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ABSTRACT

In this work we present a set of techniques which ex-
plore information from multiple, different language versions
of the same speech, to improve Automatic Speech Recogni-
tion (ASR) performance. Using this redundant information
we are able to recover acronyms, words that cannot be found
in the multiple hypotheses produced by the ASR systems, and
pronunciations absent from their pronunciation dictionaries.
When used together, the three techniques yield a relative im-
provement of 5.0% over the WER of our baseline system, and
24.8% relative when compared with standard speech recogni-
tion, in an Europarl Committee dataset with three different
languages (Portuguese, Spanish and English). One full iter-
ation of the system has a parallel Real Time Factor (RTF) of
3.08 and a sequential RTF of 6.44.

Index Terms— speech recognition, machine translation,
pronunciation , out-of-lattice, acronyms

1. INTRODUCTION

Several language technologies can benefit from their mutual
integration, in the sense that the outputs produced by one
of these technologies can be used as inputs to another or to
enhance their performance. Among those technologies best
suited to such an integration are Automatic Speech Recog-
nition (ASR) and Machine Translation (MT). We investigate
how to combine ASR and MT models in parallel: the case
where multiple speech streams (or a combination of speech
and text streams) are available is of particular interest. These
streams should represent direct or approximate translations of
each other, so that our algorithms can exploit such redundant
information in order to enhance the performance of the ASR
and MT modules. In other words, since the errors that oc-
cur in different speech streams will be relatively independent
from each other, we expect to recover from many of them by
resorting to the information in the remaining streams. To a
certain extent, this is analogous to the ROVER method [1]
for combining speech recognizers, although the latter uses a
single speech stream.

Applications of parallel combination of ASR and MT
streams include the automatic multilingual transcription of
simultaneously interpreted speeches, both at the United Na-
tions and the European Parliament, as well as in other mul-
tilingual institutions or countries, since interpreted speech is
challenging for ASR systems to recognize due to the disflu-
encies and fast speech it often contains. Other applications
of this method include TV shows and series, as well as major
sport events broadcast in multiple languages.

Recently, there has been considerable interest in the inte-
gration of ASR and MT models. This has mostly been done
in a sequential manner, for speech-to-speech or speech-to-text
translation, where the outputs of the ASR module are passed
on to the SMT system. This is often achieved by generating
multiple hypotheses as the output of the ASR system, in the
form of lattices or confusion networks, and passing this prob-
abilistic description of the output downstream, rather than
simply the 1-best hypothesis generated by the recognizer. De-
spite this, several authors have tried to combine ASR and MT
in a parallel fashion. Some of these methods are used to com-
bine speech with a text stream, usually for an application such
as machine-aided human translation [2, 3], although a few
works have considered combining multiple speech streams
[4, 5].

In previous work [6], we combined the outputs of recog-
nizers of original and interpreted speeches in different lan-
guages, in the form of lattices, to yield improved recogni-
tion results. In order to link the language pairs together, we
used phrase tables trained for a Statistical Machine Trans-
lation (SMT) system. A sequence of words in the lattice
of a given language is mapped to a corresponding sequence
of words in the lattice of a different language through such
a phrase table. From this mapping, we build an alignment
between two languages, consisting of correspondences be-
tween phrase pairs, and eventually alignments over an unre-
stricted number of languages. These alignments will allow us
to uncover word sequences which originally had low poste-
rior probabilities in their lattices, but which are likely to have
occurred in the speech stream, given the fact that the various
speech streams represent translations of each other. The pro-



cess is explained in more detail in Section 2 .
Even though the lattices we use to compactly represent

recognition hypotheses cover many different possibilities, not
all the word sequences can be found in them, since the de-
coder, to enable a tractable search for the best word sequence,
will prune away the vast majority of the alternative hypothe-
ses. As a result, certain words that could, in principle, be re-
covered through multilingual information will be lost. In this
work, we therefore intend to recover these words that can-
not be found in their respective lattices, which we call out-of-
lattice words, as well as acronyms (which may, additionaly,
be out-of-vocabulary words). We also correct pronunciations
of words in the dictionary that mismatch with their observed
acoustic realizations, one of the main reasons for a word to be
out-of-lattice, using the information in the generated align-
ments to select those words with a high confidence of having
been said.

The rest of this paper is organized as follows. Section 2
summarizes the system that this work builds upon, our base-
line system. Section 3 discusses in detail the improvements to
the baseline system, which are the recovery of out-of-lattice
words, acronyms and word pronunciations. Section 4 de-
scribes the experiments that assess these improvements, both
in terms of word error rate and computational complexity. Fi-
nally, Section 5 concludes and suggests ideas for future work.

2. BASELINE SYSTEM

The overall baseline system architecture is described in Fig-
ure 1. An iteration of the baseline method [6] consists of the
following steps:

• Generate phrase tables for each of the language pairs
that we wish to combine.

• Using an ASR system, transcribe the speech in both the
original and interpreted languages. This generates a set
of lattices that encode a posterior probability distribu-
tion over word sequences. In particular, we compute
posterior probabilities for all n-grams with n <= 3.

• For each language pair, intersect the lattices with the re-
spective phrase table, obtaining a set of bilingual phrase
pairs that appear in both the lattices and the phrase ta-
ble.

• Rescore the phrase pairs from the previous step, esti-
mating their likelihood of actually having appeared in
the speech. The highest-scoring among these pairs are
used to construct a phrase pair alignment.

• Finally, the phrase pairs contained in the alignment are
used to rescore the lattices and produce new transcrip-
tions.

2.1. ASR and SMT systems description

Three languages, Portuguese, English, and Spanish, were
used in the development of our ASR and SMT systems. Au-
dimus [7], a hybrid ANN-MLP WFST-based recognizer, is
the ASR engine we used in this work. We trained 4-gram
language models for each of the languages using the Europarl
Parallel Corpus [8], and used our existing acoustic models
and lexica for these three languages [9]. We created phrase
tables for the 3 possible language combinations (Portuguese-
Spanish, Portuguese-English, and Spanish-English), with the
Moses toolkit [10], also using the Europarl Parallel Corpus
as parallel training data.

2.2. Intersection between lattices and phrase tables

The intersection step selects the phrase pairs source ||| target
that simultaneously are in the phrase table and for which both
source and target can be found in the source and target lat-
tices, respectively. The source and target phrases must be oc-
cur sufficiently close in terms of time. The maximum allow-
able time separation between the phrases is controlled by a
parameter δ = 10s. The efficient computation of this inter-
section uses a specialized algorithm [6].

2.3. Phrase pair scoring and selection

Not all phrase pairs in the intersection are added to the out-
put. Instead, a number of features of each phrase pair are con-
sidered in scoring and selecting these to build an alignment,
such as the posterior probabilities of each of the phrases in the
phrase pair, its phrase table features, language model scores,
and the time distances between both phrases of the pair. The
output of this step is an alignment between phrase pairs.

2.4. Lattice rescoring

The rescoring step is an A* search of the lattices, produc-
ing new recognition hypotheses, where the language model
is modified so that it assigns higher probability to word se-
quences that can be found in the generated alignments, at the
correct times (i.e. whose timestamps match with the current
time of the decoder).

3. PROPOSED IMPROVEMENTS

3.1. Acronym detection

Abbreviations or acronyms are very common in parliamen-
tary speech or in technical talks. However, their correct recog-
nition presents a number of challenges, since many of them
are not present in the dictionary, or have incorrect pronuncia-
tions rather than a pronunciation that spells all of their letters
out.
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Fig. 1. The proposed system architecture

To recover abbreviations, we first locate candidates 3 to 5
letters in length, such as IPOA (Istanbul Programme of Ac-
tion) or EBA (European Banking Authority). We also group
together plural versions of the candidate abbreviations, for in-
stance, LDC (Least Developed Country) and LDCS (Least
Developed Countries). To search for the abbreviations, we
build a finite state automaton which encodes all possible ab-
breviation sequences, and run it through the acoustic data, se-
lecting the best abbreviation at every time step, together with
its acoustic score. Among the candidates, only a subset is
selected for further processing. To rank the candidates ac-
cording to the likelihood that they are actually present in the
speech, we extract a number of features, namely:

• The number of different languages in which the acronym
appears and its total number of occurrences in all lan-
guages.

• The number of letters in the acronym.

• Whether the acronym had been spelled out before its
occurrences. It is often the case, when introducing an
acronym or abbreviation, that the speaker will explain
the acronym’s meaning to the audience by spelling it
out. It is possible to try to guess whether that happened
by comparing the acronym to word sequences in the
transcriptions.

• The average score of the acronym occurrence and the
acronym’s language model score.

The language model used for acronym recovery is a tri-
gram language model trained from a list containing 500 ab-
breviations using SRILM [11].

The feature values are linearly combined to form a score,
and the top k (where we fixed k = 10) acronyms are then
searched for the occurrence of close pairs (those having a tem-
poral separation of less than δ = 10s). These are then added

to the phrase table / lattice intersection result before step 2.3
is re-run.

Recovered acronyms that are present in the final align-
ment but were not present in the original lattice are added,
during the final decoding step described in Section 2.4, to the
lattices being redecoded. This is accomplished by adding arcs
to the lattice on-the-fly. These arcs have as endpoints pairs of
states whose timestamps are the same as those of the acronym
that we wish to recover, and the acoustic score which was de-
termined when generating the abbreviation candidates.

3.2. Out-of-lattice word recovery

Although our method considers multiple alternatives in the
form of lattices, these are limited in size and cannot contain
all the possibile word sequences. In several cases it may be
desirable to recover these words that do not appear in the out-
put lattice, since this can improve transcription accuracy. We
generate a list of locations where these out-of-lattice words
could potentially appear according to the following criteria:

• If a certain word appears in two or more languages,
its translation is predicted to appear in the third and
subsequent languages as well. For example, the word
“dossier” may appear close in time both in Spanish and
Portuguese, but not in the English version. Still, it
would be reasonable to expect the probability that it has
been said in the English version to be high.

• If two words are aligned in a given language pair, then
the surrounding words are also predicted to be trans-
lations of each other. For instance, if “European”, in
English, is aligned with “Europeia” in Portuguese, and
the word “Commission” follows the word “European”
in the English transcription, then it is natural to assume
that the word “Comissão” will precede the word “Eu-
ropeia” in Portuguese, even if if does not appear in any



of the lattices. We therefore hypothesize the occurrence
of an out-of-lattice word ending near the beginning of
“Europeia”.

When selecting the potential translations of a given word
to a target language, we use the single-word translations in
the appropriate phrase table that score above a manually pre-
selected threshold. We then find the optimal starting and end-
ing times, along with the optimal score, in an interval which is
centered around the predicted occurrence time, by performing
a sliding forced alignment between the word’s pronunciation
and the posterior probabilities generated by the recognizer’s
acoustic model. The optimal score is subsequently compared
to a fixed threshold; if it is below, this potential out-of-lattice
word occurrence is discarded. Otherwise, it is carried on to
the next step where it is added to the phrase pairs that orig-
inate from the phrase-table-lattice intersection process. The
phrase pair scoring method described in Section 2.3 is aug-
mented to use an extra feature, which indicates whether the
current pair is an out-of-lattice pair. In this way, we can have
out-of-lattice phrase pairs compete in a balanced way with
regularly extracted pairs.

At this point, step 2.3 is run to generate a new alignment.
Finally, and in a way comparable with what is done for the
recovery of abbreviations, recovered words are added to the
lattices as new edges at the appropriate locations, during the
execution of the lattice rescoring step.

3.3. Pronunciation recovery

Pronunciation lexica are key components of ASR systems -
if the correct pronunciation is not in the lexicon, recognition
performance degrades substantially - and can be notoriously
hard to build. Manually creating these dictionaries is a very
laborious and expensive task, and most languages have an
open vocabulary, which means that a combination of manual
and automatic methods is often used to generate these pro-
nunciations. However, in many languages, such as English,
the pronunciation of a word is very hard to predict from its
ortography alone. Words imported from foreign languages,
as well as names of people and locations, also pose important
challenges.

In this work, we capitalize on the multi-stream alignment
that we generated, described in Section 2.3. The idea is that
the words that we were able to recover by way of increasing
their language model scores are more likely to have been pro-
nounced in a manner which differs from their dictionary pro-
nunciation. From the alignment, we select high-confidence
words - those that match with a high score. Then, for each
of the word occurrences, we perform a Viterbi decoding with
a finite state machine encoding all possible phone sequences.
This leads to the most likely pronunciation on purely acoustic
grounds.

At this point we calculate, using a string edit-distance al-
gorithm, the number of insertions, deletions and substitutions

required to transform the obtained pronunciation to the closest
among the reference (dictionary) pronunciations. The align-
ment between the two strings defines a set of operations that
one would have to apply to transform the reference pronuncia-
tion into the obtained pronunciation. We insert all the pronun-
ciations that can be obtained by performing at most two such
operations into a candidate pronunciation set p1..pk. Each of
p1..pk is rescored using the following expression, where p0 is
the original pronunciation:

SC(pi) = αL(pi1 ..pin) + β

∑v
j=1Ai(oj)

v
+ γδ(p0, pi) (1)

In Equation 1, v stands for the number of occurrences of
the word, L(pi1 ..pin) denotes a 5-gram language model over
phone sequences, whereasAi(oj) indicates the acoustic score
of the jth occurrence of the word assuming pronunciation i,
and δ(p0, pi) is the edit distance between the dictionary pro-
nunciation and pronunciation pi.

We then select p∗ = argmaxi SC(pi) as the pronuncia-
tion to be recovered and add it to the lexicon if it is not one of
the existing dictionary pronunciations.

The language models, one for each language, were trained
with the SRILM toolkit [11] with modified Kneser-Ney
smoothing. The automatically generated lexica for each
of the languages were used as training data.

4. RESULTS

Our evaluation and testing data consist of two data sets that
were collected from the ENVI, DEVE, IMCO and LEGAL
committees of the European Parliament. The first of these two
data sets, with two speeches, is a held-out set used for tun-
ing the various parameters for phrase pair selection and pro-
nunciation recovery. The second set consists of four English
speeches by both native and non-native speakers, drawn from
each of the four aforementioned committees. Besides the
original speeches, we also collected the Portuguese and Span-
ish interpreted versions. However, we only have manual ref-
erence transcriptions for the English version of the speeches,
so we only present WER values for the English version.

Speech EN +PT +ES +PT+ES
DEVE 24.54% 22.33% 21.82% 20.40%
ENVI 20.60% 17.83% 18.84% 16.28%
IMCO 35.12% 31.03% 33.00% 29.97%
LEGAL 33.76% 31.43% 32.45% 28.42%
Average 28.50% 25.65% 26.52% 23.77%

Table 1. WER for the 4 speeches. The 1st column is the
error of the baseline system , the 2nd and 3rd the WER of the
English original speech after combining with the Portuguese
and Spanish interpretations, respectively, and the 4th the error
after combining with both interpretations.



Speech EN 1st iter 2nd iter
DEVE 24.54% 20.40% 18.35%
ENVI 20.60% 16.28% 14.70%
IMCO 35.12% 29.97% 29.79%
LEGAL 33.76% 28.42% 27.38%
Average 28.50% 23.77% 22.56%

Table 2. WER for two iterations of the system (3rd column)
compared with the baseline system (1st column) and the first
iteration (2nd column)

No pron. recovery Pron. recovery
Speech Base +ar +ar+ool Base +ar +ar+ool
DEVE 18.35% 17.11% 16.92% 18.04% 16.81% 16.71%
ENVI 14.70% 14.35% 13.88% 14.36% 14.04% 13.69%
IMCO 29.79% 29.62% 29.30% 29.34% 29.18% 29.03%
LEGAL 27.38% 27.02% 26.85% 26.77% 26.44% 26.31%
Average 22.56% 22.03% 21.74% 22.13% 21.61% 21.43%

Table 3. WER for the system improvements. The factor
that differs between the left and the right half of the table
is whether pronunciation recovery is applied. The leftmost
column of each half represents the WER with no acronym or
out-of-lattice word recovery; the middle column indicates the
WER with acronym recovery; and the last column presents
the WER with both acronym and out-of-lattice word recov-
ery.

Table 1 summarizes the results of one iteration of the
baseline method. Using two interpreted languages (Span-
ish and Portuguese, 16.6%) is superior to using only one
language (Portuguese, 10.0%) or (Spanish, 6.9%).

The next step is to perform unsupervised speaker adapta-
tion of the English acoustic model, with the output of the first
iteration as a reference. We then executed a second iteration
of the baseline method, and collected the results in Table 2 (in
this case the English version is combined with both the Por-
tuguese and Spanish interpretations). This led to an additional
4.2% relative improvement, which is a cumulative 20.8% bet-
ter than the original system (the plain English ASR system).

At this point we integrate the improvements of Section 3.
We performed both out-of-lattice word recovery and abbrevi-
ation recovery on the results of the second iteration presented
in Table 2. In order to take the impact of pronunciation recov-
ery into account, we applied it after the 1st iteration had been
completed, by adding the recovered pronunciations into the
recognition lexicon. Table 3 shows the results of our experi-
ments for these two cases (where we apply, and do not apply
the pronunciation recovery algorithm).

In Table 3, we see that the recovery of acronyms only
seems to significantly improve results in the talk from the
DEVE committee. In fact, of the four tested talks this is
the one with the largest proportion of acronyms and abbre-
viations. In other talks, results are also slightly improved,

Operation Parallel RTF Sequential RTF
PT - lattice intersections 0.69 1.96
Init. align. generation 0.18 0.18
Abbreviation recovery 0.23 0.23
OOL word recovery 0.42 0.42
Pronunciation recovery 0.51 1.34
Alignment generation 0.19 0.19
Final decoding 0.86 2.12
Total 3.08 6.44

Table 4. Average real time factor (RTF), over the four testing
talks, of each of the main operations of the algorithm (for a
single iteration). The first column indicates the parallel RTF
whereas the second column indicates the sequential RTF.

which suggests that we aren’t recovering many spurious ab-
breviations. On average, acronym recovery improves 2.4%
relative. Also, the results of Table 3 demonstrate improve-
ments in performance with out-of-lattice word recovery , in a
more uniform way across all of the different speeches. The
average relative improvement from out-of-lattice word recov-
ery is 1.3% relative. Finally, the presence of pronunciation
recovery appears to affect results in a additive manner rela-
tive to the other factors, and has a positive impact of 1.5%
relative. Combining all the methods, we achieved an overall
relative WER improvement of 5.0%, when compared to the
second iteration of the baseline system. This translates to a
cumulative 24.8% when compared with speech recognition-
only (without running the baseline system).

4.1. Running time analysis

In this section we empirically analyze the computational over-
head, in terms of running time, incurred by the algorithms de-
scribed in the paper, for the case of N = 3 languages (one
original language and two interpreted languages).

We measured the overhead of each of the developed com-
ponents. Table 4 summarizes the real time factors of the al-
gorithm, averaged over the four testing speeches, for one full
iteration. We distinguish the sequential RTF from the parallel
RTF. The latter assumes that a number of operations can be
executed in parallel, since they are independent of each other
and non-overlapping, and considers only the running time of
the longest among these operations. The operations that can
be executed in parallel are intersecting multiple phrase table
- lattice pairs, the final decoding steps - obtaining improved
transcriptions is parallelizable for the various languages since
there aren’t any dependencies between the instances of the
search algorithm - and pronunciation recovery, which is done
separately for each of the languages. Table 4 shows that the
methods presented in this work are responsible for 1.99 xRT
sequential, whereas a full iteration of the algorithm takes 6.44
xRT sequentially, but only 3.08 xRT if it can be executed in



parallel.
The total time complexity grows quadratically with the

number of languages N , which would be intractable for large
N . However, the most time-consuming part of the algorithm
- running a series of phrase table-lattice intersections - can be
paralellized, and so with sufficient computational power this
would not slow the system down. Furthermore, the number of
phrase table-lattice intersections can be kept to a minimum by
selecting a subset of the

(
N
2

)
possible intersections, in such a

way as to minimize the impact in result quality.

5. CONCLUSIONS

In this work we have described a number of techniques -
the recovery of acronyms, pronunciations and out-of-lattice
words, that were designed to explore multilingual information
in order to enhance the performance of our baseline system.
We applied these three methods to four speeches, each drawn
from a different European Parliament Committee, and con-
sidered three different languages : English, Spanish, and Por-
tuguese, English being the original language of the speeches.
Combined, the three techniques yield a relative improvement
of 5.0% over the WER of our baseline system and 24.8% over
speech recognition only. Running a full iteration of the algo-
rithm takes an average of 3.08 xRT if done in parallel, and
6.44 xRT if done sequentially.

The topic of pronunciation recovery from multiple speech
streams shows significant promise for future work in that it
can, in principle, be run in a fully unsupervised manner to
collect pronunciations, in large scale, for different speaker
groups, languages, foreign words or names. We also intend
to experiment with larger numbers of languages to verify if
the improvements in recognition performance continue to in-
crease, since we expect new out-of-lattice words and pronun-
ciations to be recovered. Finally, we expect to be able to fur-
ther reduce the running time overhead of our algorithm to en-
sure it remains practical for larger numbers of languages.
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