\nfabs (3g) = %g\n",value,avalue);

value = -2,3el0;
avalue = fabs(value);

/* in this case avalue contains -value */
printf("™\nfabs(%g) = %g\n",value,avalue);

3.27.4. Operating System

DOS 3.0, DOS 2.0+, DOS l.l+

OPTIMIZING C86 USER'S MANUAL farcall

3.28. farcall, Call a "far®” function
3.28.1. Synopsis
struct reg_str{unsigned int ax,bx,cx,dx,si,di,ds,es;};

int farcall(offset,segment,srv,rrv)

int offset; /* the offset address of the function */
int segment; /* the segment of the function */
struct reg str *srv; /* suppl ied register values */

struct reg_str *rrv; /* returned register values */

3.28.2. Function

Calls the function at the address and segment supplied after
setting the registers to the supplied values. After returning,
the returned register values are placed in the structure pointed
to by rrv. The value of farcall is the content of the processor
status register after execution of the call.

3.28.3. Notes

The returned values may overlay the values supplied with the
call.

The called function must preserve the values in registers SS, BP
and SP.

Generally this function follows the conventions of sysint.

You may need to modify this code, depending on the use you are
making of the function.

3.28.4. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.28.5. See also

sysint, sysint2l, segread

OPTIMIZING C86 USER'S MANUAL fclose

3.29. fclose, Close a stream.
3.29.1. Synopsis
#include "stdio.h"

int fclose(stream)
FILE *stream;

3.29.2. Function

Flushes any outstanding buffered data and then closes the stream.
All buffers are returned to the heap.

3.29.3. Returns
Minus one if an error was detected, otherwise zero (NULL).
3.29.4. Notes
In previous releases the internal file information was preserved
if an error was detected during the close processing. This is no
longer true.
3.29.5. Example
{
extern int fclose(); /* fclose is used to close a stream */
extern FILE *fopen(); /* obtained through a call to fopen() */

FILE *stream;
int errstat;

stream = fopen("tempfile.tmp","r"); /* open tmp file */

fputs("\nFCLOSE\n",stdout);
errstat = fclose(stream); /* returns -1 if error */

}

3.29.6. Operatjng System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.29.7. Use with

fopen, fgets, fprintf, fscanf, putc, getc
3.29.8. See also

close, read, write, open

OPTIMIZING C86 USER'S MANUAL feof

3.30. feof, Return end of file status.

3.30.1. Synopsis

#$include "stdio.h"

int feof(stream)

FILE *stream;

3.30.2. Function

Test if the stream is at end of file.

3.30.3. Returns

True (non-zero) if the stream is at end of file; otherwise zero.
3.30.4. Notes.

End of file status is a transient thing on character devices.

A disk file will remain at end of file unless you seek to another
position in the file.

3.30.5. Operating System
DOS 3.0, DOS 2.0+
3.30.6. See also

fopen, fclose, ferror

OPTIMIZING C86 USER'S MANUAL ferror

3.31. ferror, Return error status of a stream

3.31.1. Synopsis

#include "stdio.h"
int ferror(stream)
FILE *stream;

3.31.2. Function

Reports the error status associated with the stream. The error
indicator is set if an error has ever been detected since the
stream was opened. The error indicator may be reset by the
function "clearerr".

3.31.3. Returns

Zero if no error has been detected, otherwise a negative error
status value.

3.31.4. Example

#include "stdio.h"

{
extern int ferror(); /* returns error status of a stream */
extern FILE *fopen();
extern int fclose();
int errstat;
FILE *stream;

stream = fopen("xyz","w");
if(!stream)abort("can't open xyz\n");
e /* processing done here */

errstat = ferror(stream); /* look for errxors */
if(errstat) printf(™\nerrors processing file 'xyz'\n");
}
3.31.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.31.6. See also

clearerr, fopen, fclose, fflush

OPTIMIZING CB6 USER'S MANUAL fflush

3.32. fflush, Flush a stream to disk

3.32.1. synopsis
#include "stdio.h"
int fflush{stream)
FILE *stream;
3.32.2. Function

Writes all buffered data and file control information for the
stream to disk. This provides some security for data files
against program crashes.

3.32.3. Returns
Zero if successful, minus one if an error occurred.
3.32.4. Notes

Your operating system may not actually perform the disk write
operations if your disk is a Winchester. Be warned.

3.32.5. Example
{

extern int fflush(); /* flushes a stream to disk */
extern FILE *fopen();

extern int fclose();

FILE *fd;

int i;

fd = fopen("foo.bar","w");
if(!1£fd) return; /* check if opened */

/* do processing and write the outout to the file 'fd' */

fflush(£fd); /* make sure all data is safe on disk */

/* at this point we can perform operations that could cause the
program to crash, such as input from the operator, without

risk to data already recorded on disk */

fclose(fd);
}

3.32.6. Operating System
Dos 3.0, DOS 2.0+, DOS 1.1+
3.32.7. Use with

fopen, fread, fwrite, fclose

OPTIMIZING C86 USER'S MANUAL fgetc

3.33. fgetc, Get a character fram a stream
3.33.1. Synopsis
#include "stdio.h"

int fgetc(stream)
FILE *stream;

3.33.2. Function
Reads one character from a stream.

3.33.3. Returns

Actually returns an iFt, whose top byte is set to zero. If an
error occurs returns minus one.

3.33.4. Notes

Macros in "stdio.h" convert function calls to getc and getchar
into calls to fgetc.

This is the most basic input function for the DOS2 1,0 library.
If the result of this function is assigned to a variable of type
unsigned char it will not sign extend the top byte during a
comparison of an integer (i.e. EOF). This may result in some
loop conditionals not working correctly.
3.33.5. Example '
{ .

extern int fgetc(); /* gets a character from an input stream */

extern FILE *fopen{();

extern int fclose(), fputc();

int ch;

/* the following will echo console input a buffer at a time. */

fputs("\nFGETC\nEnter Data Temminated by CTRL-Z > ",stdout);
while((ch=fgetc(stdin)) != EOF) fputc(ch,stdout) ;
}

3.33.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.33.7. See also

fopen, fclose, fputc, printf, scanf

OPTIMIZING C86 USER'S MANUAL fgets

3.34. fgets, Read a string from a stream.
3.34.1. Synopsis

char *fgets(buffer,bufleng,stream);

char *buffer; /* where to put it */
unsigned int bufleng; /* how much to read */
FILE *stream; /* stream to use */

3.34.2. Function
Reads characters from the stream into the buffer until:-

- A newline is read from the input stream
- (bufleng-1) characters have been transferred
- BEnd of file is encountered

In all cases the string will be terminated by EOS.

3.34.3. Returns

- The address of the data buffer
- Zero at end of file or if an error is detected

3.34.4. Notes

I1f the file was opened in ASCII mode, carriage return and
control-z characters will receive special processing.

3.34.5. Example
{

extern char *fgets(); /* reads characters into a string */
extern int fputs();

char storage(255];

int result, bufleng;

bufleng = 255;

fputs('"\nFGETS\nEnter a line of data\n",stdout);
result = fgets(storage,bufleng,stdin);
if(!result) printf("\nEOF or ERROR\N");

else fputs{storage,stdout);

/* the newline character will be put onto the string */

}

3.34.6_ operating System
Dos 3.0, DOS 2.0+, DOS 1.1+

3.34.7. Use with

fopen, fclose, putc, getc
3.34.8. See also

open, close

OPTIMIZING C86 USER'S MANUAL filedir

3.35. filedir, return a list of matching file names.
3.35.1. Synopsis

unsigned char *filedir(filespec,mode)
unsigned char *filespec;
unsigned int mode;

3.35.2. Function

Takes a wildcard file specification and file mode a returns a
list of matching file names. The file specification may include
a drive specification and a path name.

3.35.3. Returns

A list of filenames that do not include the drive specification
and path name. Each filename is NULL terminated and the last
filename is terminated by a NULL.

3.35.4. Notes

The returned list is obtained by call to malloc so it must be
freed when you are finished with it.

Modes are descibed in your DOS technical reference manual. A
mode of zero would return the names of all regular or "normal"
file names. Check your DOS manual for the DOS Disk Directory
section for more details.

Legal File Modes for chmod() and filedir():
Attribute byte:

0l1H Read Only
02H Hidden

04H System

08H vVolume label
104 Subdirectory
20H Archive

OPTIMIZING C86 USER'S MANUAL filedir

3.35.5. Example
/* First example of filedir() */

{
extern char *filedir();
char *first;
char *next;
char filespec[255];
int mode;

mode = Q; /* regular files */
strcpy(filespec,"C:*.C"); /* get all *.c in current dir on c: */

first = filedir(filespec,mode); /* get list of file names */
if(first == NULL)

fprintf(stderr,"Couldn't find any files *.c on c:\n");
return;

}

/* a NULL terminated list of file names */
for(next = first; *next != NULL;)

printf("the file name is: %s\n",next);
next = next + strlen{next) + 1;
}
free(first); /* filedir ALLOCates space for the list */
}

/* Bnother example with mode examples */

#define NORMAL 0x00 /* normal file */
#define READONLY 0x01
#define HIDDEN 0x02
#define SYSTEM 0x04
#define VOLUME 0x08
#define SUBDIR 0x10
#define ARCHIVE 0x20
{
/* to get normal files */
list = filedir("*.*" ,NORMAL);

/* to get system files */
list = filedir("*.*",SYSTEM);

/* to get the volume id */
list = filedir("*.*",VOLUME);

/* to get hidden, readonly files */
list = filedir("*,*" ,HIDDEN | READONLY);
}
3.35.6. Operating System
DOS 3.0, DOS 2.0+

OPTIMIZING CB6 USER'S MANUAL fileno

3.36. fileno, Get file handle.
3.36.1. Synopsis
#include "stdio.h"

int fileno(stream)
FILE *stream;

3.36.2. Punction

Get the file descriptor used for input and/or output from/to this
stream. This function lets you use file descriptor I/0 on
streams.

3.36.3. Returns

The file descriptor associated with the stream.

3.36.4. Notes

This function has changed since the early versions of 2.10 of
C86. WARNING: There is no relationship between file descriptors
and DOS file handles in the DOS2 library code. Making this
assumption will definitly get you into trouble.

3.36.5. Operating System

Dos 3.0, DOS 2.0+, DOS 1.1+

3.36.6. See also

fopen, read, write, close,lseek

OPTIMIZING C86 USER'S MANUAL floor

3.37. floor, Floor function.

3.37.1.

Synopsis

double floor(val)
double val;

3.37.2.

Returns

A double containing the largest integer less than or equal to

val.

3.37.3.

{

Example

extern double floor();
double dval, dresult;

}

3.37.4.

pos 3.0,

3.37.5.

ceil

/* floor returns the largest integer <= dval */

dval = 1.456;

dresult = floor(dval); /* dresult contains 1. */
printf("\nfloor (%qg) = %$g\n" ,dval ,dresult};

dval = -3.4;

dresult = floor(dval); /* dresult contains -4, */
printf("\nfloor (%g) = $g\n",dval,dresult);

dval = 4.0;

dresult = floor(dval); /* dresult contains 4.0 */

printf(™\nfloor (%g) = %g\n",dval,dresult);

Operating System
DOS 2.0+, DOS 1.1+

See also

OPTIMIZING CB6 USER'S MANUAL fopen

3.38. fopen, Open a stream.
3.38.1. Synopsis
#include "stdio.h"

FILE *fopen(filename,fomode)
char *filename,* fomode;

3.38.2. Function

Open the file "filename" with the mode "fomode". Filename may be
any legal file name. The open modes currently supported are:-

“r" The file must exist and is opened for ASCII read.
"r+","rw" The file must exist and is opened for ASCII update.
"w" Any existing file is deleted. A new file is created

and is opened for ASCII write.

"wt","wr" Any existing file is deleted, and a new file created
and opened in ASCII update mode.

"a" If the file does not exist, create it. Then open the
file for writing and position at the end of file.

"a+","ar" If the file does not exist, create it. Then open the
file for updating and position at the end of file.

If a "b" is concatenated to the above strings, the file is opened
in binary mode, and carriage return/linefeed translation does not
occur.

For UNIX v5.0 compatability, it is prefered that you use the
modes "a+","r+", and "w+".

When a file is opened in update mode (using modes "r+", "rw",
"wt", "wr", "a+", or "ar") both input and output can be done for
the given file. WARNING: In future implementations of the
library you will not be able to switch from either output to
input or from input to output without an intervening fseek() or
rewind() call. This way positioning of where you want to write
and read from is up to the user in update mode.

3.38.3. Returns

A non zero file stream pointer if the file was successfully
opened, Otherwise, zero. It is very important that you always
check the return of this function before using the stream
pointer.

3.38.4. Notes

This is the standard method for opening files.

OPTIMIZING C86 USER'S MANUAL fopen

3.38.5. DOS

The special filenames “CON:", "PRN:", and "AUX:" may be used
provided that they can support the requested fomode. 1In DOS 2.0+
you can open any available device as a file but you 4o not need
to put a colon (':') at the end of the device name.

3.38.6. Example

#¢include "stdio.h"

{
extern FILE *fopen();
extern int fclose();
FILE *ptr;

/* various modes */
ptr = fopen("foo,bar","r"); /* ASCII Read Disk File */
if(ptr) fclose(ptr);

ptr = fopen{"CON:","wb"); /* Direct Console Write */
fputc(0x07,ptr);
if(ptr) fclose(ptr);

ptr = fopen("CON:","rb"); /* Direct Console Input */
if(fgetc(ptr)==3) printf("\nCTRLC Entered\n");
if(ptr) fclose(ptr);

ptr = fopen("a:filename.ext","w"); /* ASCII Write */
if(ptr) fclose(ptr);

ptr = fopen("PRN:","w"); /* BSCII Write to PRINTER */
if(ptr) fclose(ptr);
/* DOS will not allow opening "PRN:" for read */

/* ASCII Write Starting at EOF */
ptr = fopen("a:filename.ext","a");
if(ptr) fclose(ptr);

/* ASCII Update Starting at EOF */
ptr = fopen("a:filename.ext","a+");
if(ptr) fclose(ptr);

/* ASCI1 Read/Write Update */
ptr = fopen("a:\\binm\\filename.ext" ,"r+");
if(ptr) fclose(ptr);

}
3.38.7. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.38.8. Use with
fclose, getc, putc, fflush, fclose, printf

3.38.9. See also
open, creat

OPTIMIZING C86 USER'S MANUAL fprintf

3.39. fprintf, Print to a stream.

3.39.1. Synopsis
#include "stdio.h"

int fprintf(stream,format,args...)
FILE *stream;

char *format;

see below for args;

3.39.2. Function
Output data under control of a format string to the file stream.

The output file is defined by the stream pointer. This is the
value returned by fopen when the file was opened, or one of the
special standard values "stdout" or "stderr". The file should be
opened in ASCII mode, unless you need files to run with UNIX.

The format string contains characters that are copied to the
output file, and conversion specifications. Each conversion
specification causes conversion of one argument and the output of
the converted value. You need as many arguments as there are
conversion specifications in the format string.

Each conversion specification begins with a percent ("§")
character, and ends with a conversion control character. Between
these two characters are the following optional control fields:-

A minus sign This indicates that the output data should be
left justified,instead of the default right
justification.

A fill char A zero indicates that the field should be filled
with zeros instead of spaces.

A field width This may be an asterisk ("*") or a number, and
if supplied specifies the minimum field width.
The asterisk indicates that the next argument is
an integer, and it is the width specification.

At least this many characters will be output for
the field. More will be output if required. If
the data is shorter than the field width, it
will be filled with the fill character
specified above.

OPTIMIZING C86 USER'S MANUAL fprintf

A precision This consists of a period, followed by an

asterisk or a decimal number. As above, the
asterisk indicates that the precision is the
next argument. The meaning (if any) of the
precision specification is defined by the
conversion character.

A long flag An'l' or 'L', indicates that the corresponding

argument is a long or unsigned long. This code
may be used in conjunction with any of the
integer conversion codes.

The allowed conversion codes are:-

d

The argument is an integer. It is converted to a signed
decimal number. As a non standard extension, the precision
field will result in a period, precision places to the left.
This is handy for money fields.

The argument is an unsigned integer. It is converted to an
unsigned decimal number.

The argument is an integer. It is output as a hexadecimal
number without a leading "0Xx". The precision field has no
meaning for this type of field.

The argument is an integer. It is output as an octal nunber
without a leading zero.

The argument is an integer. It is output as a binary
number. This is an extension to the K&R specification.

The argument is a floating point number. It is output in
scientific notation, in the form "i.ffffffEeee". The
precision field specifies the number of fractional places in
the output number, the default being 6.

The argument is a floating point number. It is output
without an exponent field in the form "i.f'. The precision
field specifies the number of places after the decimal
point. The default is 6 places. A precision of zero
suppresses the period also.

Outputs a floating point number using conversion code "e" or
wgn . 1t uses the conversion code that needs the least
width.

The argument is the address of a string. If precision is
supplied, then at most the left-most precision characters of
the string will be output.

The argument is a single character. The precision field has
no meaning for this type of field.

3-56

OPTIMIZING C86 USER'S MANUAL fprintf

If the character following a percent is not part of a valid
conversion specification, it is output unchanged. This allows
you to output a percent sign with the format string "%3%".

Upper case conversion codes "D", "x", "O", "U", and "B" are
equivalent to "14", "1x", "lo", "lu" and "1b" respectively.

3.39.3. Returns
Nothing.

For examples of the format control string, see Kernighan and
Ritchie.

3.39.4. Notes

The floating point output routines have been modified to output
the literal value "NAN" (standing for "Not A Number" for values
that are out of range. The detection mechaniam for this case is
good if you are using the 8087, but you should be careful when
using the floating point package. In general, any floating point
logic should be written so that you can detect this type of
problem before it occurs.

3.39.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.39.6. Use with

printf, sprintf, fopen

OPTIMIZING C86 USER'S MANUAL fputc

3.40. fputc, Output character to a stream

3.40.1. Synopsis

$¢include "stdio.h"

int fputc(byte,stream)

char byte; /* the byte to be output */
FILE *stream; /* where to put it */
3.40.2. Function

Outputs the byte to the stream.

3.40.3. Returns

The constant EOF if an error occurs, otherwise the byte.
3.40.4. Notes

This is the basic output function in the DOS2 library.
3.40.5. Example

{

extern int fpute(); /* put a character to file stream */
char ch;

FILE *fptr;
int res;

fptr = stdout;
ch = "*;
res = fputc(ch,fptr); /* write '*' to stdout */
/* res contains EOF if an error occured, else ch */
}
3.40.6. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.40.7. See also

fopen, printf, fclose

OPTIMIZING C86 USER'S MANUAL fputs

3.41. fputs, Output a string to a stream.
3.41.1. Synopsis
#include “"stdio.h"

int fputs(string,stream)
char *string;
FILE *stream;

3.41.2. Function

Outputs the string to the file designated by the stream pointer,
until a null character (value of binary zero) is detected. If
the file was opened in ASCII mode, newlines are output as
carriage return/linefeed pairs.

3.41.3. Returns

The constant EOF if an error is detected, otherwise zero.

3.41.4. Example

To print a string on the standard error stream:-
fputs("Print this string on standard error\n",stderr);

3.41.5. Example

#include “"stdio.h"

{
extern int fputs(); /* write a string to a file stream */
extern char *fgets();
extern FILE *fopen();
extern int fclose();
char *string;
FILE *stream;

stream = fopen("a:filename.dat","w");
if(!stream) abort("can't open a:filename.dat™);
string = "Test Data";

fputs(string,stream);

fclose(stream);

/* the following code will echo console input */
fputs("\nEnter data followed by a CTRL-Z > ",stdout);
while(fgets(string,255,stdin))

) fputs(string,stdout);

3.41.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3-59

OPTIMIZING C86 USER'S MANUAL fread

3.42. fread, Read items fram a stream

3.42.1. Synopsis
#include "stdio.h"

int fread(where,elsize,nelem,stream);

char *where; /* where to put the data */
unsigned elsize; /* size of an element in bytes */
unsigned nelem; /* number of elements to read */
FILE *stream; /* where to get them */

ACTION

Reads nelem elements of elsize bytes each.
3.42.2. Returns

The number of COMPLETE elements read. Zero is returned if the
end of file is encountered or if an error is detected.

This function may return less than the requested number of
elements. In files that have been opened in ASCII mode, a newline
is considered to complete the input for the current element.

3.42.3. Example
#include "stdio.h"

extern int fread(); /* read items from a stream */
extern FILE *fopen();

extern int fclose(), free();

extern char *calloc();

char *dest;

unsigned size, number;

FILE *source;

int num_read;

size = 1; /* read bytes */

nunber = 255; /* read up to 255*size bytes */

source = fopen("a:filename.dat","r");

if(!source) return;

dest = calloc(255,1); /* get area to read into */
num read = fread(dest,size,number,source); /* read */
/* 1f(nun read==0) end of file or error occurred */

/* 1f(num read!=number) EOF was encountered */
free(dest) ; /* return area to heap */

}

3.42.4. Operating System
poSs 3.0, DOS 2.0+, DOS 1.1+
3.42.5. Use with

fopen, fseek, fscanf, fclose

OPTIMIZING CB6 USER'S MANUAL free

3.43. free, Return a region to the heap.
3.43.1. Synopsis

int free(pointer)
char *pointer;

3.43.2. Function

Free a region of storage and return it to the heap. Pointer is
the address of the region, which must have been obtained by a
call to alloc, malloc, calloc or realloc.

Aborts after writing "FREE" to the console if the heap or the
returned block header has been corrupted.

3.43.3. Returns
Nothing.
3.43.4. Notes

Corruption of the heap will be caused by storing outside of the
allocated region. Frequently this problem is the result of:-

- allocating too few bytes to hold a structure.
- array subscript out of range.
- an uninitialised pointer.

3.43.5. Example

To allocate and subsequently free a string area 18 bytes in
length:-

char *string,*alloc();

string=alloc(18); /* aborts if not enough core */
cee /* more processing */
free(string); /* all done now */

OPTIMIZING C86 USER'S MANUAL free

3.43.6. Bxample

{

}

extern int free(); /* free up allocated space */
extern char *calloc();

char *ptr;

int i;

ptr = calloc(100,1); /* allocate and zero 100 bytes */
for(i=0;i<26;i++) *(ptr+i) = 'A'+i; /* use ptr for storage */
/* the statment ptr(i] = 'A'+i; is same as above */

free(ptr); /* return to heap to make available for
subsequent memory allocation requests */

3.43.7. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.43.8. See also

alloc, malloc, calloc, realloc

OPTIMIZING CB6 USER'S MANUAL freopen

3.44. freopen, Close and reopen a file
3.44.1. Synopsis
#include "stdio.h"

FILE *freopen(filename,fomode,stream)

unsigned char *filename; /* file name string */
unsigned char *fomode; /* file open mode string */
FILE *stream; /* currently open stream ptr */

3.44.2, Function

Close the file associated with stream and attempt to open a new
file using the file name and mode given.

3.44.3. Returns

A pointer to the new file opened or NULL if the file open failed.
3.44.4. Operating System

pDOS 3.0, DOS 2.0+, DOS 1.1+

3.44.5. See also

fclose, fopen

OPTIMIZING C86 USER'S MANUAL frexp

3.45. frexp, Split double into mantissa and exponent.
3.45.1. Synopsis

double frexp(val ,eptr)
double val;
int *eptr; /* where to put exponent */

3.45.2. Function

Returns the mantissa and exponent of a double. The mantissa is
less than one and greater or equal to a half. The exponent is
stored at the address specified by "eptr".
3.45.3. Returns
A result such that:-

val == mantissa* (2**exponent) ;
Where "**" means 2 to the power "exponent".

3.45.4. Notes

The exponent is in the range -1023 through +1023. Zero is
returned if the input value is zero.

This routine is useful for "normalization" of floating point
quantities.

3.45.5. Example
{

extern double frexp();
double dval, mantissa;
int exponent;

dval = 1.2el0;
mantissa = frexp(dval ,&exponent);

/* frexp returns values such that:

dval = mantissa * (2 to the power 'exponent') */

printf("\nFREXP\n(%g) = (%g) * 2 to the (3d)\n",
dval ,mantissa,exponent) ;

}

3.45.6. Operating System
DOsS 3.0, DOS 2.0+, DOS 1.1+

3.45.7. See also

ldexp, modf

OPTIMIZING C86 USER'S MANUAL fscanf

3.46. fscanf, Scan fields fram a stream.
3.46.1. Synopsis
#include “"stdio.h"

int fscanf(stream,format,args)

FILE *stream; /* where to get data */
char *fommat; /* conversion control data */
samething *args; /* where to put data */

3.46.2. Function

Reads ASCII characters from the input stream, interprets them
under control of the format string, and stores them at the
addresses specified by the remaining arguments.

3.46.3. Returns

The number of values successfully input and converted. The
standard version includes the number of literal characters
matched in the control string in the count.

Fscanf returns EOF if EOF is encountered as the first character.
CONVERSION CONTROL
The format control string contains:-

Blanks, tabs and newl ines(white-space characters), which are
ignored.

Literal characters (other than %) which must match the next
non white-space character from the input stream.

Conversion specifications consisting of a % followed by an
optional assigmment suppression character ("*", an optional
number specifying a maximum field width, and a conversion
character.

A conversion specification controls the processing of the
next input field from the stream. The result of the
conversion is placed at the address specified by the
corresponding argument.

If the assignment suppression indicator is specified, the
converted value is discarded. No argument should be
specified in the argument list for such values.

Generally, white-space preceeding an input field in the
input stream is discarded. 1If a field width is specified,
no more than that number of characters will be read from the
input stream.

OPTIMIZING C86 USER'S MANUAL fscanf

The legal conversion control codes are:-

d

Convert a decimal number and store in an integer. Input
stops at the first non decimal digit.

An octal number. Store in an integer.
A hexadecimal number, with or without a leading OX.

A short decimal integer. For this machine this is identical
to a "@" conversion code.

A binary number. Store in an integer.

A floating point number in scientific notation. A leading
sign, decimal point and exponent field are optional. The
result is stored in a float.

Same as the "e" conversion code.

The input is a string of characters, and the corresponding
argument should point to an area large enough to hold the
string and a terminating zero ("™\0"). The input string is
terminated by the first white-space character after the
beginning of the string., The white space character is not
stored.

A single character is to be stored. Leading white-space
characters in the input stream are not skipped by this
conversion code. If a field width is specified, that number
of characters will be transferred to successive memory
locations. To read the first non white space character from
the input stream use "$1ls".

All the above conversion codes that produce an integer or float
may be made to return a long or double by using the upper case

letter or preceeding the lower case conversion code by the lower
case letter "1".

OPTIMIZING C86 USER'S MANUAL fscanf

3.46.4. Notes

You MUST provide the ADDRESS of the variable to contain the input
data. For most variables the correct expression is &var_name,

This, and related functions, are really designed to read machine
generated files. If you want to read input typed by a human, see
the notes under scanf and sscanf.

Any unmatched characters are pushed back onto the input stream,
and are returned by the next input request from the stream.
Reading end of file or an error will temminate the function,

In general, you should also read scanf and sscanf to understand
how all of these functions fit together and all of their
implications,

3.46.5. Examples

There is a good description of scanf and printf in K&R. It is
recommended reading.

3.46.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.46.7. Use with

sscanf, fprintf, fscanf

3-67

OPTIMIZING C86 USER'S MANUAL fseek

3.47. fseek, Seek using a long offset.
3.47.1. Synopsis

#include "stdio.h"

long fseek(stream,offset,base)
FILE *stream;

long offset;

int base;

3.47.2. Function

This function allows you to alter the read/write position pointer
for a disk file. This pointer defines the character that will be
read/written on the next i/o operation on the file. To issue
this call:-

- stream is a stream pointer returned by fopen.
- offset is an adjustment relative to base
- base is a code for the base value of the seek

Allowable base codes are:-

-0 Relative to beginning of file. Offset must be positive
-1 Relative to current position in file
-2 Relative to the end of the file (SEE NOTE BELOW)

3.47.3. Returns

- minus one if an error is detected
- The current position in the file if successful.

3.47.4. Notes

fseek(fd,OL,0) will let you process the first byte in the file on
the next i/o operation. fseek(fd,-1L,1) will let you process the
most recently processed byte again.

Because of a serious bug in DOS, seeking before the beginning of
the file or after the end of the file will cause undefined
results in DOS 2.0+ version of our library. It is your
responsibility to handle these cases.

Seeks on a non disk file return the error code -1. Seeks beyond
End Of File should be avoided, since they may result in files
with missing sectors, which could result in incorrect EOF
indications in subsequent processing.

ASCII files may be used, but the presence of carriage return/line
feed pairs may make it difficult to determine the seek offset.

OPTIMIZING C86 USER'S MANUAL fseek

For files open in binary mode, the end of file is assumed to be
the physical end of file point. This probably was not what you
intended.

The open logic for ASCII mode files reads the last sector looking
for a control-z, and sets the end of file position accordingly.

3.47.5. DOS

This feature is provided, and uses the operating system provided
file size. Thus it will not work with files written by programs
using CPM end of file conventions.

With the DOS-ALL I/0 package, files must be open in read or
read/write mode for this function to operate correctly.

3.47.6. Example

#include "stdio.h"
#define BEGIN 0
#define CURRENT 1
?define END 2

extern long fseek(); /* uses a long offset */
extern FILE *fopen();

extern int fclose();

FILE *stream;

long offset, lpos;

int base;

stream = fopen("a:filename.dat","r");

/* To position on first byte: */
offset = OL;
lpos = fseek(stream,offset,BEGIN);

/* To position such that last byte will be reprocessed: */
offset = -1L;
lpos = fseek(stream,offset,CURRENT);

/* To position such that the byte at End of File - 100
will be processed next: */
offset = -100L; lpos = fseek(stream,offset,END);

/* In the above calls to fseek, lpos contains either:
(-1) if an error detected (such as seek beyond EOF)
or the current position relative to the beginning */

}
3.47.7. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.47.8. Use with
fopen, fclose, ftell, fread, getc, putc

OPTIMIZING C86 USER'S MANUAL ftell

3.48. ftell, Tell R/W position in a stream.
3.48.1. Synopsis
#include "stdio.h"

long ftell(stream)
FILE *stream;

3.48.2. Returns
The current read/write position in the stream.
3.48.3. Notes

On many systems, this is the only way to obtain a valid offset to
use with fseek.

3.48.4. Example
#include "stdio.h"

{
extern long ftell(); /* get current position in the file */
extern FILE *fopen();
extern int fclose();
FILE *stream;
long position;

stream = fopen("a:filename.ext","a");
fprintf(stream,"Sample Data\n");

position = ftell(stream);
/* position contains the current position in the file */

fclose(stream);

3.48.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL ftoa

3.49. ftoa, Convert float to ASCII.
3.49.1. Synopsis

int ftoa(value,buffer,iplaces,fplaces)

double value; /* the value to convert */

char *buffer; /* buffer to hold output string */
unsigned iplaces; /* number of integer places */
unsigned fplaces; /* number of fractional places */

3.49.2. Function

Converts the input value to an ASCII output string of the format
"{-1iii.fffE[~]eee". The number of integer places, and the
number of fractional places are under the user's control.

3.49.3. Notes

The sum of iplaces and fplaces should not exceed 15, the number
of significant digits in a double precision number. If the
number is too large, returns the literal value 'NAN' ("Not A
Number") .

3.49.4. Example
{

extern int ftoa();
extern char *calloc();
extern int free();
double dval;

char *outstr;

unsigned int places;
unsigned frac_places;

outstr = calloc(255,1);
dval = -100.0144;
inp_places = 5;
frac_places = 7;

ftoa(dval,outstr,in;_places,fraq_places);
/* outstr now contains: "-1,0001440E+002" */

free(outstr);

}

3.49.5. Operating System
DOs 3.0, pos 2.0+, DOS 1.1+
3.49.6. See also

atof, scanf, sscanf

3-71

OPTIMIZING C86 USER'S MANUAL fwrite

3.50. fwrite, Write to a stream.
3.50.1. Symopsis
include "stdio.h"

int fwrite(where,elsize,nelem,stream)

char *where; /* pointer to data */

unsigned elsize; /* size of one element */
unsigned nelem; /* number of elements to write */
FILE *stream; /* where to put it */

3.50.2. Function

Transfers elsize*nelem bytes to the specified stream.
3.50.3. Returns

The number of elements written to the stream.

3.50.4. Example

{
extern int fwrite(); /* write to a stream */
extern char *calloc();
extern int free();
char *buffer;
unsigned size, number;
FILE *output;
int num _written;

buffer = calloc(255,1);

size = 1;

number = 255;

output = fopen("a:filename.ext" ,"a");

strcpy(buffer,"\nSample Data is Here\n");

num written = fwrite({buffer,size,number ,output);

/* num _written contains the number of elements
written (zero if error) */

free(buffer);

}

3.50.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.50.6. Use with

fopen, fclose, fread, fseek, fprintf

OPTIMIZING C86 USER'S MANUAL fwrite

3.51, godir, Get the current directory.
3.51.1. Synopsis

char *gcdir(drivename)
char *drivename;

3.51.2. Function

Obtain the full pathname for the current directory on the
specified drive.

If the drivename string begins with a letter in the range 'A'
through 'P' and is followed by a colon (":"), then that is the
drive used. Otherwise the result is for the current default
drive.
3.51.3. Returns
A string allocated from the heap containing the drive and full
path name of the current directory on the specified drive., 1If
any error occurs, or you are not running on DOS 2.0+, returns
zero.
3.51.4. Notes
You can dispose of the returned string using the function "free".
3.51.5. Example
To obtain the current default directory:-

ngiI("");
To obtain the default directory on drive B: :-

gcdir("b:any rubbish");
3.51.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.51.7. Use with

chdir, fopen, open

OPTIMIZING C86 USER'S MANUAL getc

3.52. getc, Read a character from a stream.
3.52.1. Synopsis
#include "stdio.h"

int getc(stream)
FILE *stream;

3.52.2. Function
Read the next input character from the stream.
3.52.3. Returns

The input character as a positive integer.
-1 on end of file or if an error was detected.

3.52.4. Notes

This function is defined as a macro in stdio.h. Actually the
function fgetc is used.

If the stream is open in ASCII mode, newline processing (etc) is
performed. Otherwise no special processing is performed.

3.52.5. Example

To copy standard input to standard output.

int cc;
while((cc=getc(stdin)) 1= -1)putc(cc,stdout);
/* get here at end of file */
3.52.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.52.7. Use with

fgetc, fopen, fclose, putc, fprintf

OPTIMIZING C86 USER'S MANUAL getchar

3.53. getchar, Get a character fram stdin.
3.53.1. Synopsis

int getchar()

3.53.2. Function

Read the next character from stdin. This is normally the
console, but it may be a file if redirection has been performed.

3.53.3. Returns

A positive integer if a character is returned. -1 at end of
file, or if an error was detected.

3.53.4. Notes

This call is converted by a macro in stdio.h into the call
fgetc(stdin) .

Stdin is normally assigned to the console keyboard, which is open
in ASCII mode. Under this condition, input from the console is
buffered a line at a time, and will not be available to the
program until the user enters a carriage return.

If you want unbuffered input from the console, use bdos() or
sysint21l() to make direct calls to your operating system. This
will allow you to control the recognition of special characters
and the echo of input characters.

3.53.5. Operating System

Dos 3.0, DOS 2.0+, DOS 1.1+

3.53.6. Use with

fopen, fclose, putc, printf

3.53.7. See also

open, close

OPTIMIZING C86 USER'S MANUAL gets

3.54. gets, Read a string from standard input.
3.54.1. Synopsis
char *gets(buffer,bufleng);
char *buffer; /* where to put it */
unsigned int bufleng; /* how much to read */
3.54.2. Function
Reads characters from the stream into the buffer until:-
- A newline is read fram the input stream
- (bufleng-1l) characters have been transferred
- End of file is encountered
In all cases the string will be terminated by a NULL.
3.54.3. Returns

- The address of the data buffer
- Zero at end of file or if an error is detected

3.54.4. Notes

WARNING: This function is not the same as the UNIX standard! If
you are concerned about portability use the function fgets as
follows:

fgets(buffer,bufleng,stdin) ;

If the file was opened in ASCII mode, carriage return and
control-z characters will receive special processing.

3.54.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.54.6. Use with

fopen, fclose, putc, fgetc
3.54.7. See also

open, close

OPTIMIZING C86 USER'S MANUAL getw

3.55. getw, Get a word fram a stream.
3.55.1. Synopsis
#include "stdio.h"

int getw(stream)
FILE *stream;

3.55.2. Function

Read the next input word from the stream.

3.55.3. Returns

The input word. EOF on end of file or if an error was detected.
3.55.4. Notes

The error and end of file indications returned by this function
are also a valid data word. Use the functions feof and ferror to

distinguish these cases.

If the stream is open in ASCII mode, newline processing (etc) is
performed. Otherwise no special processing is per formed.

3.55.5. Example
#include "stdio.h"
extern int getw(), putw(), ferror()
)

FILE *instream, *outstream,* fopen(
int word;

instream = fopen("a:filename.ext","r");
if(!instream) return; /* file not found */
outstream = fopen("a:filename.out”,"w");
if(!outstream) { fclose(instream); return; }
for(;; /* do forever */

word = getw(instreanm);
if(feof(instream) |[ferror(instream))break; /* stop now */
putw(word ,outstream);

fclose(outstream);
fclose(instream);

}

3.55.6. Operating System
Dos 3.0, DOS 2.0+, DOS 1.1+

3.55.7. Use with
fgetc, fopen, fclose, putc, fprintf

OPTIMIZING C86 USER'S MANUAL index

3.56. index, Find a character in a string.
3.56.1. Synopsis

char *index(string,cc)
char *string; /* string to search */
char cc; /* char to find */

3.56.2. Function

Report the first occurrence of the character cc (if any) in the
string.

3.56.3. Returns

Zero if the character was not found in the string. If the
character is found, returns a pointer to the character.

3.56.4. Notes

The function strchr() is the same as this function. You should
use the strchr() function to be more UNIX v5.0 compatible.

3.56.5. Example
{

extern char *index();
char *string;
char ch;
/* this could be used to implement a function to check
if a character is part of a given set of characters,
as well as for extracting the position of the character
in the string. A function is vowel(c) could be written:
is_vowel (ch)
char ch;
{

return(index ("aeiouAEIOU" ,ch));

0f course, this could be #defined as a macro:
#define isvowel(ch) index("aeiouAEIOU",ch) */

/* another example */
string = "123456789"; ch = '1';
if(index (string,ch) != 0)
printf("\n*index(%s,%c) = %c\n",
string, ch, *index(string,ch));

}

3.56.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.56.7. See also
string functions, rindex

3-78

OPTIMIZING C86 USER'S MANUAL inport functions

3.57. inportb, inportw - Input a byte or word from a port.
3.57.1. Synopsis

char inporth(portno)
int portmno;

int inportw(portno)
int portno;

3.57.2. Function

Inportb inputs a byte from a user supplied port number (portno).
The port number must be valid for the addressed device. In some
cases a 16 bit port number is required. For older devices an 8
bit number is required, and it may have to be in either byte of
portno. One possibility is to place the port number in both
upper and lower bytes of portno. It returns the byte from the
port.

Inportw inputs a word from a port number (portno). The port
nunber must be valid for the addressed device. Usually a 16 bit
port number is required. This function is not needed for most
devices currently available, as they do not support 16 bit i/o
transfers., It returns the word read from the port, The bytes
may also be in reverse order.

3.57.3. Example
* Inportb example
{

extern unsigned char inportb();
unsigned int portno;
unsigned char byte;

portno = 1;

byte = inportb(portno);

* inportw example

extern unsigned int inportw();
unsigned int portno;
unsigned int word;

portno = 1;

word = inportw(portno);

}

3.57.4. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.57.5. See also

outport functions

OPTIMIZING C86 USER'S MANUAL interrupt functions

3.58. intrinit, intrrest - Init and restore for interrupt processing

3.58.1. Synopsis

intrinit(func,stack,vecno)

int (*func) (); /* function which will process interrupt %/
unsigned stack; /* # bytes of stack needed by function ®/
unsigned vecno; /®* § of vector for interrupt trap */
intrrest(vecno)

unsigned vecno;
3.58.2. Function

intrinit initializes the interrupt vector "vecno" so that the
specified function is executed whenever the interrupt occurs.

intrrest restores the original interrupt handling address to the
proper vector location specified by vecno.

3.58.3. Notes

This function also needs the function intrserv. Interserv() is in
the €86 libraries. You need to understand your hardware and
assembly language programming to use this routine correctly.

Make sure you provide enough stack space for the function, as
there are no run time checks, and stack overflow will provide an
interesting debugging experience. About 5000 bytes should be
used for debugging. In production you need 128 bytes plus the
size of your local data.

The interrupt entry is relatively fast, but you should test this
mechanism before writing a lot of code. It should be fast enough
to cope with the communications line (up to 9600 baud), light
pen, game paddles, etc.

If you are processing a device interrupt (eg the RS-232 USART),
you may need to issue an End Of Interrupt command to the 8259
interrupt controller chip. This may be done using outportb().

IMPORTANT: Interrupts are disabled while your function is
executing, so keep it small and fast. Do not do a printf inside
your function. Some interrupts are so fast that you can not even
do another interrupt. The timer tick (see example) only has time
to decrement a variable. It is very important to keep it small
and fast.

The operating system is in an unstable state while an interrupt
is being processed. Bdos() calls 12 and below should be safe,
but check to be sure.

OPTIMIZING C86 USER'S MANUAL interrupt functions

When your program terminates, you should restore the interrupt
vector to its original content. This applies only to vectors
that may be called after your program terminates. Classical
instances are Clock, Break key and Key-~board handlers. Otherwise
strange things will happen after your program has been executed.
You can cause a software interrupt with sysint. This may help
you debug a prototype interrupt routine, as it can be traced with
the debugger.

The 2.1 version of intrinit has been recoded for the two
following reasons:
- It uses the official MSDOS entry point for
pokeing the interrupt vector
- It provides for restoring the original interrupt
handling address to the vector location through
the function intrrest(vecno) .

3.58.4. Example

/*
NOTES ON USING INTERRUPT SERVICE ROUTINES

The following is a program to demonstrate the use of intrinit
to assign new interrupt service routines to the clock tick and
cntl-break interrupts under DOS. This program will do a bdos(6,7)
to sound a beep intermittently. This can be turned off by
pressing CTRL-BREAK.
*/

$include <stdio.h>

#define STACK 5000 /* no. bytes of stack to save */
#define TICK Oxlc /* Clock Tick interrupt */
#define KEYBOARD 0xlb /* Control-Break interrupt */

long counter;
long start;
int ctrlbreak;

/* interrupt service routine for clock tick */
timer()

counter--;
/* interrupt service routine for control-break */
ctrl()
{

ctrlbreak = 0;

OPTIMIZING C86 USER'S MANUAL interrupt functions

/* main routine */
main()

printf("\nEnter approximate no. of seconds: ");

scanf ("¥D" ,&counter);

printf("Number entered: %D\n",counter);
if(counter==0)counter=1;

counter *= 20; /* was on 8MHz 80186 */
start = counter;

printf("Press CTRL-BREAK to stop this process:\n");

intrinit(timer,STACK,TICK); /* set up new routine */
intrinit(ctrl,STACK,KEYBOARD); /% set up new routine */
for(ctrlbreak=1;ctrlbreak;) {

while(counter > 0) /* count down */

if(lctrlbreak) goto done; /% quit */
bdos(6,7); /* issue beep */
counter = start; /* reset counter */
done:

intrrest(TICK); /* restore original */
intrrest (KEYBOARD) ; /* restore original */

} /* end program for intrinit */

__________________ intrrest() example

/* The following is an example of trapping the Control-C
handler.
It now uses intrrest() to reset the vector number.

*/

#include <stdio.h>

extern int dummy();

main()

int foo;

intrinit(dummy,256,0x%23); /* set to point to dummy */
for(foo=0;!foo;) bdos(2,'-'); /* print out '-', while U wait */
intrrest{0x23); /* restore orig. “C handler addr */

}

int dunmy()

{
int foo;
foo = 1;
bdos(2,'*');

3.58.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL issomething

3.59. issamething, Character class tests.

3.59.1. Synopsis

int isalnum(cc) /* alpha-numeric */

int isalpha(cc) /* alphabetic */

int isascii{cc) /* a defined ASCII character */
int iscntrl{cc) /* a control character */

int isdigit(cc) /* a digit */

int islower(cc) /* a lower case alphabetic */
int isprint(cc) /* a printable character */
int ispunct(cc) /* a punctuation character */
int isspace(cc) /* a white space character */
int isupper(cc) /* an upper case character */
char cc;

3.59.2. Function

Test the supplied character to see if is a member of a specific
class.

3.59.3. Returns
One if the character is a member of the class, otherwise zero.
3.59.4. Notes

The classes tested by the functions are:-

function class

isalnum 'a' thru 'z', 'A' thru '2', '0' thru '9’

isalpha 'a' thru 'z', 'A' thru 'z’

isascii 0x00 thru 0x7f

iscntrl 0x00 thru O0x1f, 0x7f

isdigit '0' thru '9°

islower 'a' thru 'z’

isprint 0x20 thru Ox7e

ispunct 040 thru 057, 072 thru 0100,
0133 thru 0140, 0173 thru 0176

isspace 0x20, '\t' or '\n’'

isupper 'A' thru '2"

See ctype.h for an alternative to function calls to perform these
functions.

OPTIMIZING C86 USER'S MANUAL issomething

3.59.5. Example

{
int r;
/* character class tests:
INPUT: character
OUTPUT: integer value:
1 if character in class
0 if not
*/
r = isalnun('#'); /* r is 0 */
r = isalpha('C'); /*r is 1 */
r = isascii(Oxff); /* r is 0 */
r = iscntrl(*\t*); /* r is 1 */
r = isdigit('0'); /* r is 1 */
r = islower('W'); /* r is 0 */
r = isprint(0x7f); /* r is 0 */
r = ispunct(' '); /* r is 0 */
r = isspace('s&"); /* r is 0 */
r = isupper('wW'); /* r is 1 */
printf("\nisalnum(%c) = %d\n",'#',isalnum('#'});
printf(™\nisalpha(%c) = ¥d\n",0x07,isalpha(0x07)});
printf(™\nisascii(3¥c) = 3d\n",0x07,isascii(0x07));
printf("\niscntrl(3c) = $d\n",'\t',iscntrl('\t'));
printf(™\nisdigit(%c) = $d\n",'9',isdigit('9'));
printf(™\nislower(%c) = %d\n",'a',islower('a’));
}

3.59.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL iswap

3.60. iswap, Swap two integers.
3.60.1. Synopsis

int iswap(inta,intb)
int *inta,*intb;

3.60.2. Function

Swaps the two integers pointed to by inta and intb.
3.60.3. Returns

Nothing

3.60.4. Notes

This function MUST be called with the addresses of the two
integers to be swapped. Using the value(s) will lead to obscure
system failures, that are difficult to find.

3.60.5. Example
{

extern int iswap(); /* integer swap */
int x, y;

X =5;y=6;
printf("\nx=%d4, y=%d\n",x,y);
iswap(&x,&y); /* MUST supply addresses */
/* now x equals 6 and y equals 5 */
printf("ISWAP\n x=%d, y=%d\n",x,y);

}

3.60.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL itoa

3.61. itoa, Convert an integer to ASCII.
3.61.1. Synopsis

int itoa (n,buffer)
int n; /* value to convert */
char *buffer; /* where to put ascii characters */

3.61.2. Function

Converts the input binary integer n into the equivalent ASCII
string in buffer. A leading minus sign is output if the number
is negative. The buffer must be at least 7 characters in length,
to hold the largest possible number. The string is tem\inateg by
a binary zero.

3.61.3. Returns

The number of characters placed in the buffer. The value is
equivalent to strlen(buffer) after the conversion is completed.

3.61.4. Notes
Uses the function sprintf,
3.61.5. Example

{
extern int itoa(); /* integer to ascii conversion */
extern int fputs();
int binary;
char string(7];
int num;

binary = -12;
nun = itoa(binary,string);
/* num contains the number of chars put in string */
fputs(string,stdout);
}
3.61.6. Operating System
pos 3.0, DOS 2.0+, DOS l.1l+
3.61.7. See also

sprintf, fprintf

OPTIMIZING C86 USER'S MANUAL itoh

3.62. itoh, Convert an integer to hexadecimal.

3.62.1. Synopsis

int itoh(n,buffer)

unsigned int n; /* the value to convert */

char *buffer; /* where to place it */

3.62.2. Function

Converts the input integer into the equivalent hex string in
buffer. The string is terminated by a binary zero. Buffer must
be at least 5 characters in length. No leading "0X" is placed in
the buffer.

3.62.3. Returns

The number of characters placed in the buffer. This is
equivalent to strlen(buffer) after the conversion has been done.

3.62.4. Notes
Uses the function sprintf
3.62.5. Example
{
extern int itoh();
extern int fputs();
unsigned int n;
char hexstr([5];
int number;
n = 0x3ff;
number = itoh(n,hexstr);

/* hexadecimal characters are stored in hexstr */

fputs(hexstr,stdout);

}

3.62.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.62.7. See also

sprintf, fprintf

OPTIMIZING C86 USER'S MANUAL key functions

3.63. key _getc,key scan,key_shft-Z-100 PC keyboardfunct. (Z-100 PC ONLY!)
3.63.1. Synopsis

int key getc()

int key scan()

int key shft()

3.63.2. Function

key_getc reads the next character typed at the keyboard. Returns
the ASCII value of the character (in the low byte) and the
keyboard scan code (in the high byte). The character is removed
from the keyboard buffer and is not echoed to the screen.
key_scan scans the keyboard for a character. It does a non-
destructive read, that is, the character is not removed from the
keyboard buffer. It will return an int in the same format as
key getc if a character is available, otherwise it returns -1.

key shft returns the keyboard shift status byte as described in
the notes.

3.63.3. Notes
See the Z-100 PC Technical Reference Manual for more details.

Keyboard shift status byte:

bit mask meaning
0 0x01 RIGHT SHIFT KEY depressed
1 0x02 LEFT SHIFT KEY depressed
2 0x04 CTRL key depressed
3 0x08 ALT key depressed
4 0x10 SCROLL state active
5 0x20 NUMBER lock engaged
6 0x40 CAPS lock engaged
i 0x80 INSERT state engaged
3.63.4. Example
* To read a character and it's scan code:
int c;

c = key getc();

* To find out if the right shift key is being depressed:
rshkey = key shft() & 0x01;

* To find out if the control key is being depressed:
ctrlkey = key shft() & 0x04;

3.63.5. Operating System
MS-DOS Version 2+, MS-DOS l.1l+

3-88

OPTIMIZING C86 USER'S MANUAL longjmp

3.64. longjmp, Restore an enviromment.

3.64.1. Synopsis

#include "stdio,h" /* to define jmp buf */

int longjmp(envp,value);

jmp_buf *envp;

int value;

3.64.2. Function

Restores the environment to one previously saved using the
function set_jmp(). The value is returned as the exit value of
set_jmp() .

3.64.3. Returns

Never returns.

3.64.4. Notes

This is a very dangerous function, but if you really want to use
it see set jmp().

The enviromment must have been saved using set jmp by a function
that is currently active, and which is the same function or a
parent of the function containing the call to longjmp.

3.64.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.64.6. Use with

set_jmp

OPTIMIZING C86 USER'S MANUAL ldexp

3.65. ldexp, Load exponent

3.65.1. Synopsis
double ldexp(mantissa,exponent)
double mantissa;
int exponent;
3.65.2. Function
Returns the double:-
mantissa* (2**exponent)
3.65.3. Notes
This is the inverse of the function "frexp".

3.65.4., Example

{
extern double ldexp();
double mantissa;
int exponent;
double dresult;

mantissa
exponent

1.444;
10;

dresult = ldexp(mantissa,exponent);
/* dresult contains: 1.444 * (2 ~ 10) */
printf("\nLDEXP\n%g = %g * (2 to the %d)\n",
dresult, mantissa, exponent);
}
3.65.5. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.65.6. See also

frexp, modf

OPTIMIZING C86 USER'S MANUAL loadexec

3.66. loadexec, Load or execute a program
3.66.1. Synopsis

int loadexec(filename,param,funcode)
char *filename;

struct pblock *param;

int funcode;

3.66.2. Function

Performs the DOS V2.0 load or execute a program function call,
This function is called by the system function. The system
function is much easier to use and is recommended over the
loadexec function,

3.66.3. Returns

Zero if successful, otherwise a DOS 2.0 error code.
3.66.4. Notes

This function is ONLY available under DOS V2.0.

We really wanted to create the UNIX functions 'exec' and
'system', but that would have removed some useful abilities of
this system service.

See the writeup of service 0x4b in the DOS V2.0 manual for full
details of this function. Funcode is 3 to load a program, and
zero to load and execute a program,

The filename is a standard DOS V2.0 file name with path
specification if desired.

The parameter block is as explained in the DOS manual. The
filename and param block pointers are ALWAYS big model pointers,
even in a small model program, See the source code of the
function "system" for an example.

Since this function will load and execute a program in unused
memory you may not have enough room if you are running your
program on a computer with a small amount of memory. If you do
not have enough roam in your machine, you will have to modify the
defaults in _default, so that the program will leave some memory
free. Otherwise there will be no memory available for loadexec
to load the target code into.

3.66.5. Operating System
DOS 3.0, DOS 2.0+

3.66.6. See also
system

OPTIMIZING C86 USER'S MANUAL

3.67. log, logl0, Logaritbm functions.
3.67.1. Synopsis

double log(val)
double val;

double loglO(val)
double val;

3.67.2. Returns

Log returns the natural logarithm of the value.

Logl0 returns the logarithm of val to the base 10.

3.67.3. Notes

Both functions return zero if the value is zero or negative.
3.67.4. Example

{
extern double log();
extern double logl0();
double dval;
double dresult;

dval = 45.023;
dresult = log(dval);
/* dresult contains 3.80717.....
log returns the natural logarithm */

dval = 45,023;
dresult = logl0(dval);
/* dresult contains 1.6534....
1ogl0 returns the base 10 logarithm */
printf("\nLOG\n%g log(%g)\n",24.56,109(24.56}));

print £("\nLOG1l0\n%g loglO (¥g)\n",77e3,10910 (77e3));
}

3.67.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.67.6. See also

exp, pow, sqgrt

OPTIMIZING C86 USER'S MANUAL lower

3.68. lower, Convert a string to lower case.
3.68.1. Synopsis

char *lower(string)
char *string;

3.68.2. Function

Converts all uppercase characters in the string to lower case.
All other characters are unchanged.

3.68.3. Returns

The address of the string.

3.68.4, Example

Read a filename and force it to lower case.

f

char filename[80];
printf("Enter file name: ");
gets(filename,75);
lower(filename);
printf("\nname is:- $s\n" ,filename);
}
3.68.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.68.6. See also

upper

OPTIMIZING C86 USER'S MANUAL lseek

3.69. lseek, Position R/W pointer in a file.
3.69.1. Synopsis

long lseek(fd,offset,base)
int £4;

long offset;

int base;

3.69.2. Function

This function allows you to alter the read/write position pointer
for a disk file. This pointer defines the character that will be
read/written on the next i/o operation on the file. To issue
this call:-

- fd is a file descriptor returned by open or creat.
- offset is an adjustment relative to base.

- base is a code for the base value of the seek.

- The file must be open in read or read/write mode.

Allowable base codes are:-

- 0 Relative to beginning of file. Offset must be positive
-1 Relative to current position in file
- 2 Relative to the end of the file (SEE NOTE BELOW)

3.69.3. Returns

.minus one if an error is detected
.The current position in the file if successful.

3.69.4. Notes

Lseek(fd,0L,0) will let you process the first byte in the file on
the next i/o operation. Lseek(fd,-1L,1) will let you process the
most recently processed byte again.

Seeks on a non disk file return the error code -1. Seeks beyond
End Of File should be avoided, since they may result in files
with missing sectors, which could result in incorrect EOF
indications in subsequent processing.

ASCII files may be used, but the presence of carriage return/line
feed pairs may make it difficult to detemmine the seek offset.

The open logic for ASCII mode files reads the last sector looking
for a control-z, and sets the end of file position accordingly.

OPTIMIZING C86 USER'S MANUAL lseek

3.69.5. DOS

This feature is provided, and uses the operating system provided
file size. Thus it will not work with files written by programs
using CPM end of file conventions.

3.69.6. Example

#define BEGIN 0
$define CURRENT 1
#define END 2

{
extern long lseek();
extern int open(), close();
int fd, base;
long offset, lpos;

fd = open("a:filename.dat" ,AREAD);
if(£d<0) return;

/* To position on the first byte: */
offset = OL; lpos = lseek(fd,offset,BEGIN);

/* To position so that last byte will be reprocessed: */
offset = -1L;
lpos = lseek(fd,offset,CURRENT);

/* To position such that the byte at End of File
- 50 will be processed next: */

offset = -50L;

lpos = lseek(fd,offset,END);

/* In the above calls to lseek, lpos contains either:
(-1) if an error detected (such as seek beyond EOF)
or the current position relative to the beginning */
close(fd);
}
3.69.7. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.69.8. Use with

open, creat, close, ltell

OPTIMIZING C86 USER'S MANUAL ltell

3.70. ltell, Tell the R/W position within a file.
3.70.1. Synopsis

long ltell(fd)
int fd;

3.70.2. Function

This function returns the absolute position of the byte in the
file which will be processed by the next i/o operation. To issue
this call:-

- fd is a file descriptor returned by open or creat.
3.70.3. Returns

- The absolute position of the next byte in the file
- minus one if any error is detected

3.70.4. Notes

This function must be declared as returning a long integer before
its use in a program, It will always return an error when used
on a non disk file. This fact may be used to determine if a file
is disk file.

This function is equivalent to lseek(fd,OL,1);
3.70.5. Example

{
extern unsigned long ltell();
extern int open(), close{();
int f£d;
unsigned long position;

fd = open("a:filename.ext",AUPDATE);
if(£4<0) return;
fprintf(fd,"Sample Data\n");

position = ltell(fd);
/* position contains the current position in the file */

printf(™\nCurrent position is: %D\n",position);
close(fd);
}

3.70.6. Operating System
Dos 3.0, DOS 2.0+, DOS 1.1+

3.70.7. See also
open, creat, lseek, close

OPTIMIZING C86 USER'S MANUAL ltoa

3.,71. ltoa, Convert a long integer to ASCII.
3.71.1. Synopsis

int ltoa(n,buffer)
long n;
char *buffer;

3.71.2. Function

Converts the input long binary integer n into the equivalent
ASCII string in buffer. A leading minus sign is output if the
number is negative. The buffer must be at least 12 characters in
length, to hold the largest possible number. The string is
terminated by a binary zero.

3.71.3. Returns

The number of characters placed in the buffer. The value is
equivalent to strlen(buffer) after the conversion is completed.

3.71.4. Example
{

extern int ltoa(); /* converts a long to an ASCII string */
extern int fputs();

long number;

char longstr(12]; /* must be at least 12 chars */

int numchars;

nunber = 10223444L;
nunchars = ltoa(number,longstr);

/* numchars contains number of characters converted */
/* longstr contains "10223444" */

fputs(longstr,stdout);
}

3.71.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1l.l+

OPTIMIZING C86 USER'S MANUAL ltoh

3.72. ltoh, Convert a long integer to hexadecimal.
3.72.1. Synopsis

int ltoh(n,buffer)

unsigned long ng;

char *buffer;

3.72.2. Function

Converts the input long integer into the equivalent hex string in
buffer. The string is terminated by a binary zero, Buffer must
be at least 9 characters in length. No leading "0X" is placed in
the buffer.

3.72.3. Returns

The number of characters placed in the buffer. This is
equivalent to strlen(buffer) after the conversion has been done.

3.72.4. Example
{

extern int ltoh();

extern int fputs();

unsigned long number;

char hexstr(9]; /* must be at least 9 chars */
int numchars;

nunber = 10223444L;
numchars = ltoh(number ,hexstr);

/* numchars contains the number of characters converted */
fputs(hexstr,stdout);

}

3.72.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL ltos

3.73. ltos, Convert a long integer to a string.

3.73.1. Synopsis

int ltos(n,buffer ,base)

long n; /* the number to convert */
char *buffer; /* where to put it */
int base; /* the base for conversion to characters */

3.73.2. Function

Converts the input long integer into the equivalent string of
characters in the output area 'buffer'. The string is terminated
by a binary zero. The output buffer must be long enough to hold
the largest possible output number, as this routine does not
check.

The conversion is controlled by the value supplied as the base.
If the base is positive, an unsigned conversion is per formed,
otherwise a signed conversion is performed, and a minus sign is
output if required.

This routine may be used to convert a signed or unsigned long to
an ASCII string to any base in the range 2 through 16 (decimal).

3.73.3. Returns

The number of characters placed in the buffer. This is
equivalent to strlen(buffer) after the conversion has been done.

3.73.4. Notes

This routine was written to provide a common conversion routine
fram binary to ASCII. It is not typically available on UNIX
systems,

3.73.5. Example
{

extern int ltos(), fputs();

unsigned long number;

char str(34]; /* make sure it's long enough */
int numchars;

number = 10223444L;
numchars = ltos(number,str,-2); /* convert to signed binary */

fputs(str,stdout); /* print it */
}

3.73.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL main

3.74. main, Bntry point for a C program.

3.74.1. Symopsis

int main(argc,argv)

int argc; /* number of arguments on the command line */
char *argv[]; /* an array of pointers to the arguments */

3.74.2. Function

This function is user supplied. It is the main functionof a C
program. It is called with the number of arguments on the
command line and an array of pointers to the argument strings.

On a UNIX system, the first argument is always the name of the
program. Since this is unavailable, we substitute a lower case
"c". Thus argc will always be at least one.

Entries on the command line beginning with a ">" or "<" symbol
are assumed to specify redirection and are not supplied to this
function. See " main" for details.
3.74.3. Returns
Zero if the program run without errors, non-zero otherwise.
3.74.4. Example
The command line:-

myprog This is a Line >prn:

would result in main (inside the file myprog.c) being called
with:-

* argc containing 5
* argv pointing to an array of pointers, which point to the
strings:-

" C"
“This"
L1} i sll
llall
"Line"

3-100

OPTIMIZING C86 USER'S MANUAL main

3.74.5. Example
To print each of the cammand line arguments on a separate line:-
#include <stdio.h>

main(argc,argv)

int argc; /* count of arguments */
char *argv(]; /* argument strings */
int i;

for(i=0;icargc;i++)
printf("\nargv[%d] = $s",i,argv(i]);
}
3.74.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.74.7. See also

$main, _main

3-101°

OPTIMIZING C86 USER'S MANUAL make fcb

3.75. makefcb, Make a file control block.
3.75.1. Synopsis

char *makefcb(filename)
char *filename;

3.75.2. Function

Makes a file control block. The input filename string may
contain:-

- A single letter drive specifier followed by a colon.

- A path specification of up to 63 characters

- A file name of up to 8 characters.

- An extent consisting of a period followed by up to three
characters.

The File Control Block is obtained by a call to calloc.
3.75.3. Returns

The address of the created file control blocb. On error makefcb
returns NULL. The format of the file control block is specified
in the file "fileio.h" (found in dosall.arc).

3.75.4. Notes

Characters less than Hex 21 are considered as errors. Filenames
containing question marks may be used with this function, but
should not be used with other supplied file manipulating
functions. When you have finished with the fcb, you should
return the area to the heap using the function 'free'.

If this function is executed under DOS 2.0+, the path name (if
any) will be extracted and saved in the returned fcb. If it is
executed on earlier versions of DOS, the path information will be
discarded.

The path information is provided for the convenience of the
DOSALL library functions., We recommend you do not use the path
facilities in your own coding, as the mechanisms may change in
future releases.

You should use the DOS 2.0+ calls, and avoid this service if you
can.

3-102

OPTIMIZING C86 USER'S MANUAL make fcb

3.75.5. Example

{
extern char *makefcb();
extern int free();
char *filename;
char *fcbl, *fcb2, *fcb3, *fcbd,*fcb5;

filename = "a:filename.ext"; /* full specification */

fcbl = makefeb(filename);

/* fcbl contains the address of the File Control

created by makefcb. The File Control Block is obtained
through a call to alloc, and therefore the fcb can

freed when you are done with it, Other valid

include:
*/
fcb2 = makefcb("file");
fcb3 = makefcbh("b:2??2222?2.c");
fcb4 = makefcb("prog.dat");
feb5 = makefeb("c:\\bin\\c86\\cc3.exe");

/* '?' may be used with this function , but not with the

other file functions (such as rename) */
free(fcbl);
free(fcb2);
free(fch3);
free(fchb4);
free(fchs);
}

3.75.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.75.7. See also

open, creat, fopen, bdos, sysint

3-103

OPTIMIZING C86 USER'S MANUAL make fnam

3.76. makefnam, Make a file name.
3.76.1. Synopsis

char *makefnam(input,default,result);

char *input; /* the input file name */
char *default; /* the default file name /
char *result; /* where to build the result */

3.76.2. Function

Builds a composite disk file name in the result area, by
combining components fram the input and default file names.

This function considers the input and default file names to
consist of the following four components:-

* A drive designator, consisting of one letter followed by a
colon (':').

* A path specification, consisting of all the characters
after the drive designator, if any, up to the last back-
slash ('\') or forward slash ('/') in the string.
Reminder: the backslash (*\') is the escape character in
c.

* A file name consisting of all the characters following the
path specification, if any, up to a period, or the end of
the string.

* A file extent, consisting of all the characters after the
period terminating the file name up to the end of the
string.

If the input file name contains a component, then that component
is copied to the result string. If the default string contains a
component that is not present in the input string, then the
default component becomes part of the result string. 1If a

component is missing from both input and default strings, then it
is also missing from the result string.

In addition, each part of the path name is truncated to the first
eight characters, the file name to the first eight characters,
and the extent to the first three.

3.76.3. Returns

The address of the null terminated result string.

3.76.4. Notes

This function does not cope with device names, such as "con:" or
"lpt:". So check that you don't use them.

This function can be used to supply default components of file
names, or to force components of file names to specific values.

This function is not a standard C langauge function.

3-104

OPTIMIZING C86 USER'S MANUAL make fnam

3.76.5. Example
To set a default extension of ".,c" on a user suppiled file name:-
makefnam(userfile,".c",resfile); .

To force a drive of "b:" and an extension of ".c" on a user
supplied file name:-

makefnam("b:.c" ,userfile,resfile);
3.76.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.76.7. Use with

open, fopen, rename, unlink

3-105

OPTIMIZING C86 USER'S MANUAL malloc

3.77. malloc, Allocate uninitialized memory fram the heap

3.77.1. Synopsis

char *malloc(size)
unsigned size; /* number of bytes needed */

3.77.2. Function

Obtains a region of size bytes from the heap. The region is not
initialized.

3.77.3. Returns

The address of the allocated region, or zero (NULL) if not enough
memory was available.

3.77.4. Notes

Using the big memory model, blocks of up to 65516 (0xFFE8) bytes
may be requested. In the bigmodel, the default amount of memory
available is about 96K for the heap and the stack. This can be
changed (either increased to access all of memory on your machine
or decreased to leave more unused memory) by editing the file
_default.c. We have found that most users of C86 can live with
about 96K of heap and stack space in the bigmodel.

It is very important that this function is declared in the big
model as returning a pointer to a character. undefined results
will occur if this function is not declared.

3.77.5. Example
{

extern char *malloc(); /* important in big model!! */
extern int free();

char *buf;

unsigned number_bytes;

int i;

number_bytes = 255;
buf = malloc(number bytes); /* not initialized */
/* you can initialize yourself if neccessary */
for(i=0;i<number bytes;i++)
buf(i] = EOS; /* EOS = '\0' */
/* use buf */
free(buf);
}
3.77.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.77.7. See also
alloc, calloc, realloc, sbrk, free, coreleft

3-106

OPTIMIZING C86 USER'S MANUAL mkdir

3.78. mkdir, Make a new subdirectory.

3.78.1. Synopsis

int mkdir(pathname)
char *pathname;

3.78.2. PFunction

Calls the operating system to make a new subdirectory in the
current working directory. The path name for the new directory
is essentially limited to a single eight character name, and is
operating system dependent. You should refer to your operating
system documentation for more infowmation.

3.78.3. Returns

EOF if an error is detected, otherwise zero.

3.78.4. Notes

This function is only available for DOS V2.0+.

3.78.5. Operating System

DOS 3.0, DOS 2.0+

3.78.6. Use with

chdir, mmdir

3-107

OPTIMIZING C86 USER'S MANUAL mod f

3.79. modf, Split double into integer and fraction.
3.79.1. Synopsis

double modf(val,iptr)

double val; /* the input value */

double *iptr; /* where to put the result */
3.79.2. Function

Stores the integer part of “"val" indirectly through the pointer
"iptr®, and returns the fractional part. The fractional part is
always greater than or equal to zero.

3.79.3. Example

{
extern double modf(); /* double precision mod function */
double val;
double int part;
double frac;

val = 1234.5555;
frac = modf(val,&int part);

/* frac contains ,5555 , int_part 1234 */
print £{"\nMODF\ntg = modf (3g9,%g9)\n",frac,val,int_part);

val = -19.812;
frac = modf(val,&int_part);

/* frac contains .812, int part -19 */
printf(*"\nkg = modf (¥g,%9) \n" ,frac,val,int_part);
}
3.79.4. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.79.5. See also

frexp, ldexp

3-108

OPTIMIZING C86 USER'S MANUAL movblock

3.80. movblock, Move a block of memory.

3.80.1. Synopsis

int movblock(soffset,sseg ,doffset,dseg,count)

unsigned soffset; /* source offset relative to */
unsigned sseq; /* the source segment */

unsigned doffset; /* destination offset relative to */
unsigned dseg; /* the destination segment */
unsigned count; /* nunber of bytes to move */

3.80.2. Function

Moves a block of memory from anywhere in memory to anywhere in
memory. The source and destination addresses are specified by
standard offset/segment double word values.

Up to 64000 bytes may be moved.

If the move is for exactly 2 words, interrupts are disabled.
This allows you to move data to an interrupt vector address.

In a big model program, soffset and sseg may be supplied by ONE
pointer., Likewise doffset and dseg.

3.80.3. Returns
Nothing.
3.80.4. Notes

This routine is intended for moving data to/from memory that is
"outside" a program.

DOs

DOS provides a system call for setting interrupt vectors. It
should be used instead of movblock.

3.80.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.80.6. See also

movmem

3-109

OPTIMIZING C86 USER'S MANUAL movmem

3.81. movmem, Move memory within a program.

3.81.1. Synopsis

int movmem(source,dest ,count)

char *source,*dest;

unsigned int count;

3.81.2. Function

Copies a block of memory, count bytes in length, starting at
address source to the area starting at address dest. This
routine is written so that a valid copy will be made even if the
source and destination regions overlap.

3.81.3. Returns

Nothing.

3.81.4. Notes

This routine is intended for moving data "within"” a program. In

a big model program it provides the same capabilities as
movblock.

3-110

OPTIMIZING C86 USER'S MANUAL movmem

3.81.5. Example
{

extern int movmem(), free();
extern char *calloc();
unsigned int byte count;
char *srce, *dest, *tmp;

byte_count = 100;

srce = calloc(byte_count,l);
Strcpy(srce,"Source string Written Here");
dest = calloc(byte count,sizeof(char));
strcpy(dest,"Destination string Here");
tmp = calloc(byte count,sizeof(char));

printf("\nBEFORE MOVMEM\n") ;

printf("srce : \"ts\"\ndest : \"ts\"\ntmp : \"$s\"\n"
,srce, dest, tmp);

movmem(srce, tmp,byte count);

printf{"\nsrce : \"$s\"\ndest : \"$s\"\ntmp : \"#s\"\n"
,srce, dest, tmp);

mownen(dest,srce,byte_coun t);

printf("\nsrce : \"$s\"\ndest : \"$s\"\ntmp : \"$s\"\n"
fSrce, dest, tmp);

movmem(tmp ,dest /byte count);

printf({"\nAFTER MOVMEM\n") ;

printf("srce : \"$s\"\ndest : \"ts\"\ntmp : \"%s\"\n"
,stce, dest, tmp);

free(tmp); free(srce); free(dest);

}

3.81.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.81.7. See also

setmem, movblock

3-111

OPTIMIZING C86 USER'S MANUAL open

3.82. open, Open an existing file.

3.82.1, Synopsis

int open(filename,mode)
char *filenamne;
unsigned int mode;

3.82.2. Function

Filename must be a valid file name for your operating system or
one of the special names defined below. 1f a file of that name
currently exists it is opened, otherwise an error is returned.
val id open modes are defined in “stdio.h", and have the values:-

AREAD 0 open for ASCII read
AWRITE 1 open for ASCII write
AUPDATE 2 open for ASCIT update
BREAD 4 open for binary read
BWRITE 5 open for binary write
BUPDATE 6 open for binary update

3.82.3. Returns

- A negative number if any error is detected.
- A positive number (a file descriptor) if successful.

3.82.4. Notes
opening a file in ASCIT mode means:-

- Carriage return/linefeed pairs in the file will be
converted to newlines ('\n') on input.

_ Newlines will be converted to carriage return/linefeed
pairs on output.

- Control-z in the file will be returned as end of file on
input.

No conversion is performed on files opened in binary mode.
You must use the function creat to creat a new file. Unlike the

function fopen, this function will not creat a file for you, it
must be done with another function call.

3-112

OPTIMIZING C86 USER'S MANUAL open

3.82.5. DOS
The following special file names are supported:-

- To open the console "CON:"
- To open the printer "PRN:"
- To open the cam device "AUX:"

3.82.6. Example
{

extern int open();
extern int close();
char *filename;
unsigned int mode;
int £4;

mode = AREAD;

filename = "a:filename.ext";

fd = open(filename,mode);

if(£3<0) printf("\nError opening $s\n",filename) ;
else close(fd);

mode = AWRITE;
filename = "“CON:"; /* write to console */
fd = open(filename, AWRITE);
if(£d<0) printf("\nError opening console for write\n");
else close(fd);
mode = BREAD;
filename = "a:filename.dat";
fd = open(filename,mode);
/* open in binary mode, no CRLF or CTRLZ conversion */
if(£d>=0) close(fd};
}
3.82.7. Operating System
bos 3.0, DOS 2.0+, DOS 1.1+
3.82.8. Use with
creat, read, write, close, lseek, ltell
3.82.9. See also

fopen, fclose

3-113

OPTIMIZING C86 USER'S MANUAL outport functions

3.83. outportb, outportw - Output a byte or word to a port.
3.83.1. Synopsis

unsigned char outportb(portno,value)
unsigned int portno;
char value;

int outportw(portno,value)
int portno;
int value;

3.83.2. Punction

Outportb outputs a byte to a user supplied port number (portno).
The port number must be valid for the addressed device. In some
cases a 16 bit port number is required. For older devices an 8
bit number is required, and it may have to be in either byte of
portno. One possibility is to place the port number in both
upper and lower bytes of portno., It returns the byte read from
the port.

Ooutportw outputs a word to a user supplied port number (portno).
The port number must be valid for the addressed device. Usually
a 16 bit port number is required. This function is not needed
for most devices currently available, as they do not support 16
bit i/o transfers. It returns the word output from the port.

3-114

OPTIMIZING C86 USER'S MANUAL outport functions

3.83.3. Example
* outportb example
{

extern unsigned char outportb();
unsigned int portno;
char byte value;
byte value = 0x07;
portno = 0;
outportb(portno,byte_value) H

* outportw example
extern unsigned int outportw();
unsigned int portno, word value;
word value = Oxffaa;

portno = 1;
outportw(portno,word value);

3.83.4. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.83.5. See also

inportw, inportb, outportw

3-115

OPTIMIZING C86 USER'S MANUAL peek

3.84. peek, Examine the content of a word in memory

3.84.1. Synopsis

int peek(offset,seq)

unsigned offset; /* offset of the word relative to */

unsigned seg; /* a segment register value */

3.84.2. Function

Get the content of a word anywhere in memory. The offset/seg is
a standard double word pointer. In the big model a regular
pointer may be used.

3.84.3. Returns

The content of the requested word.

3.84.4. Notes

Sometimes you may want to poke and peek inside the memory that
the program is loaded into. To find out where the program is
loaded use the function segread() .

3.84.5. Example

{
extern int peek(};
unsigned offset;
unsigned segment;
int word;
int i;

segment = 0x100;
putchar('\n');

for(offset=0;0ffset<20;0ffset++)

word = peek(offset,segment);
%xintf("peek(%xﬂ,%xﬂ) = 3d\n" ,of fset,segment,word);

}

3.84.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.84.7. See also

pokeb, pokew, segread

3-116

OPTIMIZING C86 USER'S MANUAL poke

3.85. poke, Store data in memory.

3.85.1. Synopsis

pokeb(offset,seqg,byte); /* poke a byte */

unsigned offset; /* the offset relative to */
unsigned segq; /* the segment value */
char byte; /* the value to poke */
pokew(offset,seg,word); /* poke a word */

unsigned offset; /* the offset relative to */
unsigned segq; /* the segment value */
unsigned word; /* the value to poke */

3.85.2. Function

put a word or byte at the specified offset/seg address in memory.
The offset/seg pair are a standard double word pointer.

3.85.3. Returns
The value poked.
3.85.4. Notes

Sometimes you may want to poke and peek inside the memory that
the program is loaded into. To find out where the program is
loaded use the function segread().

3.85.5. Example

{
extern unsigned char pokeb();
extern unsigned int pokew();
unsigned offset;
unsigned segment;
char byte;
unsigned word;

segment = 0x200;
offset = 0;

byte = peek(offset,segment) & Oxff;
pokeb(offset,segment ,byte);

word = peek(offset,segment);
pokew(offset,segment,word);
}
3.85.6. Operating System

DOsS 3.0, DOS 2.0+, DOS 1.1+

3.85.7. See also
peek, movblock, segread

3-117

OPTIMIZING C86 USER'S MANUAL

3.86. pow, Return X to the power Y.

3.86.1. Synopsis

double pow(x,y)
double x,y;

3.86.2. Returns

The value of x raised to the power y.
3.86.3. Notes

Returns zero if both x and y are zero.
Returns 1e+300 if the result would overflow.
3.86.4. Example

{

extern double pow(); /* returns base to the exponent */

double base, exp;
double result;

base = 2,7182818;
exp = -2.5;

result = pow(base,exp);

/* result contains 0.08208.... */
printf("\npow(%g,%9) = %$g\n",base,exp,result);

result = pow(base,exp):
/* result contains 1000000.0 */
: printf("\npow(%g,%g) = %g\n",base,exp,result);
3.86.5. See also
exp, log, logl0d, sqrt
3.86.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-118

pow

OPTIMIZING C86 USER'S MANUAL printf

3.87. printf, Print to stdout.

3.87.1. Synopsis

int printf(format,args...)

char *formmat;

see below for args;

3.87.2. Function

Output data under control of a fommat string to file stdout.

The output file is stdout, which is normally open to the console.
However, it is subject to redirection, and may be open to a disk
file or the line printer. The file should be open in ASCII mode.
See fprintf for additional information.

3.87.3. Returns

Nothing.

3.87.4. Example

For examples of the format control string, see Kernighan and Ritchie,
3.87.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.87.6. Use with

fprintf, fopen, fclose

3-119

OPTIMIZING C86 USER'S MANUAL printer functions
3.88. 2-100 PC printer functions (Z-100 PC ONLY!)

prt_busy, prt_err, prt putc, prt_rst, prt scr, prt stat

3.88.1. Synopsis

int pzq~busy(printez)
int printer; /* 0,1,2 */

int prt_err(printer)

int printer; /* 0,1,2 */

int prt_putc(printer,character) ,

int printer; /* 0,1,2 */

char character; /* the character to print */

int prt_rst(printer)
int printer; /* 0,1,2 */

prt_scr()

int pzp_stat(pzinter)
int printer;

3.88.2. Function

prt_busy checks the printer status to see if it is busy. Returns
1 if it is busy, 0 if it is not.

prt err checks the printer status to see if device is off-1line,
timed out, paper out or i/o error has occurred. The parameter
"printer" can be either 0, 1, or 2. Returns 1 if an error has
occured, 0 if it has not.

prt_putc attempts to print a character to the printer. Vvalid
printers are 0 through 2. Returns the printer status byte as
described in the notes.

prt_rst initializes the printer port and returns the printer
status byte.

prt_scr prints the screen to the printer on the 2-100 PC.

prt_stat will return the current status of the printer (see
notes) .

3-120

UPTIMIZING C86 USER'S MANUAL printer functions

3.88.3. Notes

The printer status byte is organized as follows:

Bit Mask Meaning
0 0x01 Timeout Occurred
1 0x02 [Unused]
2 0x04 [Unused]
3 0x08 1/0 error
4 0x10 selected
5 0x20 out of paper
6 0x40 acknowledge
7 0x80 busy

3.88.4. Example

* This example displays the status of the printer

{

int stat; /* display status of the printer */
int printer;

printer = 0;
stat = prt_stat(printer);

printf("\nPrinter status:\n");

printf ("Timeout: $d\n", (stat & 0x01) != 0);
printf("1/0 Error: $d\n", (stat & 0x08) != 0);
printf("Selected: $d\n", (stat & 0x10) != 0);
printf("Out of paper: %d\n", (stat & 0x20) != 0);
printf ("Acknowledge: 3d\n", (stat & 0x40) != 0);
. printf ("Busy: 8d\n", (stat & 0x80) != 0);
J
* To print from stdin to the printer until EOF. This is a simple

example and does not check for paper out, timeout, etc.

int ch;
int printer;

printer = 0;
prt_rst(printer);
whi%e((ch=getchar())!=EOF)

if (prt_err(printer))

abort ("printer error: status = x\n",prt_stat(printer));
while (prt busy (printer)) printf ("printer busy\n");
if(ch == T\n') prt_putc(printer,'\r');
?rt_putc(printer,ch);

3.88.5. Operating System
MS DOS 3.0, MS DOS 2.0+, MS DOS 1.1+

3-121

OPTIMIZING C86 USER'S MANUAL ptrtoabs

3.89. ptrtoabs, Convert a pointer to an absolute address.
3.89.1. Synopsis

long ptrtoabs(address)
char *address;

3.89.2. Function
Convert a long pointer to an absolute 20 bit memory address.
3.89.3. Returns

The absolute value corresponding to the supplied BIG MEMORY MODEL
POINTER. "

3.89.4. Notes

This function is supplied for use with big memory model pointers
ONLY. It can be used to compare pointers that may be in
different segment spaces.

If you must compare pointers that could be in different segments
in the big model you must use this function. Comparison of two
pointers in the big model without using this function will assume
that the segments are the same for the two pointers. WARNING:
This function is non-portable and should not be used if at all
possible. Also, The definition of how pointer difference works
in 86 may change in future releases.

A machine pointer consists of two words, an offset followed by a
segment value. This function calculates the absolute value by
the formula:-

abs_val = segment * 16 + offset;
3.89.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.89.6. See also

abstoptr

3-122

OPTIMIZING C86 USER'S MANUAL

3.90. putc, Output a character to a stream,
3.90.1. Synopsis
#include "stdio.h"

int putc(cc,stream)

putc

char cc; /* the character to write */
FILE *stream; /* where to write it */

3.90.2. Function

Outputs the character to the stream., Conversion of newlines will
take place if the file was opened in ASCII mode.

3.90.3. Returns
The character cc.

3.90.4. Notes

This is defined with a macro in stdio.h, so that "stdio.h™ must

be included in your source program. The
actually used to output the data.

3.90.5. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.90.6. Use with

putchar, getchar, fopen, fclose, fputc, fgetc

3-123

function fpute

is

OPTIMIZING C86 USER'S MANUAL putchar

3.91. putchar, Output a character to stdout.
3.91.1. Synopsis
#include "stdio.h"

int putchar(c)
char c¢;

3.91.2. Function

Outputs the character to stdout. This file is nommally assigned
to the console.

3.91.3. Notes

Defined in stdio.h to be equivalent to fputc(c,stdout);
3.91.4. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.91.5. Use with

putc, getc, getchar, fopen, fclose

3-124

OPTIMIZING C86 USER'S MANUAL puts

3.92. puts, Output a string to a stdout.
3.92.1. Synopsis

int puts(string)
char *string; /* the data to write */

3.92.2., Function

Writes the null terminated string, and then a newline to the
standard output stream, stdout.

3.92.3. Returns
Zero if no error detected, otherwise -1.
3.92.4. Notes

Puts appends a newline, fputs does not. That's what UNIX does
too.

3.92.5. See also

fopen, gets, putc, printf, ferror, fputs
3.92.6. Example

#include "stdio.h"

{

extern int puts(); /* write a string to a stdout */
char *string;
int res;

string = "This is a string of characters";

printf("\ncalling puts\n");
res = puts(string);

/* writes the string and then a '\n' to stdout */
/* res contains -1 if error detected *x/

}

3.92.7. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-125

OPTIMIZING C86 USER'S MANUAL putw

3.93. putw, Output a word to a stream.
3.93.1. Synopsis

int putw(w,stream)

int w;

FILE *stream;

3.93.2. Function

Writes the word "w" to the specified stream. If the file is
open in ASCII mode, newline translation will be performed on each
of the two characters in the word. The least significant byte of
the word is written first.

3.93.3. Returns

The word itself, or -1 if an error was detected.

3.93.4. Example

tinclude "stdio.h"

{
extern int putw();
int w;
FILE *stream;
int result;
w = 'ab';
stream = stderr;
result = putw(w,stream);
/* this will write 'ab' to stream */
/* result contains -1 if error detected */
}
3.93.5. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.93.6. Use with

getw, putc, fopen, fclose

3-126

OPTIMIZING C86 USER'S MANUAL gsort

3.94. gsort, Sort an array of records in memory
3.94.1. Synopsis

gsort(array,nunber,width,amnpf)

char *array; /* address of array of data to be sorted */
unsigned number; /* number of entries in the array */
unsigned width; /* width of an entry in bytes */

int (*ampf) (); /* comparison function */

3.94.2. Function

Sorts an array containing "number" entries each of width "width"
bytes using Hoare's Quicksort algorithm.

The camparison function is called with two pointers to entries in
the array. It must compare the two entries and return the
following values:-

-1 first<second
0 first==second
+1 first>second

3.94.3. Returns
Nothing
3.94.4. Notes

This routine will abort if it runs out of working space., Working
space may be adjusted by a recompilation.

3.94.5. Example

Read a series of lines from stdin, sort into ascending sequence,
and output to stdout.

This program can be used to sort an ascii file into ascending
sequence. It reads it's input from stdin, and outputs to stdout.

3.94.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-127

OPTIMIZING C86 USER'S MANUAL gsort

/* sort lines fram stdin into ascending sequence

*/
#include "stdio.h"

4define MAXLINES 1000
unsigned char *1line[MAXL INES];

extern unsigned char *alloc();

comp(a,b) /* compare two for the sort */
unsigned char **a,**b;

return strcmp(*a,*b);

}

main()

{
int j,k;
unsigned char buffer[132];
for(j=0; J<MAXLINES; ++3) {
if(!fgets(buffer,130,stdin))break; /* all input */
line[j]l=alloc(strlen(buffer)+l);
strcpy(line[]j] ,buffer);

gsort(line,j,sizeof(unsigned char *) ,comp);
for(k=0;k<j;++k) print£("$s" ,line[k}};

3.94.7. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-128

OPTIMIZING C86 USER'S MANUAL read

3.95. read, Read characters fram a file.
3.95.1. Synopsis

int read(fd,buffer,count)
unsigned int fd;

char *buffer;

unsigned int count;

3.95.2. Punction

Read up to count characters from the file specified by the file
descriptor fd. If the file is open in ASCII mode, newline and
end of file processing will be performed.

3.95.3. Returns

This function returns the number of characters placed in the
buffer. This will be the equal to count unless an end of file is
detected, in which case a short record may be returned.

A returned value of zero indicates end of file, a minus one that
indicates an error was detected.

This function stops reading at an end of line in an ASCIT file.
3.95.4. Notes

This is the main input procedure for the DOSALL library. all
other input procedures call read for their data.

3-129

OPTIMIZING C86 USER'S MANUAL read

3.95.5. Example
{

extern int read();
extern int open();
extern int close();
extern char *alloc();
extern int free();
unsigned int fd;

char *buffer;

unsigned int bytecount;
int num read, ig

bytecount = 255;

fd = open("a:filename.dat" ,AREAD);
1f(£fd<0) { fputs("file not opened" ,stdout); return; }

buffer = alloc(bytecount+l);
for(i=0;i<bytecount;i++) * (buffer+i)='\0"';

nun_read = read(fd ,buffer,bytecount) ;
/* num read contains:
{f -1 error
if 0 EOF
if >0 number of characters put in buffer */
close(fd);
free(buffer);
return;
}
3.95.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.95.7. Use with

write, open, creat

3-130

OPTIMIZING C86 USER'S MANUAL realloc

3.96. realloc, Change size of a heap area.

3.96.1. Synopsis

char *realloc(oldp,size)
char *oldp; /* the address of the o0ld region */
unsigned size; /* the required size */

3.96.2. Function

Increases or decreases the size of a block of memory in the heap
to "size" bytes, preserving the content of the beginning of the
block.

The new block may be at a different address from the original
block. The content of the block is preserved up to the size of
the smaller of the sizes of the new or old blocks.

As a non-standard extension, if the address of the old region is
zero, this function is equivalent to the function malloc().

3.96.3. Returns

The address of the new block, or zero if no block of the required
size could be allocated. If zero is returned, the original data
has been destroyed.

3.96.4. Example
{

extern char *realloc();
extern char *alloc();
extern int free();

char *ptr;

unsigned size;

size = 100;

ptr = alloc(size);

strcpy(ptr,"this is initial data.");
size = 200;

ptr = realloc(ptr,size);

strcat{ptr,"this is added later");
printf("\n¥s\n",ptr);
/* more space gets allocated for ptr
without disturbing the present contents. */
free(ptr); /* release memory */
}
3.96.5. See also
alloc, calloc, malloc, sbrk, free, coreleft

3.96.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3-131

OPTIMIZING C86 USER'S MANUAL rename

3.97. rename, Change the name of a file.
3.97.1. Symopsis

int rename(from,to)
char *from,*to;

3.97.2. Function
Change the name of a disk file from "from" to "to".
3.97.3. Returns

- zero if the rename was successful
- A negative number if an error was detected.

3.97.4. Notes

This function uses the operating system rename function. Both
file names should specify the same disk drive, and neither should
include asterisks or question marks.

The file must not be open when this function is called.

If executed under DOS 2.0+, both names may contain identical path
information.

3.97.5. Example
{

extern int rename();
char *present, *newname;
int ret code;

present = "a:oldfile.ext";
newname = "a:newfile.new";
ret_code = rename(present,newname) ;
/* ret_code contains zero if successful */
/* DO NOT USE '2's IN EITHER NAME */
printf(™\n%s %s renamed to %s\n",present,
ret code==0 ? "was" : "was not",newname);
return;

}
3.97.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-132

OPTIMIZING C86 USER'S MANUAL rewind

3.98. rewind, position to the beginning of an open file

3.98.1. Synopsis

long rewind{stream)
FILE *stream;

3.98.2. Function

Attempt to position the file pointer associated with the stream
to the beginning of the file.

3.98.3. Returns

OL if successful and a negative number otherwise.
3.98.4. Notes

This is equivalent to fseek(stream,0L,0);

3.98.5. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.98.6. See also

fseek

3-133

OPTIMIZING C86 USER'S MANUAL rindex

3.99. rindex, Reverse index search
3.99.1. Synopsis

char *rindex(string,cc)
char *string; /* the string to search */
char cc; /* the character to find */

3.99.2. Function
Find the last occurrence of the character cc in the string.
3.99.3. Returns

Zero if the character was not found, else a pointer to the
character in the string.

3.99.4. Notes

The function strrchr() is the same as this function. You should
use the strrchr() function to be more UNIX v5.0 compatible.

3.99.5. Example

{
extern char *rindex();
char *string;
char ch;
char *result;

string = "this is a string of data";
ch="'t";

result = rindex(string,ch);
/* result contains 0 if not found */
/* in this case result points to the 't'
in data near the end of the string */

result = rindex("1234567890",'a");
/* in this case result contains 0 */
return;

}

3.99.6. Operating System

pDOS 3.0, DOS 2.0+, DOS 1.1+

3.99.7. See also

string functions, index

3-134-

OPTIMIZING CB6 USER'S MANUAL rmdir

3.100. mdir, Remove a specified directory.
3.100.1. Synopsis

int rmdir(pathname)
char *pathname;

3.100.2. Function

Calls the operating system to remove (delete) the specified
directory. The path name must be reachable from the current
working directory, and the directory must be empty. The path
name is operating system dependent. You should refer to your
operating system documentation for more information.

3.100.3. Returns

EOF if an error is detected, otherwise zero.

3.100.4. Notes

This function is only available for DOS V2.0+.

3.100.5. Operating System

Dos 3.0, DOS 2.0+

3.100.6. Use with

chdir, mkdir

3-135

OPTIMIZING C86 USER'S MANUAL sbrk

3.101. sbrk, Request memory at string break.
3.101.1. Synopsis

char *sbrk(size)
unsigned int size;

3.101.2. Function
Return the address of a region of length "size" bytes.
3.101.3. Returns

The address of a region of the required length, or zero if none
is available.

3.101.4. Notes

This function knows about the way memory is allocated by the
linker. It uses a magic cell to maintain the address of the next
free block of memory, and checks that allocating this region will
not overwrite the machine stack.

It also knows about another word that specifies the minimum
amount of memory that must exist between the string break and the
bottom of the machine stack.

pon't fiddle in this routine.

The function malloc calls sbrk when there is not enough memory in
the free list.

The max imum amount of memory that can be allocated by a single
call is about OxffeB bytes.

WARNING: If you get memory with the sbrk() function you cannot
free() or realloc() it.

3-136

OPTIMIZING C86 USER'S MANUAL sbrk

3.101.5. Example
{

extern char *sbrk();
extern int fputs();
unsigned int size;
char *ptr;

size = 100; ptr = sbrk(size);
if{ptr == 0)
{

fputs("No space available at string break\n",stdout);
return;

}

/* ptr points to an area 100 bytes long if it was available,
otherwise, ptr contains 0 */

strcpy(ptr,"SBRK: sample data");
strcat(ptr," can be added\n");

fputs(ptr,stdout);
}

3.101.6. ‘Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.101.7. See also

malloc, calloc, realloc, alloc, free

3-137

OPTIMIZING C86 USER'S MANUAL scanf

3.102. scanf, Scan fields fram stdin
3.102.1. Synopsis

int scanf(format,args)
char *format; /* the input conversion control */
samething *args; /* pointers for result locations */

3.102.2. Function

Reads input from stdin and converts under control of a format
string.

3.102.3. Returns

The number of arguments successfully matched and stored. EOF is
returned at EOF or if an error is detected.

3.102.4. Notes

This function should not be used when dealing with human inputs.
You should use the fgets or gets function to enter a human input
line to a buffer and then format the buffer using sscanf. This
function and fscanf should be used for machine formatted inputs
that have a definite form and when a high degree of error
checking is not needed. Error recovery from sscanf is much
easier than scanf's.

Scanf should not be used along with the function getchar (and
it's related functions). The input stream stdin could get very
confused if you mix scanf and other input functions.
Scanf returns the number of arguments matched and stored. As an
example, the format control string "$d/%d/%d" would return 5 on a
successful scan of the input. It would match the two literal
slashes ('/') and the three integers.
This is equivalent to the call:-

fscanf(stdin,format,args);

See fscanf for details of the format control string.

See sscanf for other information on this use of this function.

3-138

OPTIMIZING CB86 USER'S MANUAL scanf

3.102.5. Example

{
extern int scanf();
int num cvt, i, num[3];
fputs("\nSCANF :\nType three integer values ",stdout);
/* the addresses must be provided for arguments */
num_cvt = scanf("$d %d %4d",&num{0],&num(l],&num{2]);
for(i=0;i<num cvt;i++)
printf("\n3d*$d=%d\n",
num(ij ,num(i] ,num(i] *num[i]);
/* calling scanf(format,args) is equivalent to calling
) fscanf(stdin,format,args) . See fscanf for details, */

3.102.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1l.l+
3.102.7. See also

fscanf, sscanf

3-139

OPTIMIZING C86 USER'S MANUAL segread

3.103. segread, Read the segment registers.
3.103.1. Synopsis

int segread(rv)
struct (int scs,sss,sds,ses;} *rv; /* reg save area pointer */

3.103.2. Function

Reads the segment registers of the CALLING function and places
the values into the four words of the structure. For use with
the small model only.

3.103.3. Returns
Nothing.
3.103.4. Notes

This handy function is designed to provide information needed by
various machine dependent functions. The definition is set up so
that no changes are needed to use it with the big model.

when we converted our library code to run under the big model, we
eliminated the use of this function in almost every case. If you
are compiling under the big model, and you are still using
segread, then please examine your code carefully. It is almost
guaranteed to be wrong.

In the big model the data segment is included in the body of the
pointer. To get the segment in the big model you need to use the
following construct:-

unsigned int seg,off; /* big model */
char *p;

seg = ((unsigned long)p)>>16;
offset = p;

3-140

OPTIMIZING C86 USER'S MANUAL segread

3.103.5. EBxample
{

extern int segread();

struct { int scs, sss, sds, ses; } rrv;
unsigned int code_segment, data_segment,
stack segment, extra segment;

segread(&rrv);
/* reads the segment registers of the calling function */

code_segment = rrv.scs;
stack segment = rrv.sss;
data_segment = rrv.sds;
extra segment = rrv.ses;

printf("\n8086 SEGMENT REGISTERS:\n");
printf("\nCS: %4x\nDS: %4x\nSS: %4x\nES: %4x\n",

code segment, data_segment,
stack segment, extra_segment);

}

3.103.6. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.103.7. See also

sysint, movblock, peek, poke

3-141

OPTIMIZING C86 USER'S MANUAL setjmp

3.104. setjmp, Save the enviromment for longjmp.
3.104.1. Synopsis
#include "stdio.h" /* to define jmp buf */

int setjmp(envp)
jmp_buf *envp; /* where to save the enviromment */

3.104.2. Function

Saves the current environment in the memory area pointed to by
the envp for subsequent use by longjmp() .

3.104.3. Returns

This function returns zero itself, but if longjmp is executed it
appears to return the value passed to longjmp.

3.104.4. Notes
This is a very dangerous function. You have been warned.
The typedef of jmp buf occurs in stdio.h.

The purpose of setjmp and longjmp is to allow you to terminate a
block of code, and return to a previous point in your code with
an error value. It enables you to avoid long sequences of error
returns, and to "fail" up a series of functions.

when called this function saves various machine status values in
the enviromment buffer and returns zero.

After calling setjmp, you can call longjmp later in the same
function, or in functions called by the same function. After
exiting the function that called setjmp, you may no longer use
the enviromment in longjmp.

Note that variables in the function that calls setjmp are not
restored to their values at the time setjmp was called but will
have the values in them at the time longjmp was called.

Test these functions so that you understand them before depending
on them,

See the following example.

3-142

OPTIMIZING C86 USER'S MANUAL setjmp

3.104.5. Example
#include "stdio.h"
jmp _buf enviromment;
main()

int error_code;

error_codessetjmp(enviromment);
if(error_code!=0){ /* must be a restore via longjmp */
.o /* do error thing */

}

another_ function();

}

another_function()

/* have detected an error so get out */
longjmp(enviroment,error_value); /*restore environment */
/* longjmp never returns, so can't get here */

3.104.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.104.7. Use with

longjmp

3-143

OPTIMIZING C86 USER'S MANUAL setmem

3.105. setmem, Set memory to a byte value.
3.105.1. Synopsis

int setmem(address,count,value)
char *address;

unsigned int count;

char value;

3.105.2. Function

Set bytes of memory in the range address through (address+count-

1) to the value "value". This function is frequently used to
zero blocks of memory.

3.105.3. Returns
Nothing.
3.105.4. Example
{

extern int setmem(); /* set block of memory to a value */
extern char *alloc();

extern int free();

char *address;

unsigned int count;

char value;

count = 255;
address = alloc(count);
value = '"\0°';
setmem(address,count,value) ;
/* use address */
free(address);

}

3.105.5. Operating System

poS 3.0, DOS 2.0+, DOS 1.1+

3-144

OPTIMIZING C86 USER'S MANUAL sprintf

3.106. sprintf, Print to a string in memory
3.106.1. Synopsis

int sprintf(string,format,args)

char *string; /* where to put results */
char *fommat; /* the format control string */
something args; /* optional data to be converted */

3.106.2. Function

Using the arguments (if any) under control of the format string,
create a string in memory containing the converted data.

3.106.3. Returns
Nothing.
3.106.4. Noteg

The conversions are as described under the function fprintf, The
output of the conversion is placed in the "string", which is
terminated by a NULL('\0").

The area of memory reserved for the string must be long enough
for the result, as no checks are performed.

3.106.5. Example
{

extern int sprintf();
extern char *calloc();
extern int free();
extern int fputs();
char *destination;

destination = calloc(255,1);
sprintf(destination,
"$4d %44 344",
45, 123, 50);
/* the string destination will contain
the same data as a file would if
fprintf were called. */

fputs(destination,stdout);
free(destination);

}

3.106.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.106.7. See also
fprintf, sscanf, fscanf

3-145

OPTIMIZING C86 USER'S MANUAL sqrt

3.107. sqrt, Square root.

3.107.1. Synopsis

double sqgrt(val)
double val;

3.107.2. Function

Returns the square root of the number val.

3.107.3. Notes

Returns zero if val is negative.

3.107.4. Example

{

}

extern double sqrt();
double dval;
double rval;

dval = 45,00;

rval = sqgrt(dval);

/* rval contains the square root of 45.00 */
printf(“The square root of %g = %g\n",dval,rval);

dval = -10.0;

rval = sgrt(dval);

/* rval contains 0 because dval is < 0 */
return;

3.107.5. Operating System

Dos 3.0, DOS 2.0+, DOS 1.1+

OPTIMIZING C86 USER'S MANUAL sscanf

3.108. sscanf, Scan fields fram a string.
3.108.1. Synopsis

int sscanf(string,fomat,args)

char *string; /* String contains the input data */
char *format; /* the input conversion control */
something *args; /* pointers for result locations */

3.108.2, Function

Reads input from the ASCII string and converts under control of a
format string.

3.108.3. Returns

The number of arguments successfully matched and stored. You
cannot read past the end of the input data string.

3.108.4. Notes
This is similar to the call:-
fscanf(stream,format,args);

except that data is read from a string in memory instead of an
input file.

This function may be used to re-scan input data using more than
one format.

See fscanf for details of the format control string.,

See scanf for other important information on this function.

3-147

OPTIMIZING C86 USER'S MANUAL sscanf

3.108.5. Example
#include "stdio.h"

{
extern int sscanf();
extern char *calloc();
extern int free();
extern FILE *fopen();
extern int fclose();
extern char *fgets();
char *buffer;
char *bufstart;
FILE *input;
char *s{12];
int i, 3;

fputs("\nSSCANF :\nType in strings separated by spaces\n"
,stdout);

input = fopen("CON:","r");

buffer = calloc(255,1});
for(i=0;i<10;++i) s[i] = calloc(100,1);
fgets{buffer,255,input);

bufstart = buffer;
for(i=0;i<10;++1)

if(sscanf(buffer,"$s",s[i))<1l) break;
if(strlen(buffer) > strlen(s{i])+1)

buffer += (strlen(s[i])+1);
else break;

}

for(j=0;j<=1;++3)
printf("™\ts[%d) = 3s\n",j,s(3]);
for(i=0;i<10;++1i) free(s(i]);
free(bufstart);
fclose(input);
return;
}
3.108.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1l.l+
3.108.7. See also

fscanf, scanf, sprintf, fprintf

3-148

OPTIMIZING C86 USER'S MANUAL string functions

3.109. String functions
strcat, strchr, strcmp, strcpy, strlen, strncat,
strncpy, strpbrk, strrchr

3.109.1. Synopsis

char *strcat(stringl,string2)
char *stringl,*string2;

unsigned char *strchr(s,c)
unsigned char *s,c;

int stramp(stringl,string?)
char *stringl,*string2;

char *strcpy(to,from)
char *to,*from;

unsigned strlen(string)
char *string;

char *strncat(stringl,string2,max)
char *stringl,*string2;
unsigned max;

int strncmp(stringl,string2,n)
char *stringl,*string2;
unsigned n;

char *strncpy(to,from,n)
char *to,*from;
unsigned n;

unsigned char *strpbrk(sl,s2)
unsigned char *s1,*s2;

unsigned char *strrchr(s,c)
unsigned char *s,c;

3.109.2. Function

strncmp,

strcat appends a copy of string2 to the end of stringl. It also

returns a pointer to the first character of stringl.

strchr finds the first occurrence of the character ¢ in s and
returns a pointer to it. strrchr finds the last occurrence of
the character ¢ in s and returns a pointer to it. Both functions

will return a NULL if the character is not found.

3-149

OPTIMIZING C86 USER'S MANUAL string functions

strcmp compares the two strings, character by character, and
returns an indication of which string is lower in the ASCII
collating sequence. The following shows the result of strcmp:-

- Minus one if stringl is less than string2
- Zero if stringl is equal to string2
- Plus one if stringl is greater than string2

strcpy makes a copy of the string at the address "from" in the
buffer at address "to" and returns a pointer to the destination
string.

strlen returns the length of the string. In C, character strings
are terminated by the first byte with a value of binary zero.

strncat appends a copy of string2, or the first "max" characters
of string2 (whichever is the smaller), to the end of stringl. It
also returns a pointer to the destination string.

strnamp compares the two strings, character by character, and
returns an indication of which string is lower in the ASCII
collating sequence. The comparison stops after n characters have
been compared, or the end of a string has been detected. The
returns of strncmp are the same as the returns of strcmp (see
above) .

strncpy makes a copy of the string at address "from" in the
buffer at address "to". Copy at most "n" characters. If the
input string is less than "n" characters in length, pad the
remainder of the destination field with binary zeros. 1If the
source contains "n" or more characters, the string "to" WILL NOT
BE TERMINATED BY AN END OF STRING CHARACTER. This function
returns the address of the destination string.

strpbrk returns a pointer to the first occurrence in string sl of
any character from string s2, or NULL if no character from s2
exists in sl.

3.109.3. Notes

WARNING: In the copy (strncpy and strcpy) and append (strcat and
strncat) functions it is the user's responsibility to ensure that
there is enough memory to hold the result. This routine cannot
per form such checks.

THE DEFINITION OF STRNCPY WAS INCORRECT UNDER OUR RELEASE V1.33.
The current definition conforms to UNIX conventions.

The functions strchr and strrchr are the UNIX names for C86's

index and rindex. You should use these functions because they
are more portable to UNIX systems.

3-150

OPTIMIZING C86 USER'S MANUAL string functions

3.109.4. Example

/* STRCAT example */

{
extern char *strcat();
extern char *calloc();
extern int free(), fputs();
char *sl, *s2, *s3, *outstr;

outstr = calloc(255,1);

sl = "string #1 “;
s2 = "string #2 ™;
s3 = "string #3 ";

strcpy(outstr,"outstring: ");
strcat(outstr,sl);
strcat(outstr,s2);
strcat(outstr,s3);
fputs(outstr,stdout);

free(outstr);

/* STRCMP example */

{

extern int stremp();
char *stringl, *string2;
int result;

stringl "this";

string2 "the";

result = stramp(stringl,string2);
/* result contains +1 */

result = strcmp("sample","sample string");
/* result contains -1 */

result = stramp("a","z");
/* result contains -1 */

result = stremp(stringl,"this");
/* result contains 0 */

result = stromp("a","at last");
/* result contains -1 */

3-151

OPTIMIZING C86 USER'S MANUAL string functions

/% STRCPY example */
#define BLOCK 255
{

extern char *strcpy();

extern char *calloc(), *fgets(};
extern int free(), fputs(};

char *srce, *dest;

srce = calloc(BLOCK,1);
dest = calloc(BLOCK,sizeof(char));

fgets(srce,BLOCK,stdin);
strcpy(dest,srce);
fputs(dest,stdout);

free(srce);
free(dest);

/* STRLEN example */

{
extern int strlen(); /* returns length of string */
unsigned length;
char *string;

string = "123456789";
length = strlen(string); /* length is 9 */

length = strlen("a:filename.ext"); /* length is 14 */

*string = '\0';
length = strlen(string); /* length is 0 */

3-152

OPTIMIZING C86 USER'S MANUAL string functions

/* STRNCAT example */
{

extern char *strncat();
extern char *alloc();
extern int free();

char *sl, *s2, *s3, *dest;

dest = alloc(255);
*dest = EOS;

sl = "number 1 ™;
s2 = "number 2 ";
s3 = "number 3 ";

strcpy(dest,"dest: ");
strncat(dest,sl,3); /* dest is: "dest: num" */

strncat(dest,s2,5); /* dest is: "dest: numnumbe" */

strncat(dest,s3,255); /* dest: "dest: numnumbenumber 3 " */

free(dest);

/* STRNCMP example */
{

extern int strnomp(); /* compare strings up to a point */
char *sl , *s2; int result;

sl = "this is sample data";
s2 = “this is not real data";

result = strncmp(sl,s2,255);
/* result is +1 because 's' > 'n' */

result = strncemp(sl,s?2,6);
/* result is 0 because strings are the same for the first
6 characters, */

result = strnamp("first","second",3);
/* result is -1 because 'f' < 's' */

result = strncmp(sl,"this",4); /* result is 0 */
result = strnamp("book","ballast",1);

/* result is 0 because only the first character from each
. . y
string is campared */

3-153

OPTIMIZING C86 USER'S MANUAL string functions

/* STRNCPY example */

{

}

extern char *strncpy();
char *calloc(), *srce, *dest;

srce = calloc(255,1); dest = calloc(255,1);

stroncpy(srce,"this is sample data.",5);
/* srce contains "this " */

strncpy(dest,"also, on the hill were three",100);
/* dest contains the entire string */

strncpy(dest,srce,2); /* dest contains "th" */

strncpy(dest,"versions of the code were",10);
/* dest contains "versions o" */

3.109.5. See also

sprintf, sscanf

3.109.6. Operating System

pos 3.0, DOS 2.0+, DOS 1.1+

3-154

OPTIMIZING C86 USER'S MANUAL sysint

3.110. sysint, Execute an INT instruction.
3.110.1. Synopsis
struct regval { int ax,bx,cx,dx,si,di,ds,es; };

int sysint(vec,sreg,rreg)

unsigned char vec; /* interrupt to execute */
struct regval *sreg; /* registers before int */
struct regval *rreg; /* registers after int */

3.110.2. Function

Execute an INT instruction after setting registers to the values
in the structure pointed to by sreg. The values in the registers
after the instruction are placed into the struct pointed to by
rreg before returning.

3.110.3. ReEu_tns
The value of the 8086 flag register after completion of the

interrupt. The values used to test the returned status bits
are:-

0x001 Carry flag.

0x002 not used.

0x004 Parity flag.

0x008 not used.

0x010 Auxiliary Carry flag.
0x020 not used.

0x040 Zero flag.

0x080 Sign flag.

0x100 Trap flag.

0x200 Interrupt Enable flag.
0x400 Direction flag.

0x800 Overflow flaqg.

3.110.4. Notes
Registers cs, ss, and bp cannot be set up using this function.,

The structures for input and output may overlap, or be the same
structure if desired.

This function can be used to request operating system actions
that cannot be requested via the bdos call,

3-155

OPTIMIZING C86 USER'S MANUAL

3.116.5. Example

The following is a function to get the system date and
using sysint.

/*
getdate: get system date and time
DOS l.xx and 2.xx

*/

getdate(date)

int date(4];
struct regval { int ax,bx,cx,dx,si,di,ds,es; } srv;

srv.ax = 0x2a00;
sysint(0x21,&sSrv,&scv);
date{0] = srv.cx;
date[l] = srv.dx;

srv.ax = 0x2c00;

sysint(0x21l,&srv,&srv);

date[2] = srv.cx;
date([3] = srv.dx;
}

/%
print out the current date and time
*/

main()

int date(4];
int year,month,day,hour ,minutes,seconds,hundredths;

getdate(date);

year = date([0];

month = date{l] >> 8;

day = date[l] & Oxff;

hour = date(2] >> §;

minutes = date{2] & Oxff;
seconds = date[3] >> 8;
hundredths = date(3] & Oxff;

printf("date: %2d/%02d/%4d $2d:3%02d:%02d.%02d\n",

time

month,day,year ,hour ,minutes,seconds,,hundredths) ;

}
3.110.6. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+

3.110.7. See also
sysint2l, bdos, segread

3-156

sysint

OPTIMIZING C86 USER'S MANUAL sysint2l

3.111. sysint2l, Execute an INT 21H instruction.

3.111.1. Synopsis

struct regval { int ax,bx,cx,dx,si,di,ds,es; };

int sysint2l(sreq,rreg)

struct regval *sreg; /* registers before int */
struct regval *rreg; /* registers after int */
3.111.2, Function

Execute an INT 21H instruction after setting registers to the
values in the structure pointed to by sreg. The values in the
registers after the instruction are placed into the struct
pointed to by rreg before returning.

3.111.3. Returns

The value of the 8086 flag register after completion of the

interrupt. The values used to test the returned status bits
are:-

0x001 Carry flag.

0x002 not used.

0x004 Parity flag.

0x008 not used.

0x010 Auxiliary Carry flag.
0x020 not used.

0x040 Zero flag.

0x080 Sign flag.

0x100 Trap flag.

0x200 Interrupt Enable flag.
0x400 Direction flag.

0x800 Overflow flag.

3.111.4. Notes
Registers cs, ss, and bp cannot be set up using this function.

The structures for input and output may overlap, or be the same
structure if desired,

This function can be used to request operating system actions
that cannot be requested via the bdos call.

This function is somewhat more efficient for the major calls to
the DOS operating system.

3-157

OPT IMIZING C86 USER'S MANUAL

3.111.5. Example

sysint2l

The following is a function to get the system date and time

using sysint2l.

/*
getdate: get system date and time

DOS l.xx and 2.xx
*/
getdate(date)
int date{4];

struct regval { int ax,bx,cx,dx,si,di,ds,es; } srv;

srv.ax = 0x2a00;
sysint2l (&srv,&srv);
date[0] = srv.cx;
date[l] srv.dx;

srv.ax = 0x2c00;
sysint2l (&srv,&srv);
date(2] = srv.cx;
date[3] = srv.dx;

}
/*

print out the current date and time
*/
main()

int date{4];
int year,month,day,hour,minutes,seconds,hundradths;

getdate(date);

year = date([0];

month = date[l] >> 8;

day = date{l] & Oxff;

hour = date{2] >> 8;

minutes = date[2] & Oxff;
seconds = date[3] >> 8;
hundredths = date[3] & Oxff;

printf("date: %23/%302d/%4d %2d:%0234:3%02d.%024\n",

month,day,year,hour ,minutes,seconds,hundredths);

}
3.111.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+

3.111.7. See also
sysint, bdos, segread

3-158

OPTIMIZING C86 USER'S MANUAL system

3.112. system, Execute a program.
3.112.1. Synopsis

int system(string)
char *string;

3.112.2. Function

The string consists of the name of a program, followed by its
camand line arguments, exactly as it could have been entered at
the keyboard to execute the program. This function uses loadexec

to load a copy of command.com, and passes the string to
cammand .caom,

3.112.3. Returns

The error code returned by loadexec if command.com could not be
loaded, otherwise zero. Note that the termination status of the
requested program is NOT available.

3.112.4. Notes

The full device and pathname for command.Com must be given by an
entry in the environment, with "COMSPEC=". This may be checked
by using the dos camnmand "set" at the command level.

If nothing seems to happen when you call this function, remember
to check the return code of the system call. It might indicate
that command.com was never found and could not be loaded.

If you find that you are running out of memory when using this
function, check and see if you can alter the size of the stack
and heap by lowering the default in _default.c (see _default
function). This may be enough to let you run bigger programs on
your computer from the system call.

The big model heap and stack now leave room in unused memory for
the use of this function. The default in default.c can be
varied to make the configuration of memory you need with both the
big model and the system function.

3-159

OPTIMIZING C86 USER'S MANUAL system

3.112.5. Example

To obtain a directory of C source files:-
system("dir *.c");

To run pass one of the campiler:-
system("ccl prog -b");

3.112.6. Operating System

DOS 3.0, DOS 2.0+

3.112.7. See also

loadexec

3-160

OPTIMIZING CB6 USER'S MANUAL to character conversions

3.113. toascii, tolower, toupper - Convert characters
3.113.1. Synopsis

char toascii(c)
char c;

int tolower(c)
char cj

int toupper(c)
char c;

3.113.2. Function

Toascii returns it's argument with all bits turned off that are
not part of a standard ASCII character (range: 0 - 0x7f). This
is included to be campatible with other operating systems.

Tolower returns the lower case equivalent if the input character
is upper case, else return the input character.

Toupper returns the upper case equivalent if the input character
is lower case, otherwise it returns the input character.

3-161

OPTIMIZING C86 USER'S MANUAL to character conversions

3.113.3. Bxample

* tolower example

{

extern int tolower();
char chl, ch2;

chl = 'C';
ch2 tolower(chl);
/* ch2 contains 'c', as expected */

ch2 = tolower('#');
/* ch2 contains '§' */

chl = 'x';
ch2 = tolower(chl);
/* ch2 contains "x' */

}
* toupper example

{

extern int toupper();
char chl, ch2;

chl = 'c';
ch2 = toupper(chl);
/* ch2 contains 'C', as expected */

ch2 = toupper('#');
/* ch2 contains '#' */

chl = 'X';

ch2 = toupper(chl);

/* ch2 contains 'X' */
}
3.113.4. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-162

OPTIMIZING CB6 USER'S MANUAL

3.114. trigonometric functions

3.114.1. Synopsis

double sin(val)
double val;

double cos(val)
double val;

double tan(val)
double val;

double asin(val)
double val;

double acos(val)
double val;

double atan(val)
double val;

double atan2(x,y)
double x,y;

3.114.2. Function

These functions all take or return radian arguments,

3.114.3. Notes

trigonometric

asin and acos return zero if the argument is greater than 1.0.

tan returns a number
pi/2.

greater than le+300 for arguments close to

sin and cos return zero for arguments greater than le+8.

3-163

OPTIMIZING C86 USER'S MANUAL trigonometric
3.114.4. Example

#define PI 3.1415927;
#define PIHALF 1.5707963

{

extern double sin(), /* sin(x) where x is in radians */
cos(), /* cos(x) where x is in radians */
tan(), /* tan(x) where x is in radians */
asin(), /* arcsin(x) -1 < x < +1 */
acos(), /* arccos(x) =1 < x < +1 */
atan(), /* arctan(x) -1 < x < +1 */
atan2();/* arctan(x/y) to return value in

proper quadrant */

double aval, bval, cval, dval;

double argument;
argument = PI; /* PI radians */
aval = sin(argument); /* aval is 0 */

aval = cos(argument); /* aval is 1 */

bval = tan(argument); /* bval is 0 */

argument = PIHALF; /* 90 degrees */
cval = sin(argument); /* cval is 1 */

cval = cos(argument); /* cval is 0 */

cval = tan(argument);

/* cval > 1e300 (tan 90 degrees is infinite)

*/

dval = sin(1.2); /* dval is 0.9320 */

dval = cos(l1.2); /* dval is 0.36235 */

aval = asin(1.0); /* aval is PIHALF */

aval = acos(1.0); /* aval is 0 */

aval = acos(47.0); /* illegal, aval is 0 */

dval = atan(33.0); /* aval is 1.5405 radians */
: dval = atan2(10.0,3.0); /* dval is arctan(10/3) */
3.114.5. Operating System
DOsS 3.0, DOS 2.0+, DOS 1.1+

3-164

OPTIMIZING C86 USER'S MANUAL unget

3.115. ungetc, Push back an input character.
3.115.1. Synopsis
#include "stdio.h"

int ungetc(c,stream) /* unget to stream */
char c;
FILE *stream;

#include "stdio.h"

int ungetch(c) /* unget to stdin */
char ¢;

3.115.2. Function

Push the character "¢" back into the stream. Only one character
of push back is allowed. This character will be delivered on the
next input function directed at the file. The input function may
be any of the functions defined in this document that use a
stream.

The function ungetch pushes a character back to the stream
"stdin". 1t is defined by a macro in the standard header file.
To use this function you must include the file "stdio.h" as part
of your source program.

3.115.3. Returns

- The character itself.
- Minus one if any error is detected.

3.115.4. Notes
If an fseek, ftell, fwrite or fflush function is performed on the

file, any character that was pushed back onto the stream will be
forgotten.

3-165

OPTIMIZING C86 USER'S MANUAL unget

3.115.5. Example
#include "stdio.h"®
{
extern int ungetc(); /* push a character back on a stream */
extern FILE *fopen();
extern int fclose();
char ch; FILE *stream;
stream = fopen("a:filename.dat","r");

while((ch=fgetc(stream)) !=EOF) if(isspace(ch)) break;

ungetc(ch,stream); ch = fgetc(stream);
/* ch is now the next whitespace character */

fclose(stream) ;

}

3.115.6. Operating System
DOS 3.0, DOS 2.0+, DOS 1.1+
3.115.7. Use with

getc, getchar, fscanf

3-166

OPTIMIZING C86 USER'S MANUAL unlink

3.116. unlink, Erase a disk file.
3.116.1. Synopsis

int unlink(filename)
char *filename;

3.116.2. PFunction

Erase a disk file. The file must not be open when this call is
executed,

3.116.3. Returns

- Zero if the file was successful ly deleted.
- A negative number if any error was detected.

3.116.4. Notes

File names containing question marks will result in all matching
files being deleted in the DOSALL library. In the DOS2 library
unlink will not erase filenames with wildcards (either '*' or
'?') in them.

The DOSALL library supports path names when executing under DOS
2.0+.

3.116.5. Example

{
extern int unlink(); /* delete a disk file */
char *filename;
int result;

filename = "a:delfile.xxx";
result = unlink(filename);

printf("\nFILE: %s %s\n",filename,
result < 0 ? "not deleted" : "deleted");
}
3.116.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-167

OPTIMIZING C86 USER'S MANUAL upper

3.117. upper, Convert a string to upper case.
3.117.1. Synopsis

char *upper(string)
char *string;

3.117.2. Function

Converts all lowercase characters in the string to upper case.
All other characters are unchanged.

3.117.3. Returns

The address of the string.
3.117.4. Operating System
pos 3.0, DOS 2.0+, DOS 1.1+
3.117.5. See also

lower ,tolower, toupper

3-168 "

OPTIMIZING C86 USER'S MANUAL utoa

3.118. utoa, Unsigned integer to ASCII conversion.
3.118.1. Synopsis

int utoa(value,buffer)
unsigned int value;

char *buffer;

3.118.2, Function

The value is converted to an unsigned ASCII digit string and
stored in buffer. Buffer must be at least six bytes in length.

3.118.3. Returns

The count of the number of digits stored in buffer, excluding the
trailing NULL.

3.118.4. Notes
This function uses sprintf to do the conversion

3.118.5. Example
{

extern int utoa();
extern char *alloc();
extern int free();
extern int fputs();
unsigned int val;
char *buffer;

int count;

buffer = alloc(10);
*buffer = EOS;
val = 5689;
count = utoa(val,buffer);
/* count contains 4, the number of characters */
/* buffer is "5689" */
fputs(buffer,stdout);
free(buffer);
}

3.118.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-169

OPTIMIZING C86 USER'S MANUAL wgsort

3.119. wgsort, Sort a set of records in memory.
3.119.1. Synopsis

int wgsort(n,cmpf,xchgf,data)

unsigned n; /* number of records to sort */
int (*aupf) (); /* key comparison function */
int (*xchgf) (); /* record exchange function */
char *data; /* data for cmpf and xchgf */

3.119.2. Function

Uses Hoares quicksort algorithm to perform an in-core sort of n

records. The function calls a user supplied function to compare

keys of two candidates to be compared. The fomm of the call is:-
(*ampf) (x,y,&data);

where x and y are unsigned integers less than n. The function
cnpf must return:-

-1 ifx<y
0 if x ==y
+1 ifx>y

If two records are to be exchanged, gsort performs the call:-
(*xchgf) (x,y,&base);

3.119.3. Returns

Nothing

3.119.4. Notes

This function is provided for users converting code from another
well known C Compiler. 1Its use is not recommended.

Information required by the functions cmpf and xchgf (for example
the base address of the array of data) may be provided by:-

. Bnbedding the infommation within the functions

. Putting the data in a structure and using the address of
the structure as an argument to gsort

. Placing the data as arguments to gsort and accessing them
by using base as a pointer to a structure on the stack.
This method is convenient but will result in NON-PORTABLE
CODE.

3-170

OPTIMIZING C86 USER'S MANUAL wgsort

3.119.5. Example

To sort an array of pointers to names into alphabetical order.
We assume that the names are input and output by other code,

/* sort example
*

char *names[1000]; /* pointers to name strings */
unsigned number; /* number of names in array */
main{)

ces /* read in the names */

wgsort (number ,snameanp,&nameswap ,names) ; /* do the sort */

e /* output the names */

return 0; /* all ok */

/* caompare two names

*/

namecmp(i,j,base)

unsigned 1i,j; /* subscripts to name array */

?har **base; /* pointer to name array */
return strcmp((*base) [i}, (*base) (§]); /* not easy is it */

}

/* exchange two name table entries

*/

nameswap(i,j,base)

unsigned i,j; /* subscripts to name array */
char **base; /* pointer to name array */

{

iswap((*base)+i,(*base)+j); /* do the swap */
3.119.6. Another way

The above is general but not too obvious. The two statements
above could be written:-

return strcmp(names(i],names[j]);
and:-~ iswap(names+i,names+j);

This is far less general, since the variable "names" is embedded
in the code, but is probably quite acceptable for most pur poses.

3.119.7. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3-171

OPTIMIZING C86 USER'S MANUAL write

3.120. write, Write characters to a file.
3.120.1. Synopsis

int write(fd,buffer,count)
unsigned int fd;

char *buffer;

unsigned int count;

3.120.2. Function

Ooutput count characters from buffer to the file specified by the
file descriptor fd. If the file is open in ASCII mode, newline
translation will be perfommed.

3.120.3. Returns

The number of characters written, which will be the same as count
unless an error occurs. Returns minus one if an error is
detected, and no characters were written. If it returns a number
which is less than the count parameter, this is to be considered
an error. The most likely cause is that the disk is full and no
more characters could be written.

3.120.4. Notes

The infamous "WRITE" message is written by this function. It is
an error message that indicates either the file was not open for
output mode or that the file indicator (either a stream pointer
or a file descriptor depending on how the file was opened) was
invalid. Since this function is the basis for most of the output
in the C86 library any of the output functions could result in a
"WRITE" message occuring.

3-172

OPTIMIZING C86 USER'S MANUAL write

3.120.5. Example

{

}

extern int write();
extern int open();
extern int close();
unsigned int f4;
char *buffer;
unsigned int count;
int num_wr;

buffer = "data to be written to file";
count = strlen(buffer);

/* file must exist to be opened , else use creat */
fd = open("a:xxx.xxx",AWRITE);
if(fd < 0) { fputs(“"file not opened" ,stdout); return; }

num wr = write(fd,buffer,count);
/* num_wr contains the actual number written */

printf("\nWRITE:\n%u bytes written to file\n“,num_wr);
close(fd);

3.120.6. Operating System

DOS 3.0, DOS 2.0+, DOS 1.1+

3.120.7. See also

open, close, read

3-173

OPTIMIZING C86 USER'S MANUAL LIBRARY FUNCTIONS

NOTES:

3-174

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A. APPLICATION NOTES

The following pages are directly from our bulletin board. They
are included to help people develop certain applications and
learn certain aspects of C programming. Good luck! The sources
can be downloaded from our user group bulletin board. To join

the user group contact our sales staff.

A.l. PLINK DEMONSTRATION

*raxfile: root.chrew
#include <stdio.h>
main()

{

overlayl();
overlay2();

**uxfile: overlayl.cwex
#include <stdio.h>
overlayl ()

[N

printf(“overlayl\n");

*rkrfile: overlay2.crrw
#include <stdio.h>
overlay2()

{

printf("overlay2\n");

*hkxfile: test.lnkwrwx
output ovlytest.exe
file root
library c86s2s
begin
section file overlayl
section file overlay2
end
class datab,datac,datai,datat,datau,datav,heap,stack

*¥***file: test.batr**x
plink86 @test

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.2. CREATING .COM FILES

A.2.1. New prologue.h

; prologue.h 11/5/83

; standard prologue for c86 assembly code
; DEFINE ARGUMENT BASE RELATIVE FROM BP
IF @BIGMODEL

@AB EQU 6

ELSE

@AB EQU 4

ENDIF

@CODE SEGMENT BYTE PUBLIC 'CODE'

QCODE ENDS

@DATAB SEGMENT PARA PUBLIC ‘DATAB'

@DATAB ENDS

@DATAC SEGMENT BYTE PUBLIC 'DATAC'

@sb label byte

@sw label word

@DATAC ENDS

@DATAI SEGMENT BYTE PUBLIC 'DATAI'

@ib label byte

@iw label word

@DATAI ENDS

@DATAT SEGMENT BYTE PUBLIC 'DATAT'

@DATAT ENDS

@DATAU SEGMENT BYTE PUBLIC 'DATAU'

@ub label byte

Buw label word

@DATAU ENDS

@DATAV SEGMENT BYTE PUBLIC 'DATAV'

@DATAV ENDS

DGROUP GROUP @DATAB,@DATAC,@DATAI,@DATAT,@DATAU,@DATAV

@CODE SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:Q@QCODE, DS :DGROUP

END OF PROLOGUE.h

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.2.2. New Smain.asm

The following file is the modified $main.asm which must be used
to create a cam file:

: title 'c86 basic support package'

this is the starting point for all C programs
modified for dos 2.0

~ we

include model.h

following is copy of prologue.h
this is included so you can vary the assume statement
this will allow *he creation of 8080 and modified big model format

~ w e

: define the following to be true for 8080 (.com) file

@COMFILE EQU 1

IF @COMFILE

IF @BIGMODEL

ABORT-THERE IS NO WAY THIS IS REASONABLE
ENDIF

ENDIF

; DEFINE ARGUMENT BASE RELATIVE FROM BP
IF @BIGMODEL

@aB EQU 6

ELSE

@AB EQU 4

ENDIF

@CODE SEGMENT BYTE PUBLIC 'CODE'
@QCODE ENDS

@DATAB SEGMENT PARA PUBLIC 'DATAB'
@DATAB ENDS

@DATAC SEGMENT BYTE PUBLIC 'DATAC'
@sb label byte

@sw label word

@DATAC ENDS

@DATAI SEGMENT BYTE PUBLIC 'DATAI'
@ib label byte

@iw label word

@DATAI ENDS

@DATAT SEGMENT BYTE PUBLIC 'DATAT'
@DATAT ENDS

@DATAU SEGMENT BYTE PUBLIC 'DATAU'
@Qub label byte

Quw label word

@DATAU ENDS

@DATAV SEGMENT BYTE PUBLIC 'DATAV'
@DATAV ENDS

IF @COMFILE

OPTIMIZING C86 USER'S MANUAL APPENDIX A

DGROUP GROUP @CODE,@DATAB,@DATAC,@DATAT,@DATAT,@DATAU, @DATAV
ELSE

DGROUP GROUP @DATAB,@DATAC,@DATAI,@DATAT,@DATAU,BDATAV

ENDIF

@CODE SEGMENT BYTE PUBLIC 'CODE'

IF @COMFILE
ASSUME CS:DGROUP, DS :DGROUP
ORG 100H

ELSE

ASSUME CS:@CODE,DS :DGROUP
ENDIF

END OF PROLOGUE.h

e

Qcode ends
; add stack and heap segments
@HEAP SEGMENT WORD PUBLIC 'HEAP’

@HEAPBASE LABEL BYTE
@HEAP ENDS

IFE QCOMFILE

@STACK SEGMENT PARA STACK 'STACK'
OW 128 DUP (?)

@STACK ENDS

ENDIF

@DATAB SEGMENT

DW 0 sDATA SEGMENT CAN NOT START AT ZERO
@DATAB ENDS
@DATAC SEGMENT

public _systype,_sysvers,_PSPSEG,_heaptop,_SYSENDP

H the following identifies the base operating system

_systype dw 1 ;0/s type (ms-dos)

_sysvers dw 0 ;0/s version (low byte 0 if < dos 2.00)
SYSENDP DW 0 ;LENGTH OF PROG IN PARAGRAPHS

If @bigmodel

_heaptop oW @UDEND+2 ,seg @udend ;pointer to base of heap
else

_heaptop DW OFFSET DGROUP:QUDEND+2 ;pointer to base of heap
endif

COREMES DB OAH,0DH, 'NO CORES'

_PSPSEG DD 0 ;32 BIT POINTER TO THE PROG SEG PREFIX

@DATAC ENDS

A-4

OPTIMIZING C86 USER'S MANUAL APPENDIX A

@DATAT SEGMENT

@UDBEGIN LABEL BYTE

@DATAT ENDS

@DATAV SEGMENT

@UDEND LABEL BYTE

@DATAV ENDS

@DATAI SEGMENT

EXTRN _MINFMEM:WORD, MAXFMEM:WORD, MINRMEM:WORD

@DATAI ENDS

IF @BIGMODEL
EXTRN _MAIN:FAR, EXIT:FAR
@code segment
ELSE
@code segment
EXTRN _MAIN:NEAR, EXIT:NEAR

ENDIF
SMAIN PROC FAR
JMp SHORT BEGIN
; PLACED HERE FOR SHORT JUMP PROBLEMS
NOCORE:
MoV DX, OFFSET DGROUP:COREMES
MOV AH,9
INT 214
MoV AX,-1 ;SAY BAD ERROR
PUSH AX
CALL _EXIT sNEVER RETURNS
public $main
; $main entry point for c programs
BEGIN: esc 1ch,bx ;reset the 8087 if any
cla ;just in case
IFE @COMFILE
MOV AX,DGROUP
MoV DS, AX ;SET UP DS REGISTER
ENDIF
MOV WORD PTR DGROUP: PSPSEG+2,ES ;SAVE THE PROG SEG PREFIX
MOV AX,ES:2 - ;GET TOP OF CORE IN PARA UNITS
CMp AX,DGROUP: MINRMEM ;IS RESERVED MEMORY AVAILABLE ?
JBE NOCORE ;NOPE
SUB AX,DGROUP:_ MINRMEM ;80 RESERVE IT
IFE @BIGMODEL
MoV DI,DS ;LIMIT SIZE TO 64 K
ADD DI,1000H ; PARAGRAPHS IN 64K
cMpP DI,AX ;MORE MEMORY THAN WE NEED ?
JAE DMO1 ;NOPE
MOV AX,DI ;RESET IT

OPTIMIZING C86 USER'S MANUAL

DMO1:
ENDIF

IF

ELSE

ENDIF

DMO2:

DMO3:

APPENDIX A

QCOMFILE

MoV SI,OFFSET @HEAP

ADD SI,15

SHR Si,1

SHR s1,l

SHR s1,1

SHR SsI1,l

MOV CX,DS

ADD S1,CX

MOV SI,@HEAP ;GET PARA OF HEAP

cMp S1,AX ;1S HEAP ABOVE 'TOP OF MEM' ?
JAE NOCORE ; YEP

SUB AX,SI ;# OF FREE PARAGRAPHS

cMp AX,DGROUP: MINFMEM ;GOT OQUR MINIMUM

JB NOCORE - ;NOPE

cMp AX,DGROUP:_ MAXFMEM sGOT TOO MUCH ?

JBE DM02 ;NOPE

MOV AX,DGROUP:_MAXFMEM ;RESET IT

ADD SI,AX sGET THE NEW STACK TOP PARAGRAPH
MoV DI,DS ;GET THE DATA SEG

Mov AX,SI

SUB AX,DI :sGET TOT NUMBER OF PARAS
CMP AX,1000H ;DOES IT EXCEED 1 SEGMENT
JBE DMO3 ;NOPE

Mov AX,1000H ;USE THE WHOLE STACK

suB SI,AX +AND THIS IS THE SS VALUE WE NEE"
MoV DI,SI ; IN THE CORRECT PLACE

mov si,ax ;save stack size

MOV CL,4

SHL AX,CL ;SCALE THE SP VALUE

PUSHF ;GET THE FLAGS

POP CX ;IN A SAFE PLACE

CLI :TURN OFF INTERRUPTS

Mov SS,DI ;RESET SS

MoV SP,AX ;AND THE STACK POINTER

XOR BP,BP ;CLEAR BP

PUSH BP

MOV BP,SP

PUSH CX

POPF sRESTORE FLAGS AND INTERRUPTS
get the operating system version (for version dependant i/0)
push es ;so we don't forget it

add di,si ;get end paragraph address

push di ;save for later

mov ah,30h

int 21lh

OPTIMIZING C86 USER'S MANUAL

isv2:

notv2:

if

endif

~

$SMAIN

or al ,al
jnz isv2
xor ah,ah
pop bx

mov DGROUP:_sysvers,ax
jz notv2
set

pop bx

pop ax

mov es,ax
sub bx,ax
MoV _SYSENDP,BX
push es

mov ah,4ah
int 21h
mov bx,ds
pop ds

push ss

pop es

mov si,80h
mov cl,[si)
add cl,3
and cx ,0feh
sub Sp,CX
mov di,sp
rep movsh
mov ds ,bx
mov ax,sp
@bigmodel

push ss
push ax

APPENDIX A

;is a ver 2.00 system
s;reset ah too if below 2.00
;dump the end of prog paragraph

length of program for use of memory after program

;get seg of psp

;in es too

;get length of program
;SAVE FOR USER

;save the ds value
;get the prog seg prefix value

;set dest
;command line offset
;get command line count

;force count even
;jget stack pointer value

;jmove the string
;jrestore ds

;set pointer to command line **

clear the uninitialized global storage region

mov
MoV
MOV
SUB
XOR
REP

es,bx

;set es to data seqg value

DI,OFFSET DGROUP:@UDBEGIN

CX,OFFSET DGROUP:@UDEND

CX,DI
AX,AX
STOSB

;GET THE NUMBER OF BYTES

;CLEAR THE AREA

call the routine DGROUP:_main to do other initialisation

call
push
call

ENDP
INCL
end

_main
ax
_EXIT

UDE EPILOGUE.H
SMAIN

;jenter c system at 'DGROUP:_main'
; Put the exit value
;ALL DONE NOW, this never returns

OPTIMIZING C86 USER'S MANUAL APPENDIX A
A.2.3. Motes on getting com files created:
How to build .coM files from files produced by the C compiler:

First:

Get assembly output for any functions that you need. This includes
stuff like fopen, main, _exit, etc, that you may not normally
think of.

Then:

Assemble all the files with the new prologue.h. You will have to

turn the @COMFILES switch to 1 in order for this to work. Don't
forget to assemble $maincom.asm. Have fun running the assembler.

Then:

Link as normal WITH THE $MAIN FILE FIRST: Do not do any funny stuff
with the linker. You will get the message NO STACK SEGMENT from the
linker. This is to be expected. N

Now :

you now have a file with the .EXE extension.

Run EXE2BIN.EXE on it to produce a .BIN file.

If EXE2BIN does not display any messages, you are ok.
Rename the .BIN file to .COM.

Run the program and enjoy.

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.3. TECHNICAL NOTES ON THE 8087 FLOATING POINT FORMAT

The floating point format used by the compiler is the same as
that for the Intel 8087 numeric data processor. The fommat is as
follows:

FLOAT:

S biased exponent significand

1 3 0
/\ (implied binary point)

the exponent for a float (SHORT REAL) is stored with a bias of 7f
hex. this means that 7f is added to the exponent when it is
stored in this format.

DOUBLE:

[=1-
,Si biased exponent significand
6

W

52
/\ (implied binary point)

the exponent for a double (LONG REAL) is stored with a bias of
3ff hex. this means that 3ff is added to the exponent when it is
stored in this format.

For more information on this data format, see the iAPX 86/20,
88/20 Numerics Supplement. This is part of the iAPX 86,88 User's
Manual and can be obtained from Intel at:

Intel Corporation
Literature Dept, SV3-3
3065 Bowers Avenue,
Santa Clara, CA 95051

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.4. Variable length tables at run time
TECHNICAL NOTES ON ALLOCATING VARIABLE LENGTH TABLES AT RUN-TIME

Here is an example of how to allocate a pointer table at runtime.
This can be used for most any data type. It is assumed here that
the data is of type DATA. This could be a structure or a simple
data type.

/*

*/

main()

{ .

int i; /% table index variable */

int tabsize; /* length of table */

DATA **p; /* pointer to DATA table */
char *calloc(); /* calloc returns a pointer */

/* determine number of entries at run-time */
tabsize = 100;

/* get pointer table */
p = (DATA *)calloc(tabsize,sizeof (DATA *));

/* allocate data area for each entry in table */
for(i = 0; i < tabsize; i++){
pli}] = (DATA *)calloc(l,sizeocf(DATA));

/* fill in data areas */

for(i = 0; i < tabsize; i++){
filldata(pli]);

}

/* use them somehow */

for{(i = 0; i < tabsize; i++){
usedata(p(i]);

}

/* free up data areas */
for(i = 0; i < tabsize; i++){
) free(p(i]);

/* free up pointer table */
free(p);

OPTIMIZING C86 USER'S MANUAL APPENDIX A

/*
now filldata and usedata can be written such that they
do not know that they are part of an array:
*/
filldata(d)
DATA *d; /* filldata gets a pointer to DATA */
{
/* initialize the data somehow */
}
usedata(d)
DATA *d; /* usedata gets a pointer to DATA */
{

/* do something with the data */

A-11

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.S. Calling a function with a pointer.

TECHNICAL NOTES ON CALLING A FUNCTION THROUGH A POINTER

noargs{)
int (*p) (); /* p is a pointer to a function returning int */
extern int a(); /* a is a function returning int
p = a; /* set p to point to a */
(*p) O; /* call a */
}
int a()

printf("hello there\n");

withargs()

int (*p) (); /* p is a pointer to a function returning int */
extern int b(); /* b is a function returning int

int x,Y;

10;

20;

b;

*p) (x,y¥);

won o

X
Y
P
(
}

int b(argl,arg2)
int argl,arg?;
{

printf("argl = %d arg2 = %d\n",argl,arg2);

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.6. TECHNICAL NOTES ON READING A NUMBER FROM THE CONSOLE

/* Here is a function to read an INTEGER from the console: */
int getnum({message)

char *message;

{

extern char *fgets();

char buffer[128];

int number;

fputs(message,stderr) ;
if(fgets(buffer,128,stdin) == NULL) return 0;
if(sscanf{buffer,"$d" ,&number) != 1)

fputs("Invalid input, Please enter an integer\n",stderr);
return getnum(message);
}

return number;

}

/* This can then be called in the following fashion: */
program()
{
int number;
number = getnum("\nPlease enter the number: ");
printf("\nThe number entered is: %d\n",number);

}

/* For FLOATING POINT numbers, you must use a different
conversion code in sscanf: */

double getnum(message)

char *message;

{

extern char *fgets();
char buffer([128];
double number;

fputs(message,stderr) ;
if(fgets(buffer,128,stdin) == NULL) return 0.0;
if(sscanf(buffer,"$lf",&number) != 1)
{
fputs("Invalid input, Please enter an number\n",stderr);
return getnum(message);

return number;

}

/* This can be called in a similar fashion: */
program()

double number;

double getnum();
number = getnum("\nPlease enter the number: ");
printf("\nThe number entered is: %1f\n",number);

A-13

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.7. TECHNICAL NOTES ON THE USE OF MOVBLOCK

Here is an example of how to use movblock in the BIG MODEL:

Suppose that you wish to move 10 bytes of data from your data
buffer to the screen memory:

{

char data(l0];
unsigned int dest seg;
unsigned int dest off;
int count;

dest_seg
dest off

= address of the segment you wish to write to;
count = 10;

offset within that segment;

movblock(data,dest_off,desﬁ_seg,10);
}

This should do the trick. You will have to find out what segment and
offset values are needed for your meamory map.

In the SMALL MODEL, you will have to determine the segment address
of your data segment. This can be done via segread as follows:

{

struct segregs { unsigned int scs,sss,sds,ses; } srv;
char data[l0];

unsigned int dest_seg;

unsigned int dest off;

int count;

segread(&srv);

dest seg = address of the segment you wish to write to;
dest off = offset within that segment;

count = 10;
movblock(srv.sds,data,desp_off,desg_seg,10);

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.8. TECHNICAL NOTES ON DEFAULT MEMORY VALUES

This is for use with the file _default.c in base.arc:

HEAP + STACK __MAXFMEM
32K 800
64K 1000
96K 1800

128K 2000
160K 2800
192K 3000
224K 3800
256K 4000
288K 4800
352K 5800
416K 6800
480K 7800
544K 8800
608K 9800
672K AB00
736K B800
800K c800
864K D800
928K E800
992K F800

OPTIMIZING CB6 USER'S MANUAL APPENDIX A

A.9. TECHNICAL INFO ON THE CORRECT USE OF FOPEN()

Here is some information on the correct use of fopen(). In the BIG MODEL,
it is imperative that the function fopen() be declared as a function
returning type FILE *. Consider the following example:

main()

{

extern FILE *fopen();
int c;

FILE *fptr;

fptr = fopen("\\c86\\stdio.h","r");
if(fptr == NULL)
abort("could not find file: \\c86\\stdio.h");
while((c = fgetc(fptr)) I= EOF) putchar(c);
fclose (fptr);

}

Note that you should always check the return code of fopen.
Note that you need two backslashes for each one you want.

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A.10. TECHNICAL INFORMATION ON LOW-LEVEL Z-100 PC ROM CALLS

C is a uniquely powerful language which is often used for
development of new systems software. C86 provides many
extensions to the standard language in order to allow you to
better exploit the capabilities of your machine, at the expense
of portability. Some applications, however, may need even
greater access to low-level I/0 than the included 1library
routines.

For more information on low-level interfaces to the z-100 PC,
consult the 2Z-100 PC Technical Reference Manual. This document
contains information on using the ROM firmware contained in your
machine.

Additionally, Zenith sells a package of utilities known as the
MS-DOS Version 2 Programmer's Utility Package. This package
contains an 8086 Macro-Assembler which is compatible with C86, a
powerful full-screen program editor, and valuable documentation
on interfacing to MS-DOS and the firmware in the Z-100 and Z-100
PC series.

To order these documents, contact your local Zenith dealer or
distributor.

A.ll. TECHNICAL INFO ON BIG MODEL POINTERS

Here is some code to demonstrate how to split a big model pointer
into it's segment and offset values:

char *p; /* big model pointer */
unsigned int seg; /* where to store segment val*/
unsigned int off; /* where to store offset */

seg = ((unsigned long) p) >> 16; /* segment value */
off = (unsigned int) p; /* offset value */

aA-17

OPTIMIZING CB86 USER'S MANUAL APPENDIX A
A.12. TECHNICAL INFO ON DOING SEND / RECEIVE FOR IBM-PC

Here are some functions for doing low-level serial io on the IBM PC.

struct regval { unsigned int ax,bx,cx,dx,si,di,ds,es; } ;
#define COM1 0
$¢define COM2 1

/#
send: send a character to a COM1
returns:
The value of the character sent or
EOF if an error occurred
*/
send (ch)
char ch;
{
struct regval srv;
srv.ax = 0x100 | (ch & 0xff); /* ah = 1, al = ch */
srv.dx = COM1; /* select COM1 */
sysint(0x14,&srv,&srv); /* send it 4
if(srv.ax & 0x8000) return EOF; /* an error occurred */
return ch; /* no error occurred */

/>
recv: wait until a character is ready at COM1 and return it
Returns: the character received

*/

recv()

struct regval srv;

do { /* try to receive it */
srv.ax = 0x200; /* select function ®/
srv.dx = COM1; /* select COM1 */
sysint(0x14,8srv,&sIv); /* try to get it */
while (srv.ax & Oxff00); /* it's not ready yet */
return (srv.ax & Oxff); /* return the character */

UPTIMIZING C86 USER'S MANUAL APPENDIX A
A.13. TECHNICAL INFORMATION ON USING THE ANSI.SYS DEVICE DRIVER
Some pointers on using the ANSI.SYS device driver to control the
screen:

The ANSI.SYS device driver is a can be used for a variety of
screen handling uses. These range from clearing the screen to
positioning the cursor to setting the mode for the screen.

Codes to control this device are given in an Appendix of the MS
DOS 2.0 manual.

Here is how to install the ANSI.SYS device driver:
1. Create or add to the file CONFIG.SYS in the root directory
of the disk that you boot from by adding the statement:
DEVICE = ANSI,.SYS
2. Make the file ANSI.SYS available on your boot disk. This
file is provided as part of the standard distribution of
your operating system.

3. Reboot your machine.

Once this is done, you will be able to do many screen and
keyboard operations easily. For example:

printf ("\033[27"); /* clear the screen */

printf("\033[%4; $dH",row,col);/* position cursor to row,col */

printf ("\033[%4A",n); /* move cursor up n rows */
printf ("\033{%dB",n); /* move cursor down n rows */
printf ("\033[%4C",n); /* move cursor right n columns*/
printf("\033(%dD",n); /* move cursor left n columns */

In addition, there are escape codes for doing things like crt
mode selection and keyboard reassignment, but you will have to
look those up yourself if you want them.

A-19

OPTIMIZING C86 USER'S MANUAL APPENDIX A

A-20

INDEX

$
Sentry
Entry to a function., 3-6

2
2.0 1/0 library., 1-13

8
8087 support., 1-13
8087 switch., 1-17

A
abort

Abort execution of a program with a message., 3-10
abstoptr

absolute memory address to pointer., 3-11
APPLICATION NOTES, A-1
Arch

source librarian., 2-9
Assembly language functions., 1-13
Assigning pointer and int data types., 1-18
atof

Convert ASCII to floating point, 3-14
atoi

Convert ASCII to integer (long)., 3-16

B
Basic services., 1-9
basicget
Get a “record" written by a basic program., 3-17
Batch files., 1-7
bdos
Execute a basic DOS function,, 3-19
Big model switch., 1-1%

(&
Calling conventions for functions., 1-15
calloc
allocate a block of memory., 3-21
ccl
preprocessor., 2-1
cc2
parser, 2-6
cc3
code generator., 2-7
cc4
optimizer,, 2-8
ceil
Ceiling function., 3-22
chdir
Change to a new working directory., 3-23

Index-1

