
GW-BASIC Interpreter

610P72856

Copyright ® 1985 Xerox Corporation. All rights reserved.

Xerox® and 6060 Family, Xerox Personal Computer, Xerox PC,
ScreenMate and X-Cel are registered trademarks of Xerox
Corporation. (*

Copyright ® Microsoft Corporation 1980-1984.
Copyright ® 1984 by Olivetti.
OLIVETTI is a trademark of Ing. C. Olivetti & Co., S.p.A
MS'" is a trademark of Microsoft Corporation.
GW" is a trademark of Microsoft Corporation.

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

1. INTRODUCTION

1. Introduction 1-3

GW-BASIC major features 1-3

System requirements 1-5

Manual contents 1-5

2. GETTING STARTED

1. Getting started 2-3

Loading GW-BASIC 2-3

Exiting GW-BASIC 2-4

3. TUTORIAL

1. Introduction 3-3

2. The Basics 3-13

3. Input and Output Data 3-31

4. Branching 3-57

5. Looping 3-63

6. Arrays 3-73

7. Subroutines 3-91

TABLE OF CONTENTS

TABLE OF CONTENTS

5. REFERENCE

1. Alphabetical listing 5-1

2. Arrays 5-11

3. Assembly language subroutines 5-29

4. Asynchronrous communications 5-51

5. Branching 5-73

6. Chaining programs 5-89

7. Conversion functions 5-101

8. Debugging 5-113

9. Devices and input/output port
information 5-115

10. Disk data files — sequential and
and random access 5-129

11. Disk files 5-171

12. Editing 5-189

13. Error handling 5-201

14. Event trapping 5-211

15. Graphics and screen attributes 5-215

16. GW-BASIC and child processes 5-283

17. Input data 5-289

18. Looping 5-303

19. Miscellaneous statements, commands,
and functions 5-309

TABLE OF CONTENTS

TABLE OF CONTENTS

20. Multiple directories 5-345

21. Music 5-357

22. Numeric functions 5-367

23. Output to screen or printer 5-379

24. Program interrupts 5-417

25. Program handling 5-425

26. String manipulation 5-439

27. User-defined functions 5-449

Appendix A - ASCII Code

Appendix B - Mathematical Functions

Appendix C - Error Codes and Error Messages
Appendix D - GW-BASIC Reserved Words

Appendix E - Hexadecimal Conversion Tables

Appendix F - Technical Information

Appendix G - Conversion of Programs to GW-BASIC

TABLE OF CONTENTS

INTRODUCTION

INTRODUCTION n

TABLE OF CONTENTS

1. Introduction 1-3

GW-BASIC major features 1-3

System requirements 1-5

Manual contents 1-5

INTRODUCTION

1. INTRODUCTION

GW-BASIC is the most extensive implementation
of BASIC available for personal computers. It
meets the requirements of the ANSI standard for
BASIC, and supports many unique features rarely
found in other BASICs. In addition, GW-BASIC
provides sophisticated string handling and
structured programming features that are
especially suited for applications development.
The GW-BASIC language has improved graphics
possibilities, and gives users what they want from
a BASIC-ease of use plus the features that makes a
personal computer perform like a microcomputer.

GW-BASIC major features

GW-BASIC combined with MS-DOS provides a
powerful and friendly environment for the BASIC
programmer.

Some of the main features of GW-BASIC are as
follows:

• Redirection of Standard Input (INPUT, LINE
INPUT) and Standard Output (PRINT).

• Character device support allowing GW-
BASIC to initialize and communicate with a
peripheral device.

• Multiple directories for disk organization and
directory management support (MKDIR/
CHDIR/RMDIR).

• Improved disk I/O facilities for handling large
files.

INTRODUCTION "T3

INTRODUCTION

Screen Editor enhancements including text
window support.

SHELL allowing COMMAND or child
processes to run without having to leave the ^
GW-BASIC environment.

Improved Graphics: Line Clipping VIEW,
WINDOW, etc.

User-defined keyboard trapping, error
trapping and additional event trapping.

Precise error reporting with system functions
ERDEV andERDEVS.

Double precision transcendentals. Optional
with the /D: switch in the GVVBASIC
command.

CALL statements with parameter passing.

Chaining with common variables: chaining is
used to allow programs larger than the
available memory. Application programs can
be menu-driven to allow for maximum user
friendliness.

Optional declaration statements: variable
names can be listed in a declaration
statement explicitly specifying the variable to
be a string, real, or integer variable.

TT iNtROOUCTION

INTRODUCTION

System requirements

GW-BASIC, under the MS-DOS operating system,
can be run using the minimum system
configuration.

A minimum of one disk drive is required.

Manual contents

The manual is made up of five sections. They are

INTRODUCTION

GETTING STARTED describes the steps for getting
starting with GW-BASIC.

TUTORIAL is for the beginner or new user.

GENERAL INFORMATION section is a must read
section. It contains some very important
information.

REFERENCE section contains all the information on
GW-BASIC statements, commands, and functions.
They are grouped together by task. At the
beginning of the Reference section is an
alphabetical listing with a short description and
page location of every GW-BASIC statement,
command, and function.

INTRODUCTION T3

INTRODUCTION

Notes:

VB INTRODUCTION

GETTING STARTED

GETTING STARTED 2^

^_^_jrABLE^FCONTENTS

1. Getting started 2-3

Loading GW-BASIC 2-3

Exiting GW-BASIC 2-4

T2 GETTIMG STARTED

1. GETTING STARTED

The following are the steps to get started with GW-
BASIC:

1. Be sure your original GW-BASIC disk is
write-protected.

2. Make a backup copy of the GW-BASIC disk.

If you have hard disk, you may want to
make a directory to contain GW-BASIC.

3. Store the original GW-BASIC disk in a safe
place.

Loading GW-BASIC

MS-DOS users

With the MS-DOS system prompt displayed, type
GWBASIC and press the Return key.

Continue on next page.

ScreenMate users

Highlight the GWBASIC.EXE file and then run it.

Continue on next page.

GETTING STARTED "2:3

GETTING STARTED

When loaded, GW-BASIC responds with the
following:

GW-BASIC 2.x

(C) Copyright Microsoft 1983,84

XEROX - GW-BASIC Rev. 1 .x
Copyright (C) by Olivetti, 1984 - All rights Reserved

xxxxxx Bytes free
Ok

The "Ok" is the GW-BASIC prompt.

The " " is the cursor.

The system is now waiting for input from you.

If you are a beginner, you may want to go through
the TUTORIAL section.

(Note: The GWBASIC command may be entered
with several options to optimize memory
occupation, redirecting standard input or output,
etc. See the GWBASIC command in Chapter 19 of
the Reference section.)

Exiting GW-BASIC

To exit from GW-BASIC and return to MS-DOS or
ScreenMate, type SYSTEM and press the Return
key.

This closes all data files before returning to MS-
DOS.

GETTING STARTED

TUTORIAL

TUTORIAL

TABLE OF CONTENTS

Introduction 3-3

2. The Basics 3-13

3. Input and Output Data 3-31

4. Branching 3-57

5. Looping 3-63

6. Arrays 3-73

7. Subroutines 3-91

3^2 - TUTORIAL

1. INTRODUCTION

This section is a self-paced guide to learning GW-
BASIC. The training in this section is written on
the assumption that you have

• a knowledge of high school algebra

• an understanding of MS-DOS based
personal computers

• know little or nothing about BASIC
programming

Upon completion of the training, you will be able to
create and execute programs which utilize the
following GW-BASIC statements and system
commands.

AUTO
DIM
EDIT
FILES
FOR/NEXT
GOSUB/RETURN
GOTO
IF
INPUT

KILL
LIST/LLIST
LOAD
NEW
PRINT/LPRINT
READ/DATA
RUN
SAVE

STOP

TUTORIAL

INTRODUCTION

Rules for writing statements

Before you start any hands-on exercises on the
system, you need to know a few rules of writing
statements.

Every program in GW-BASIC is made up of
program lines containing statements and each
program line must have a line number.

Example:

10
20

X = 12
Y = X

30 .. Z = X + Y*.5

V
Line# Statement

Program Line

In the example above, there are three program
lines each beginning with a line numltor (10, 20,
and 30). Also, there are three variables (X, Y, and
Z).

TUTORIAL

INTRODUCTION

Variables

Variables are names used to represent either
numeric or string values that are used in a
program.

Both letters and numbers may be used in a
variable name, however the first character must
be a letter.

The value of a variable may be assigned by the
programmer (such as X and Y in the example on
the previous page) or it may be assigned as the
result of calculations in the program (such as Z in
the example on the previous page).

String variable names are written with a dollar
sign ($) as the last character. For example:

A$= "SALES REPORT"

In the above statement, the dollar sign is a
variable type declaration character; that is, it
"declares" that the variable will represent a string.
A string consists of alphanumeric (both alphabetic
and numeric characters) text enclosed in quotation
marks.

Variables can be equal to:

^ a constant 10X = 12

1^ another variable 20Y = X

§1 an expression 30Z = X + Y*.5

"T3TUTORIAL

INTRODUCTION

A constant is the actual value assigned to a
variable that GW-BASIC uses during execution. It
can be either a numeric or string value.

Examples:

numeric constant

string constant

10X = 12

20 D$ = "DATE"

An expression is a grouping of variables and/or
constants and the operators (arithmetic operators
are discussed below) to produce a single value.

Examples:

ICY = PI * R A 2
20 GROSS = HOURS * RATE
30 NET = GROSS • (TAX + DED)

Only variables are valid on the left side of an
equal sign. A constant or expression can
never be placed on the left side of the equal
sign.

3T" TUTORIAL

INTRODUCTION

Arithmetic operators

Special characters called arithmetic operators
perform certain arithmetic operations. They are as
follows, in order of priority:

Prioritv Ooerator Ooerations

First A Exponentiation

Second Multiplication/Division

Third + Addition/Subtraction

When the system examines your GW-BASIC
statements, it will proceed with the calculations
based on priority (e.g., it will multiply before it
adds).

Example:

X = 6*2A4

This statement is calculated as follows:

• First, 2 is raised to the 4th power or 16.
(Exponentiation has a higher priority than
multiplication, so this operation is
performed first.)

• Next, 6 is multiplied by 16 giving 96.

• The value of the variable X is 96.

-nTUTORIAL

INTRODUCTION

If arithmetic ojjerators of the same priority are in
the same equation, then the system will work from
left to right on these operators.

Example:

D = A + B-C

This statement is calculated as follows:

• First, A is added to B.

• Then C is subtracted from the sum of A + B
giving the value of D.

Look at one more example to be sure you
understand how the priority works in calculating
equations.

Example:

Y = 10 + 6/3*4

This statement is calculated as follows:

• Since divide and multiply are the same
priority, the operation will be from left to
right. First, 6 is divided by 3 giving 2.

• Second, 2 is multipied by 4 giving 8.

• Third, 10 is added to 8 which results in 18.
(Addition is last since it has the lowest
priority.)

3^ TUTORIAL

INTRODUCTION

How to change priority of arithmetic operators

Priority of arithmetic operators can cause
problems. For example, you may have calculations
that require addition or subtraction before
multiplication or division. This can be
accomplished by putting parentheses around the
calculations you want done first.

Here are a few rules for the use of
parentheses.

Parentheses force the innermost
calculations to be accomplished first.

The number of left parentheses must
equal the number of right parentheses.

Extra parentheses have no effect on
calculations. (So if they help you, do
not hesitate to use them.)

"3:9TUTORIAL

INTRODUCTION

The following are some examples of algebraic
formulas and the way they would look as GW-
BASIC statements.

Formula Statement

A + B E = A + B/C
C

In the example below, the addition needs to take place
before the division is performed. So B + C is put in
parentheses in the statement.

W = A/(B + C)
B + C

In the next two examples, can you see why the
parentheses are used.

AeB X = (A*B)/(C*D)
C«D

F = (D-B)/(6*A)

In the example below, two sets of parentheses are
needed (one set is within another set). First, B needs to
be added to 1, then A is divided by the sum of B + 1. The
result is then squared. Remember, when using more
than one set of parentheses together, the innermost set
is calculated first.

Y = (A/(B + 1))A2
B + 1

tutorial

INTRODUCTION

Summary

Every program is made up of program lines
containing statements and each program line
must begin with a line number.

Variables are names used to represent either
numeric values or strings that are used in a
program.

Variable names can consist of letters and
numbers, but the first character of the
variable must be a letter.

Only variables are valid on the left side of the
equal sign. A constant or expression can
never be placed on the left side of the equal
sign.

Arithmetic operations are performed by
special characters called "arithmetic
operators".

The system performs calculations based on
priority (e.g., it will multiply before it adds).

If arithmetic operators of the same priority
are in the same equation, then the system
will work from left to right on these operators.

By using parentheses in the calculations, you
can change the priority of arithmetic
operators.

TUTORIAL

INTRODUCTION

The rules of using parentheses are:

^ Parentheses force the innermost
calculations to be accomplished first.

^ The number of left parentheses must
equal the number of right
parentheses.

> Extra parentheses have no effect on
calculations. (So if they help you, do
not hesitate to use them.)

TTT TUTORIAL

2. THE BASICS

Now that you are familiar with how to write
statements, you are ready to start hands-on
practice. You will begin with a short program that
nnds the value of the variable D.

Entering a new program

Be sure you have GW-BASIC loaded.

Using the NEW Command

Before entering a new program, the NEW command
should be given. The NEW command deletes the
current program in memory, if any, and clears all
variables. This means that if you have finished
working on a program and wanted to enter a new
program, you would use this command. If you did
not use the NEW command, the old program would
still be in memory and your new program would be
entered with it.

Type the command NEW and press the
Return key.

Nothing noticeable hai^ns, but memory
has been cleared. The Ok prompt and the
cursor are displayed on the screen.

TUTORIAL Tn

THE BASICS

Entering the Line Numbers

You can enter the line numbers in two ways.

• Type it in.

• Use the AUTO command to auto
matically enter the line numbers.

The AUTO command generates a line number
automatically after every carriage return. It will
number the lines 10,20,30, etc.

^ Type the command AUTO and press the
Return key.

The line number 10 and the cursor is
displayed on the screen (see below). You are
now ready to enter the program.

Ok
AUTO
10

Using the REM Statement

It is good practice to use REM (remark) statements
in your programs. This is a nonexecutable
statement which is used for documenting your
programs. REM statements are very helpful when
you or someone else must make program changes
or corrections at a later date.

(Note: If you make a typo while entering a line, just
use the Backspace key { to delete characters and
retype. If you discover a mistake after you have
pressed the Return key, just continue with the
exercise and in the next section "EDITING THE
PROGRAM" you will learn different ways to correct
your program.)

3^ TUTORIAL

THE BASICS

At line number 10,

► Type the following REM ***FINDS THE
VALUE OF *** and press the Return key.

This statement tells what the program does.

Enter program main body

You are ready to enter the main body of the
program. At line number 20,

^ Type the following A = 20 and press the
Return key.

At line number 30,

^ Type the following B = 15 and press the
Return key.

At line number 40,

> Type the following D = A + B and press the
Return key.

Stop entering program

To exit the AUTO command, at line number 50,

^ HOLD down the CTRL key while you press
the C key.

> Release both keys.

The system returns to command level.

You have entered your first program into internal
memory. That is, it is in the CPU's (control
processing unit) memory but not stored as a file on
disk. You will be told later how to save the
program on disk.

tutorial

THE BASICS

Editing the program

It is nearly impossible to write a "perfect" pro^am
the first time. Most programs will require editing
for typing errors, program statement errors, or
updating to meet future needs. In this section, you
will learn some of the basic editing features of GW-
BASIC.

(Note: As you make these changes, you will not see
any changes in the original program you just typed
or on the screen. Later on, you will be given
instructions on how to display your edited
program.)

So far, your program looks similar to this on the
screen;

Ok
NEW
Ok
AUTO
10 REM ***FINDS THE VALUE OF D***
20A = 20
30 8 = 15
40 D = A + B

50
Ok

Adding a line

If you needed to add a line between the line
numbers 20 and 30, you could use a line number
between 21 and 29, inclusive. This means that
between the line numbers 20 and 30, you could add
up to nine program lines. For this exercise, you will
use line number 25.

^ Type the following 25 X = 40 and press the
Return key.

Line 25 is added to the program in memory.

TUTORIAL

THE BASICS

You'll add another line between line numbers 30
and 40.

^ Type the following 35 Y = (A + B) * D and
press the Return key.

Line 35 is added to the program in memory.

Deleting a line

Next, delete a line from the program. To do this,
type the line number that you want deleted and
press the Return key.

^ Type the line number 40 and press the
Return key.

Line 40 is deleted from the program in
memory.

Editing a specific line

There are two ways to correct a line.

• Retype the program line starting with
the line number to be corrected.

• Use the EDIT command.

Using the first method, change program line
number 10 as follows:

► Type the following 10 REM ***FINDS THE
VALUE OF Y *** and press the Return key.

This line replaces the old line 10 in the
program in memory.

TUTORIAL TT7

THE BASICS

There will be times when you will not want to
retype the entire line. At these times, you would
use the EDIT command. Only one line at a time can
be edited.

To enter the EDIT mode,

k Type EDIT 35 and press the Return key.

The program line to be edited is displayed on
the screen, as shown below, with the cursor
in position waiting for instructions. You are
now in EDIT mode.

35 Y = (A + B)*D

For this exercise, you want to change "D" to "X".

► Press the right arrow key (->) until the
cursor is under the "D", as shown below.

35Y = (A + B)*D

You can now change the letter "D" to "X".

^ Type the letter X.

The letter "D" is changed to "X".

To exit the EDIT mode,

^ Press the Return key.

The system returns to command level.

3^ TUTORIAL

THE BASICS

Displaying the program

You have made several changes to your program
and the screen should look similar to the following:

Ok
NEW

OK

AUTO
10 REM ***FINDS THE VALUE OF D***
20 A = 20
308 = 15
40 D = A + B

50
Ok
25 X = 40
35 Y = (A + B) * D
40
10 REM ***FIND5 THE VALUE OF Y***
EDIT 35
35 Y = (A + B) * X

Using the LIST or LLIST Command

How does the program in memory look after these
changes have been made to it? The command to
display the entire edited program on the screen is
LIST. Or, if you wanted the program printed on the
printer, the command would be LLIST (when using
LLIST, be sure your printer is turned on).

^ Type LIST and press the Return key.

The following is displayed on the screen.

LIST

10 REM ***FINDSTHE VALUEOF Y***
20 A = 20
25X = 40
30B = 15
35 Y = (A + B) * X
Ok

TUTORIAL

THE BASICS

Displaying/printing the results

How do you get the results of your program to
display on the screen or print out on the printer?
The PRINT (displays result on screen) or LPRINT
(prints result on printer) statement is used in the
program.

Examples:

To display on screen

10X = 21

20 PRINT X

To print on printer

10X = 21

20 LPRINT X

To practice displaying the result on the screen, use
the program you just typed and edited. You'll need
to add a PRINT statement at the end of the program.

► Type 40 PRINT Y and press the Return key.

Line 40 is now added to the program in
memory. This tells the system you want the
value of Y displayed on the screen.

TUTORIAL

THE BASICS

Executing the program

The RUN command executes the program currently
in memory.

To run the program you just entered in memory,

> Type RUN and press the Return key.

The value of Y is displayed on the screen as
shown below.

RUN

1400
Ok

TTiTUTORIAL

THE BASICS

Saving the program

The SAVE command saves the program in memory
to disk. You'll need to type a file name to save the
program under. File names must be enclosed in
quotation marks when using the SAVE command.
To save the program you have entered in memory,

Type SAVE
key.

'FIRST" and press the Return

The program is saved as a file on the disk in
the default drive under the file name of
FIRST.

Some information about saving a program

• Each file (program) must have a distinct
name so that you will be able to recall it from
the disk. The file name is made of up to eight
alphanumeric characters. Alpha-numeric
means alphabetic and/or numeric characters
can be used.

MS-DOS will automatically generate the file
type of ".BAS" for the program source code
(your program).

• Saving a program does not clear it from
memory. You use the NEW command to do
that.

• Once the program is a file on the disk and you
recall it at a later date but make no
corrections to it, you do not have to resave it.
It is permanentlv stored on the disk.

• If you make corrections to the file (program)
and want to resave it, and if you resave it
with the same file name, the original version
is erased because the new version is written
on top of the old version. If you want to keep
the original version, just save the modified
version under a different file name.

T7T TUTORIAL

Display the files stored on a disk

When you have created several files on a disk,
there may be times when you will want to recall a
file but cannot remember its filename. Unless you
keep them recorded on paper, how else are you to
know what files are stored on what disk? To help
you remember, there is a command called FILES.
Look at the directory of your disk.

k Type PILES and press the Return key.

The directory of the disk is displayed on the
screen (similar to the one shown below). The
".BAS" following the file name FIRST is a
MS-DOS generated file type for program
source code.

Ok
FILES
d:\path

(List of files)

Ok

TUTOftlAL T23

THE BASICS

Load a file (program) into memory

If you have saved a program and would like to
recall it at a later date, use the LOAD command to
load the file (program) from the disk to internal
memory. This enables you to work with that file
(program). To practice loading a file (program),
use the one you just created and saved.

When using the LOAD command, you do not have
to use the NEW command to clear memory. The
LOAD command closes all open files and clears
memory.

► Type LOAD "FIRST" and press the Return
key.

The file (program) named FIRST is loaded
into internal memory.

When using the LOAD command, the file
name to be loaded must be enclosed in
quotation marks.

How do you know that the program named FIRST
has been loaded into memory?

► Type LIST and press the Return key.

The file (program) named FIRST is
displayed on the screen.

TW TUTORIAL

THE BASICS

Delete a Hie (program) from disk

To delete a file (program) from the disk, you will
use the KILL command. You'll create a file named
OLD.BAS and then delete it from the disk.

The FIRST.BAS program is in internal memory
and stored as a file on disk.

To create a file that you can delete, save the
program in internal memory to a different file
name on disk.

^ Type SAVE "OLD" and press the Return key.

Check the files on the disk to see that OLD.BAS
has been stored on the disk as a file.

^ Type FILES and press the Return key.

The system displays the files stored on the
disk. Notice that the file OLD.BAS has been
added.

You are now ready to delete the file OLD.BAS from
the disk.

^ Type KILL "OLD.BAS" and press the Return
key.

The file OLD.BAS has been deleted from the
disk.

Check the directory of the disk to see if the file has
been deleted.

^ Type FILES and press the Re turn key.

The file OLD.BAS is not listed on the disk.

T2BTUTORIAL

THE BASICS

Some information about deleting files

• The file name that you want to delete must
be enclosed in quotation marks.

Since you can have several files with the
same name but different file types
(extensions), you must include the one to
three-character extension (if any) in the the
KILL command (e.g., KILL"filename.ext").
For example, if the command KILL
"PAYROLL" was given without including the
extension, and the files PAYROLL.BAS and
PAYROLL.DAT existed on the disk, the
system would not know which file to delete.
The system would display the "File not
found" error message.

3:25- TUTOftlAL

THE BASICS

Exit GW-BASIC

If you decide not to continue with the next section
until a later date, you can exit GW-BASIC. But
before you exit GW-BASIC, it is recommended to
always do a RESET command.

^ Type RESET and press the Return key.

All disk files are closed and the directory
information is written to the disk.

To return to the MS-DOS operating system, enter
the following command.

^ Type SYSTEM and press the Return key.

The MS-DOS system prompt or ScreenMate
is displayed on the screen. You are now
back in the MS-DOS operating system.

TUTORIAL T27

THE BASICS

More about files

When using the commands SAVE, FILES, LOAD and
KILL, you can reference files on other disk drives.

For example, if you wanted to save a program on
the disk in Drive B, you would give the command

SAVE "B:filename"

where B could be replaced with any disk drive A-H.

For more information about these commands, see
the GW-BASIC Reference section in this manual.

T7S- TUTOftlAL

THE BASICS

Summary

The NEW command deletes the current
program in memory and clears all variables.
Use this command before entering a new
program.

The AUTO command generates a line number
automatically after every carriage return.

To exit the AUTO command, hold down the
CTRL key while you press the C key.

• The REM statement is a nonexecutable
statement used to document the program.

To add a line to an existing program, use a
line number between two existing line
numbers where the new line is to be added
and then type the new line.

To delete a line from a program, type the line
number and press the Return key.

There are two ways to edit a line. One way is
to retype the entire line. The other way is to
go into EDIT mode and make the changes.

After editing a program, use the LIST
command to display the entire program on
the screen or use the LLIST command to print
the entire program on the printer. This way
you can see how the edited program looks.

TUTORIAL T55

THE BASICS

To get the results of your program to display
on the screen or print out on the printer, use
the PRINT statement or LPRINT statement,
respectively, in your program.

The RUN command executes the program
currently in memory.

The SAVE command saves a program on disk.

The FILES command displays the files stored
on a disk.

The LOAD command loads a file (program)
from disk into internal memory.

The KILL command deletes a file from the
disk.

The SYSTEM command returns the system to
the MS-DOS operating system.

When using the commands SAVE, FILES,
LOAD, and KILL, you can reference files on
other drives by putting the drive designator
(A-H) with the file name enclosed in quotes
(e.g., SAVE "Bifilename").

3^30" TUTOftlAL

3. INPUT AND OUTPUT DATA

This section describes how to input data needed in
the program and how to output data from the
program.

TnTUTORIAL

INPUTAND OUTPUT DATA

Input data

There are two methods of inputting data to the
program.

• Use READ/DATA statements in the
program.

• Use INPUT statement(s) in the
program.

READ/DATA statements

If you had a programming problem that required
six values, you could assign the values to the
variables as follows:

10U = 5

20V = 3
BOW = 7
40 X = 10
50 Y = 35
60 Z = 1.5

You could also shorten this program by using the
READ/DATA statements as shown below.

10READU, V,W,X, Y, Z
20 DATA 5, 3. 7, 10.35, 1.5

The READ statement lists the variables (separated
by commas), and the DATA statement lists the
values (also separated by commas) for each
variable in the READ statement. When the system
executes statement 10, the variable U will have
the value of 5, variable V will have the value of 3,
variable W will have the value of 7, and so on.

TUTORIAL

INPUT AND OUTPUT DATA

Important information

READ statement

A READ statement must always be
used in conjunction with a DATA
statement.

READ statements assign variables to
DATA statement values on a one-to-one
basis.

DATA statement

DATA statements are nonexecutable
and may be placed anywhere in the
program.

They may contain as many values
(separated by commas) as will fit on a
line.

Any number of DATA statements may
be used in a program.

TUTORIAL T33

INPUT AND OUTPUT DATA

Detailed explanation

To better understand how the READ/DATA
statements work, look at the following program:

10 DATA 1.5, 3
20 READ X, Y, Z
30 DATA 10
40 READW
50 READ X, Y
60 DATA 5, 1, 15, 2.5
70 READ T

When the RU N command is given, the system takes
all the DATA statements and sets up a table as
illustrated below.

DATA TABLE

1.5

from DATA statement 10

3

10 from DATA statement 30

5 \
1

^ from DATA statement 60
15

2.5/

TUTORIAL

INPUT AND OUTPUT DATA

The first READ statement takes data from the table
and places the data in variables X, Y, and Z,
respectively.

20 READ X, Y, Z

DATA TABLE

1.5

10

15

2.5

TUTORIAL T3B

INPUT AND OUTPUT DATA

The first three numbers are used up, so the next
READ statement will start with the fourth number
in the table.

DATA TABLE

40 READ W

15

2.5

TW TUTORIAL

INPUT AND OUTPUT DATA

Notice that in the third READ statement, the
variable names X and Y are used again, but the
data in the variables are different because the
READ statement has assigned new values to them.
(That's why they are called variables.)

50 READ X, Y

DATA TABLE

15

2.5

Before the above READ statement, X and Y had the
values of 1.5 and 3, respectively. After the above
READ statement, the values of X and Y have
changed to 1 and 15, respectively.

TUTORIAL 3^

INPUT AND OUTPUT DATA

The final READ statement takes the last data item
from the data table.

DATA TABLE

50 READ

After these READ and DATA statements are
executed, the variables will have the values of:

X = 1

Y = IS
Z = 10
W = 5

T = 2.5

If you are having trouble understanding READ
and DATA statements, review this section again.

3^38" TUTORIAL

INPUT AND OUTPUT DATA

Exercise

Practice using the READ/DATA statements using
the program entitled FIRST that you created
earlier. You must have GW-BASIC loaded in your
system as well as the file (program) FIRST loaded
in internal memory.

Load the file (program) FIRST into internal
memory.

^ Type LOAD "FIRST" and press the Return key.

The program FIRST is loaded into internal
memory.

Check to be sure the program FIRST is loaded into
internal memory.

^ Type LIST and press the Return key.

The FIRST program should look similar to the
following:

Ok
LOAD "FIRST"
Ok
LIST

10REM ***FINDS THE VALUE OF Y***
20A = 20
25 X = 40
30B = 15
35 Y = (A + B) * X
40 PRINT Y
Ok

First, you need to put in the READ statement,

^ Type 20 READ A, X, B and press the Return
key.

This program line replaces line 20.

TUTORIAL T55

INPUT AND OUTPUT DATA

Next, enter the DATA statement.

► Type 30 DATA 20,40,15 and press the Return
key.

This program line replaces line 30.

You do not need program line 25 any more. So
delete it.

► Type 25 and press the Return key.

Program line 25 is deleted.

Now that you have made these changes, display
the modified program on the screen.

> Tjrpe LIST and press the Return key.

The following should be displayed on the screen:

Ok
LIST
10 REM ***FINDS THE VALUE OF Y***
20 READ A, X,B
30 DATA20,40, IS
3Sy = (A + B)*X
40PRINTY
Ok

Before you run the program, you need to change
the PRINT statement in line 40. The way the
program above is written will only display the
value 1400 on the screen. You may not know what
it is. To program a message that will tell you the
value of Y.

► Type 40 PRINT "THE VALUE OF Y IS" Y and
press the Return key.

The text in quotes above is called a "string" and it
will display on the screen before the value of Y is
displayed. When you have a PRINT or LPRINT state
ment followed by text in quotes, that text will be
displayed/printed exactly as it appears between the
quotation marks.

TW TUTORIAL

You can now execute the program.

^ Type RU N and press the Return key.

The following is displayed on the screen.

RUN

THE VALUE OF Y IS 1400
Ok

If you would like to save this program, you can use
the SAVE command to do so. Remember, if you
save it using the name FIRST, the revised program
will be saved over the original. If you save the
revised program with a different filename, you will
have the original and the revised versions stored
on disk.

TUTORIAL

INPUT AND OUTPUT DATA

INPUT statement

Another way of entering data into a program is the
INPUT statement. This statement allows data to be
entered via the keyboard. When an INPUT state
ment is encountered, program execution pauses
and a question mark is displayed to indicate the
program is waiting for data to be entered. The data
that is entered is assigned to the variable(s) in the
INPUT statement.

This is how it works using a simple program.

► Type N EW and press the Return key.

Internal memory is cleared.

With internal memory cleared, you are ready to
enter the program.

► Type 10 INPUT X and press the Return key.

► Type 20 Y = X 2 and press the Return key.

(Note: Use the SHIFT + 6 keys to get the ^
symbol.)

► Type 30 PRINT X "SQUARED IS" Y and press
the Return key.

The program is in internal memory. You are now
ready to execute it.

► Type RUN and press the Return key.

The following is displayed:

RUN
7

Twr TUTORIAL

INPUT AND OUTPUT DATA

^ Type the number 5 and press the Return
key.

The following is displayed:

5 SQUARED IS 25
Ok

If you want to save this program, use the SAVE
command.

There can be more than one variable listed in the
INPUT statement, but they must be separated by
commas as demonstrated by the INPUT B, C state
ment in the example program on the next page.
When entering more than one data item, you must
separate them with commas The number of data
items supplied must be the same as the number of
variables in the list.

A prompt string may also be used to let you know
what type of data to enter. The prompt string is
enclosed in quotation marks and is followed by a
semicolon and the variable name (e.g., INPUT
"WHAT IS THE RADIUS";R). When the program is
executed, the prompt string is displayed before the
question mark.

Before entering the new program, clear internal
memory.

^ Type NEW and press the Return key.

Since there are quite a few lines to this program,
use the AUTO command to automatically number
the lines.

^ Type AUTO and press the Return key.

The system automatically starts line
numbering with the number 10.

■T53TUTORIAL

INPUT AND OUTPUT DATA

Enter the following program. Type each of the
lines below. Be sure to end each line with a
Return.

REM ***Area of circle and value of D***
PI = 3.14
INPUT "WHAT IS THE RADIUS"; R
INPUT B,C
A = PI*Ra2

D = B + C

PRINT "THE AREA OF THE CIRCLE IS"; A
PRINT "THE VALUE OF D IS"; D

The program is in internal memory. To exit the
AUTO command,

► HOLD DOWN the CTRL key while you press
the C key. RELEASE both keys.

Before running the program, check it for typos.
Use the LIST command to display the program on
the screen. If you find any error(s), just retype the
program line. ^

After you have checked the program for errors, you
can run it.

► Type RU N and press the Return key.

The system prompts you

WHAT IS THE RADIUS? _

► Type 7.4 and press the Return key.

The system prompts you

7

► Type 20, 56 and press the Return key. Be
sure to include the comma.

3^ TUTORIAL

INPUT AND OUTPUT DATA

The following will display on the screen:

THE AREA OF THE CIRCLE IS 171.9464

THE VALUE OF D IS 76

Ok

Responding to INPUT with too many or too few
items, or with the wrong type of data (string
instead of numeric, etc.) causes the message ?Redo
from start to be displayed on the screen. No
assignment of input values is made until an
acceptable response is given.

If you do not feel like you understand the INPUT
statement and how it works, review this section.

tUTOftlAL T3B

INPUT AND OUTPUT DATA

Output data

This is a more detailed section on the way output
data can be displayed on the screen using the
PRINT statement or printed on the printer using
the LPRINT statement.

Enter the following program and execute it. The
commas, semicolons, and quotation marks are very
important to the PRINT/LPRINT statement as will be
explained later. Remember, if you make a mistake
when entering a program line before you press the
Return key, use the Backspace key to correct it.

Type NEW and press the Return key.

Internal memory is cleared.

Type AUTO and press the Return key.

System automatically starts line numbering
with the number 10.

Type each line below. Be sure to end each line with
a Return.

READ X, Y, Z
DATA 10.5, 5000,25
PRINT
PRINT

PRINT "Example 1",X, Y, Z
PRINT

PRINT "Example 2"; X; Y; Z
PRINT

PRINT "Example 3",
PRINT X,
PRINT Y

PRINT

PRINT "Example 4";
PRINTX; Y;
PRINT Z

PRINT

PRINT "Example 5", X + Y + Z

TUTORIAL

INPUT AND OUTPUT DATA

To exit the AUTO command,

y HOLD DOWN the CTRL key while you press
the C key. RELEASE both keys.

Before running the program, use the LIST command
to display the program on the screen. CHECK to
be sure the program lines are exactly as shown
below. If not, just retjrpe the program line(s) that is
incorrect.

10 READ X, Y,Z
20 DATA 10.5,5000,25
30 PRINT
40 PRINT

50 PRINT "Example 1", X, Y, Z
60 PRINT
70 PRINT "Example 2"; X; Y; Z
80 PRINT

90 PRINT "Example 3",
100 PRINT X,
110 PRINT Y

120 PRINT
130 PRINT "Example 4";
140 PRINT X; Y;
150 PRINT Z
160 PRINT
170 PRINT "Example 5", X + Y + Z

TUTORIAL

INPUT AND OUTPUT DATA

Now run the pro^am to see how the different
PRINT statements display on the screen.

k Type RU N and press the Return key.

The data is displayed on the screen similar
to the following:

RUN

Example 1 10.5 5000

Example 2 10.5 5000 25

Examples 10.5 5000

Example 4 10.5 5000 25

Example 5 5035.5
Ok

25

3^35" TUTORIAL

INPUT AND OUTPUT DATA

To further understand how each of the PRINT
statements work and why, examine the statements
below:

1&R£A{>X.Y.2
20 DATA lO.S, 5000,25

Assigns value to the variables.

30 PRINT

40PWNT

Displays two blank lines.

50 PRINT r, X, V, 2

GW-BASIC divides the line into print columns of
14 spaces each (5 columns on the screen and 9
columns on the printer; this may vary depending
on the printer). Separating the variables or
expressions with a comma in the PRINT or LPRINT
statements will cause values to be displayed or
printed in columns across the screen or paper. If
there are not enough columns in one line on the
screen or printer, some of the data will be displayed
or printed on the next line.

TUTORIAL T49

INPUT AND OUTPUT DATA

eOimiNT

Displays a blank line.

Separating variables or expressions with a
semicolon in the PRINT or LPRINT statements will
cause values to be displayed or printed
immediately after the last value. (Typing one or
more spaces between the variables or expressions
has the same effect as typing a semicolon.)

You will notice after running the program that
there are a few spaces separating the numbers.
This is because there are a few rules the system
must follow when printing numbers. They are;

Printed numbers are always followed
by a space.

Positive numbers are preceded by a
space.

Negative numbers are preceded by a
minus sign.

SPRINT

Displays a blank line.

330" TUTORIAL

INPUT AND OUTPUT DATA

95 PRINT

lOOmiNTX,
110 PRINT y

120 PRINT

130 PRINT "Exaitlpte 4';
140PRINTX;V;
ISO PRINT Z

When a comma or semicolon terminates the list of
variables or expressions in a PRINT or LPRINT
statement, the next PRINT or LPRINT statement
begins displaying-or printing on the same line,
spacing accordingly.

lOOPRIPfF

Displays a blank line.

170 PRINT "Example 5', X + Y + 2

Calculations can also be performed in the PRINT or
LPRINT statement and the result displayed or
printed.

Review this section again if you do not fully
understand the PRINT or LPRINT statement. Also,
do some practicing on your own.

TUTORIAL

INPUT AND OUTPUT DATA

Summary

There are two methods for inputting data into
a program. One way is using the READ/DATA
statements and the other way is using the
INPUT statement.

Some important facts about READ/DATA
statements are:

READ Statement

Must always be used in conjunction
with a DATA statement.

Assigns variables to DATA state
ment values on a one-to-one basis.

DATA Statement

Nonexecutable and may be placed
anywhere in the program.

May contain as many values as will
fit on a line (separated by commas).

Any number of DATA statements
may be used in a program.

Some important facts about the INPUT
statement are:

A question mark is displayed to indicate
the program is waiting for data to be
entered.

You can use a prompt string before the
question mark to let you know what type
of data to enter.

The data that is entered is assigned to
variable(s) in the INPUT statement.

T?T TUTORIAL

INPUT AND OUTPUT DATA

There can be more than one variable
listed in the INPUT statement, but these
variables must be separated by commas.

When entering more than one data item
to the INPUT prompt, the data items are
also separated by commas.

The number of data items you enter at
the INPUT prompt must be the same as
the number of variables in the INPUT
statement..

Responding to INPUT with too many or
too few items or with the wrong type of
data (string instead of numeric, etc.)
causes the message ?Redo from start to
be displayed on the screen. No
assignment of input values is made until
an acceptable response is given.

Some important facts about the PRINT/LPRINT
statement are:

Just using a PRINT/LPRINT statement on
a program line by itself will cause a
blank line to be displayed/printed.

GW-BASIC divides the line into print
columns of 14 spaces each. Separating
the variables or expressions with a
comma in the PRINT/LPRINT statement
will cause values to be displayed/printed
in columns across the screen/paper.

Separating variables or expressions
with a semicolon in the PRINT /LPRINT
statement will cause values to be
displayed/printed immediately after the
last value. (Typing one or more spaces
between the variables or expressions has
the same effect as typing a semicolon.)

T53TUTORIAL

INPUT AND OUTPUT DATA

Here are a few rules that apply when
displaying/printing numbers:

o Printed numbers are always
followed by a space.

o Positive numbers are preceded by a
space.

o Negative numbers are preceded by
a minus sign.

When a comma or a semicolon
terminates the list of variables or
expressions in a PRINT or LPRINT state
ment, the next PRINT or LPRINT
statement begins displaying or printing
on the same line, spacing accordingly.

Calculations can also be performed in
the PRINT or LPRINT statement and the
results displayed or printed.

333" TUTORIAL

*** NOTICE

By now, you should be familiar with entering and executing
programs, so there will be no more step-by-step instructions. Enter
the example programs given to see how they run and modify them
with your own ideas. This will help you be creative in your
programming.

Just as a reminder, here are the steps for creating and saving a
program:

• Clear internal memory using the NEW command.

• Use the AUTO command to automatically number
lines (optional).

• Type in the program. Be sure to correct typos.

• LIST out the program, check for errors, and compare it
to the example program for accuracy. If an error is
found, just retype the program line.

• Execute the program using the RU N command.

• If you want to save the program, use the SAVE
command. Remember to put the file name in quotes
(e.g., SAVE "filename").

The subjects covered in the last part of this tutorial may be more
complicated to understand. If there is a section that you do not
understand, study the example program given, then put yourself in
the computer's place and "walk" through the program by putting on
paper what the program tells you to.

TUTORIAL 335

Notes:

T35 TUTORIAL

4. BRANCHING

There are two types of branching. One is
unconditional and the other is conditional. Both
are discussed in this section.

Unconditional branching

The GOTO statement is used to branch
unconditionally out of the normal program
sequence to a specified line number and continue
execution of the program from that line number.
Whenever the system encounters the GOTO
instruction, it will branch to the program line
specified and continue.

Example:

10 READ R
20 PRINT "R R,
30 A = 3.14* RA2
40 PRINT "AREA ="; A
50 GOTO 10
60 DATA 5,7,12
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of DATA in 10
Ok

T37TUTORIAL

BRANCHING

When no more data exists, the system will
terminate the program with an Out of DATA in 10
message. In this particular case, the Out of DATA
in 10 message is not an error but a valid
termination of the program.

The following is an explanation of how the
program is executed (program flow).

Program flow

IIIRgADR

The system assigns a value to the variable R from
the values listed in the DATA statement in
program line 60.

iO PRINT "8

The text "R = " and the value of R are displayed on
the screen.

BOA* 3.14*RA2

The value of A is calculated.

3:55- TUTORIAL

BRANCHING

40 PRINT "AREA A

The text "AREA =" and the value of A are
displayed on the screen.

50GOTOID

Go to program line 10 and repeat program lines 10,
20, 30, 40 and 50 until all the values listed in the
DATA statement are exhausted.

60 DATA 5,7^12

These values will be assigned to R.

TUTORIAL ■3:59

BRANCHING

Conditional branching

GW-BASIC has the ability to compare relative
values of two numbers using the IF statement and
Relational Operators. It can also branch if the
result of the comparison is true. The following is
the list of Relational Operators and their function.

Relational
Operator Function

X > Y is X greater than Y?
X < Y is X less than Y?
X = Y is X equal to Y?
X > = Y is X greater than or equal to Y?
X < = Y is X less than or equal to Y?
X <> Y is X not equal to Y?

Examine the example program below.

10A = 10:8 = 15
20 IF A > B GOTO 50
30 PRINT B
40 END
50 PRINT A
RUN

15

Ok

Notice there are two statements on program line
10. More than one statement can be placed on a
program line, but each statement must be
separated by a colon.

Also, notice program line 40 contains the END
statement. This tells the system to end the
program and return to the command level. By
examining the program, can you tell why the END
statement is located here?

TB(r TUTORIAL

BRANCHING

If the END statement was not located at program
line 40, the system would have also displayed the
value of A. You do not have to have an END
statement at the end of a program. The system
automatically knows there are no more program
lines to execute.

Program flow

IdA = 15

The variables A and B are assigned the values of
10 and 15, respectively.

2dlFA>BGOTO50

A conditional statement is encountered which asks
the question "Is the value of A greater than B?".

~ If the conditional statement is true (A is
greater than B), then

► Go to program line 50.

^ Print the value of A.
(program line 50)

► Return to command level.

- If the conditional statement is false (in
this case, it is), then

► Continue with the next program
line (line 30).

► Print the value of B.
(program line 30)

► Return to command level,
(program line 40)

tutorial

BRANCHING

Summary

The GOTO statement is called the
"unconditional branch".

The IF statement is called the "conditional
branch" because after the IF statement is a
relational operator by which a comparison is
made. If the comparison is true, the system
branches. If it is false, the system goes to the
next program line and continues executing
the program.

Use the colon ":" to separate two statements
on the same program line.

Use the END statement to end the program
and return to command level.

Tsr TUTORIAL

LOOPING

The FOR . . . NEXT statements allow a series of
instructions to be performed in a loop a given
number of times. When you set up a loop in your
program, it starts with a FOR statement and ends
with a NEXT statement. All instruction and
calculation statements that are to be repeated, in
order, should be placed between these two
statements.

Example:

10 FOR I =
20 PRINT I;
30 NEXT
RUN
1 2 3 4

Ok

1TO10

5 6 7 8 9 10

Program flow

10FORI = 1TO10

The FOR statement starts the loop.

The variable I is used as a counter so the system
will know bow many times the loop has been
executed.

The first value (1) is the initial (starting) value of
the counter. The second value (10) is the final
value of the counter. So in this example, the loop
begins with 1 and is performed ten times.

"T53TUTORIAL

LOOPING

20 PRINT I;

Displays the value of I on the screen. The
semicolon causes the changing value of I to be
displayed on the same line.

30 NEXT

When the NEXT statement is encountered, the
counter (variable I) is incremented by 1. A check is
performed to see if the value of the counter is now
greater than the final value (10). If it is not
greater, it branches back to the program line after
the FOR statement and the process is repeated. If it
is greater, the system returns to command level.

The counter variable in the NEXT statement may
be omitted as shown in the above example. Or, you
can include the counter variable in the NEXT
statement (e.g., 30 NEXT I).

TUTORIAL

LOOPING

Setting the initial and/or final values

On the previous pages, the initial and final values
were set in the FOR statement (e.g., FOR I = 1 TO
10). You can also use variables and/or expressions
to set the initial and/or final value(s).

Using variables

Variables can be used instead of numbers in the
FOR-NEXT loop providing that the variables have
been assigned values previously in the program.
Examine the following example programs.

Example:

10X = 2:Y = 12
20 FOR Z = X TO Y

30 PRINT Z;
40 NEXT Z
RUN
23456789 10 11 12
Ok

In the above example, program line 10 assigns
value to the variables X and Y which are used as
the initial and final values of the FOR-NEXT loop.

The variables of the FOR-NEXT loop can also be
assigned values using the INPUT or READ/DATA
statements.

Examples:

10 REM ** Using READ/DATA statements
20 READ X, Y
30 FOR Z = X TO Y
40 PRINT Z;
SO NEXT Z
60 DATA 2, 12
RUN
23456789 10 11 12
Ok

TUTORIAL T55

LOOPING

Examples: (cont'd)

10REM** Using INPUT Statement
20 INPUT "Enterthe initial value"; X
30 INPUT "Enter the final value"; Y
40 FOR Z = X TO Y
SO PRINT Z;
60 NEXTZ
RUN

Enter the initial value? 2
Enterthe final value? 12
23456789 10 11 12
Ok

Using expressions

An expression can be used to set the initial and/or
final value of the FOR-NEXT loop. The system
calculates the expression(s) before the loop is
executed the first time and does not recalculate the
expression(s) again.

Example:

10Y = 2

20 FOR X = Y + 2TOY*6
30 PRINT X;
40 NEXTX
RUN

4 5 6 7 8 9 10 11 12
Ok

In program line 20, Y is added to 2 to make the
initial value of the loop 4. Also, Y is multiplied by
6 to make the final value of the loop 12.

TSS' TUTORIAL

LOOPING

Using the STEP statement with FOR

You can have a STEP statement with the FOR
statement. This is used when you want to
increment by more than 1 or decrement the value
of the counter. Examine the programs below.

Examples:

10 FOR I = 210 10 STEP 2
20 PRINT I;
30 NEXT I
40 PRINT-.PRINT
SO PRINT "I ="; I
60 PRINT "LOOP TERMINATED"
RUN
2 4 6 8 10

I = 12
LOOP TERMINATED
Ok

In the above program, the STEP 2 tells the system
to increase the value of I by 2 every time it
executes the FOR-NEXT loop until I is greater than
10.

Take the above program and modify it so that the
counter is decremented by 2.

10 FOR I = 10TO2STEP-2
20 PRINT I;
30 NEXT I
40 PRINT; PRINT
50 PRINT "I ="; I
60 PRINT "LOOPTERMINATED"
RUN
10 8 6 4 2

I = 0
LOOP TERMINATED

Ok

Notice that when decrementing, the initial value is
larger than the final value of the FOR-NEXT loop.

The STEP -2 decrements the value of the counter by
2 going from a large value to a smaller one.

TUTORIAL T57

LOOPING

Also, the counter can be stepped using fractional
increments.

Example:

10 FOR C = 10 TO 13 STEP .5
20 PRINT C;
30 NEXT
RUN
10 10.5 11 11.5 12 12.5 13
Ok

The STEP .5 increments the value of the counter by
.5 each time through the loop until the final value
is greater than 13.

TUTORIAL

LOOPING

Nested FOR... NEXT loops

FOR-NEXT loops may be nested, that is, a FOR-
NEXT loop may be placed within the context of
another FOR-NEXT loop. When loops are nested,
each loop must have a unique variable name for its
counter. The NEXT statement for the inside loop
must appear before that for the outside loop. The
variable(s) in the NEXT statement may be omitted,
in which case the NEXT statement will match the
most recent FOR statement.

10FORX = 1 TO 3
20 FOR Y = 1 TO 2
30 PRINT "Y = " Y
40 NEXT
50 PRINT
60 PRINT "X = " X
70 PRINT
80 NEXT
RUN

]inner

loop
outer

loop

Y = 1

Y = 2

X = 1

Y = 1

Y = 2

X = 2

Y = 1

Y = 2

X = 3

Ok

— inner loop executed

— outer loop initial value set

— inner loop executed

— outer loop incremented by 1

i nner I oop executed

outer loop executed,
final value reached

TUTORIAL T59

LOOPING

After the RUN command has been given, you can
see how the program on the previous page is
executed with nested loops. The outer loop is set to
the initial value and the inner loop is executed
until the final value is reached. Then the outer
loop is incremented and the inner loop again
executes until the final value. This continues until
the outer loop reaches the final value.

When you have a program with two or more
successive NEXT statements, you can put them on
one NEXT statement line as shown below.

5 rem **nested loops**
10FORX = 1 T0 2
20 PRINT "OUTSIDE"
30FORY = 1 T02
40 PRINT" INSIDE"
SONEXTY.X
RUN
OUTSIDE

INSIDE
INSIDE

OUTSIDE

INSIDE
INSIDE

Ok

1
inner

loop

outer

loop

In program line 50, the inside loop counter (Y) is
listed first, then the outside loop counter (X) is
listed.

3:70- TUTORIAL

Summary

LOOPING

FOR-NEXT statements allow a series of
instructions to be performed in a loop a given
number of times.

When you set up a loop in your program, it
starts with a FOR statement and ends with a
NEXT statement. All instruction and
calculation statements that are to be repeated
should be placed between these two
statements.

FOR-NEXT statements can be used in a
multiple statement program line.

Variables can be used to set the initial and/or
final values of the FOR-NEXT loop providing
that the variables have been assigned values
previously in the program by the programmer
or by using either the INPUT or READ/DATA
statements.

An expression can be used to set the initial
and/or final value(s) of the FOR-NEXT loop.

A STEP can be used with the FOR statement,
when you want to increment by more than 1
or you want to decrement.

FOR-NEXT loops may be nested; that is, a FOR-
NEXT loop may be placed within the context of
another FOR-NEXT loop.

TUTORIAL Tn

LOOPING

Notes:

3^72 TUTORIAL

6. ARRAYS

An array is a group of related data items which are
stored in memory and can be accessed by a
subscripted variable.

The subscripted variable consists of an array
variable name followed by a subscript enclosed in
parentheses. For example, X(5) is a subscripted
variable; X5 is not.

The subscripted variable (as with the simple
variable) names a memory location inside the
system where data is to be stored.

Arrays are helpful when you want to work with a
large quantity of related data. It is easier to work
with one variable that is subscripted than to have
many variables (e.g., A, B, C, D, E, etc.) and trying
to remember what each of these variables
represent.

This section will describe the one-dimensional
array and the two-dimensional array.

TUTORIAL "T73

ARRAYS

One-dimensional array

A one-dimensional array consists of a variable
name with one subscript, i.e., X(5).

Think of it as follows;

Subscripted Variable
(where X is the array
variable name and (n)
is the subscript)

Data stored in location

X(0) 25

X(1) 10

X(2) 13

X(3) 51

X(4) 24

1 1 33

where the value of X(0) is 25, X(l) is 10, X(2) is 13,
and so on.

3:73- TUTORIAL

ARRAYS

Variables can be used for subscripts. For example,
the subscripted variable, X(A), has the variable A
for a subscript.

If A = 5 then X(A) would be X(5), the value of
X(5) = 33.

If A = 2 then X(A) would be X(2), the value of
X(2) = 13.

You can also use expressions as subscripts. For
example, the subscripted variable X(Y + 3) when
Y=l. After the system calculates the subscript,
the subscript would be four. So the subscripted
variable would be X(4) and the value X(4) = 24.

TUTORIAL Tn

ARRAYS

Assigning values to an array

How are values assigned to an array? The INPUT
or READ/DATA statements with a FOR-NEXT loop
can be used to accomplish this.

Using the INPUT statement

In the example below, the INPUT statement is used
to fill the example array given on page 3-74.

Example:

10 FOR Y = 0TO5
20 PRINT "Enter value for X("; Y;
30 INPUT X(Y)
40 NEXT X
RUN

Enter value for X(0)? 25
Enter value for X(1)? 10
Enter value for X(2)7 13
Enter value for X(3)7 51
Enter value for X(4)7 24
Enter value for X(5)7 33
Ok

Notice that the counter Y in the FOR statement is
also used for the subscript in X(Y), causing the
subscript to be incremented by one each time
through the loop (e.g., first time through Y=0 so
X(Y) is X(0), second time through Y = 1 so X(Y) is
X(l), and so on).

Using this program, the system asks for input six
times. After the six values have been entered, the
first value 25 is assigned to X(0), the second value
10 is assigned to X(l), the third value 13 is
assigned to X(2), and so on.

TUTORIAL

ARRAYS

Using READ/DATA statements

In the example below, READ/DATA statements are
used to fill the example array with data.

Example:

5 rem ***using READ/DATA statements
10 FOR Y = 0TO5

20 READ X(Y)
30 PRINT "X("; Y; ") = X(Y)
40 NEXT
50 DATA 25, 10, 13, 51,24, 33
RUN

X(0) = 25
X(1) = 10
X(2) = 13
X(3) = 51
X(4) = 24
X(5) = 33
Ok

This program is the same as the one on the
previous page except that instead of inputting data
via the keyboard you are reading the data from the
program.

TUTORIAL TT)

ARRAYS

Direct input

A third way to fill an array with data is to store a
constant value directly into the array.

Example:

10 rem ***set individual subscripts***
20X(0) = 25:X(1) = 10
30X(2) = 13:X(3) = 51
40X(4) = 24:X(5) = 33
50 rem ***display array values***
60 FOR I = 0 TO 5
70 PRINT "X("; I; ") = X(l)
80 NEXT
RUN
X(0) = 25
X(1) = 10
X(2)= 13
X(3)= 51
X(4) = 24
X(5) = 33
Ok

T7W TUTORIAL

ARRAYS

Using the DIM statement

The DIM statement is used to specify the maximum
value for the subscript of an array variable and
allocate storage accordingly.

If an array is used without a DIM statement, the
maximum value of its subscript is assumed to be
10. If you attempt to enter an array variable with
the subscript of ll, you will get a Subscript out of
range error message.

If you wish to have an array with a subscript
greater than 10, you need to use the DIM
statement.

Example:

10 REM ***DIM Statement***
20 DIM A(20)
30FORX = 1 TO 15
40A(X) = X
50 PRINT A(X);
60 NEXT
RUN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ok

In the above program, the A{X) array is
dimensioned to have a subscript of 0 to 20. You can
have up to 20 as your subscript but no greater. If
you try to use 21 as a subscript, you will get the
error message Subscript out of range.

TUTORIAL "3:79

ARRAYS

An array can be dimensioned only once during the
run of a program. The system will give an error
message and stop executing the program if it comes
to a DIM statement for the same array a second
time. However, you can use more than one DIM
statement in a program if you are dimensioning
different arrays.

Example:

Not allowed

10DIMX(20)
20 FOR I = 1T015:X(I) = l:PRINTX(l);:NEXT
30 DIM X(30)
RUN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Duplicate Definition in 30
Ok

Allowed

10DIMX(20)
20 FOR I = 1 TO 15:X(I)
30 PRINT
40 DIM Y(30)
50 FOR I = 1 TO 10:Y(I)
RUN

123456789 10
1 23456789 10
Ok

= l:PRINTX(l);:NEXT

= l:PRINTY(l);:NEXT

11 12 13 14 15

JW TUTORIAL

ARRAYS

More Information on the DIM Statement

(Note: The two example programs below are not
working examples. They only show the format of
how to use the statement!)

Variables and expressions can also be used to
dimension arrays.

Example:

lOA = 25:B = 100:C = 10
20 DIM X(B)
30 DIM Y$(A)
40DIMZ(C+11)

All the DIM statements can be on one line
separated by commas.

Example:

10A = 25:B = 100:C = 10

20 DIM X(B), DIM Y$(A), DIM Z(C+ 11)

T51TUTORIAL

ARRAYS

Two-dimensional array

The two-dimensional array is similar to the one-
dimensional array except that is has two subscripts
instead of one (e.g., X(l,4)). Think of it as an array
made up of rows and columns.

X(1,1) 24 X(1,2) 15

X(2,1) 10 X(2,2) 33

X(3,1) 87 X(3,2) 90

X(4,1) 34 X(4,2) 16

where the value of X(l,l) is 24, X(3,2) is 90, X(3,l)
is 87, and so on.

3:32" TUTORIAL

ARRAYS

To get a data item out of the array, you must
address it. This is done by telling the system which
row and column to look for.

X(3.2)

Name of array Row address Column address

As with one-dimensional arrays, variables can be
used for subscripts. For example, the subscripted
variable, X(A,B), has the variables A and B for
subscripts.

If A=2 and B = 2 then X(A,B) would be X(2,2), the
value ofX(2,2) = 33.

If A=4 and B = 2 then X(A,B) would be X(4,2), the
valueofX(4,2) = 16.

You can also use expressions as subscripts. For
example, the subscripted variable X(Y-2,Y-1)
when Y = 3. After the system calculates ,the
subscripts, the subscripted variable would be
X(l,2) and the value of X(l,2) = 15.

T53TUTORIAL

ARRAYS

Assigning values to an array

The INPUT or READ/DATA statements with a FOR-
NEXT loop can be used to assign values to an array.

Using the INPUT statement

In the example below, the INPUT statement is used
to fill the example array given on page 3-82.

Example:

10 FOR R = 1 T0 4
20 FOR C = 1 TO 2

30 PRINT "Enter value for X("; R;
40 INPUT X(R,C)
50 NEXT C, R
RUN

Enter value for X(1,1)? 24
Enter value for X(1 ,2)? 15
Enter value for X(2 ,1)? 10
Enter value for X(2,2)? 33
Enter value for X(3 ,1)? 87
Enter value for X(3 ,2)? 90
Enter value for X(4,1)? 34
Enter value for X(4, 2)? 16
Ok

Notice that the counters R and C in the FOR state
ments are also used for the subscripts in X(R,C)
causing the subscripts to be incremented by one
each time through the loop (e.g., data is assigned to
the array as follows: X(l,l), X(l,2), X(2,l), X(2,2),
etc.).

The system asks for input eight times. After the
values have been entered, value 24 is assigned to
X(l,l), value 15 is assigned to X(l,2), value 10 is
assigned to X(2,l), and so on.

Tsr TUTORIAL

ARRAYS

Using READ/DATA statements

In the example below, READ/DATA statements are
used to fill the example array with data.

Example:

10 FOR R = 1 T0 4
20 FOR C = 1 TO 2
30 READ X(R,C)
40 PRINT"X("; R;
50 NEXTC

60 PRINT
70 NEXT R
80 DATA 24, 15, 10, 33, 87, 90, 34, 16
RUN

C; ") = X(R,C),

X(1 , 1) =
X(2,1)=
X(3,1)=
X(4,1)=
Ok

24

10
87

34

X(1 , 2)
X(2 , 2)
X(3,2)
X(4,2)

15

33

90
16

This program is the same as the one on the
previous page except that instead of inputting data
via the keyboard you are reading the data from the
program.

TUTORIAL

ARRAYS

Direct input

A third way to fill an array with data is to store a
constant value directly into the array.

Example:

10 rem ***set individual subscripts***
20X(1,1) = 24;X(1,2) = 15
30X(2,1) = 10:X(2,2) = 33
40X(3,1) = 87:X(3,2) = 90
50X(4,1) = 34:X(4,2) = 16
60 rem ***display array values***
70 FOR R = 1 T04
80 PRINT

90 FOR C = 1T0 2
100 PRINT "X("; R; C; ") = X(R,C),
110 NEXT C. R
RUN

X(1 ,1) = 24 X(1,2) = IS
X(2,1) = 10 X(2, 2) = 33
X(3,1) = 87 X(3, 2) = 90
X(4,1) = 34 X(4,2) = 16
Ok

TW TUTORlAL

ARRAYS

Using the DIM statement

The purpose of the DIM statement is to .specify the
maximum values for array variable subscripts and
allocate storage accordingly. As with the one-
dimensional array, if the array subscripts is
greater than 10, the two-dimensional array
subscripts have to be dimensioned.

Example:

10 REM ***DIM Statement***
20 DIMA(20,15)
30FORX = 1TO20
40 FOR Y = 1T015
50A(X,Y)>=X
eONEXTY.X

An array can be dimensioned only once during the
run of a program. The system will give an error
message and stop executing the program if it comes
to a DIM statement for the same array a second
time. However, you can use more than one DIM
statement in a program if you are dimensioning
different arrays.

TUTORIAL T57

ARRAYS

More Information on the DIM Statement

(Note: The two example programs below are not
working examples. They only show the format of
how to use the statement!)

Variables and expressions can also be used to
dimension arrays.

Example:

10A = 25:B = 100:C = 10
20 DIM X(B,A)
30 DIM Y$(A,C)
40DIMZ(C+ 11,A-2)

All the DIM statements can be on one line
separated by commas.

Example:

10A = 25:B = 100:C = 10
20 DIM X(B,A), DIM Y$(A,C), DIM Z(C + 11,A-2)

3:55" TUTORIAL

Summary

ARRAYS

A one-dimensional array consists of an array
variable name followed by a subscript
enclosed in parentheses (referrred to as a
subscripted variable).

A two-dimensional array consists of an array
variable name followed by two subscripts
separated by commas and enclosed in
parentheses (referred to as a subscripted
variable).

Variables and expressions can be used as
subscripts.

The INPUT and READ/DATA statements
within Nested FOR-NEXT loops are used to
assign values to an array.

The DIM statement is used to specify the
maximum value for an array variable
subscript and allocate storage accordingly.

An array can be dimensioned only once
during the run of a program.

Variables and expressions can also be used to
dimension an array.

TUTORIAL T59

ARRAYS

Notes:

3:^0 TUTORIAL

7. SUBROUTINES

A subroutine is a group of statements within a
program that perform a particular function.

The statement that tells the system to go to a
subroutine is the GOSUB statement. It is followed
by a line number that corresponds to the first
program line in the subroutine.

The last statement in a subroutine is the RETURN
statement. It automatically causes the system to
return to the main program, that is, to the line
number immediately following the GOSUB
statement that originally called the subroutine. A
subroutine may contain more than one RETURN
statement should logic dictate a return at different
points in the subroutine. Never exit a
subroutine with a GOTO statement.

A subroutine may be called any number of times
during a program.

Subroutines may appear anywhere in the program,
but it is recommended that the subroutine be
readily distinguishable from the main program.
The use of REM statements to tell what each
subroutines does is very helpful.

To prevent inadvertent entry into a subroutine, it
may be preceded by a STOP, END, or GOTO state
ment that directs program control around the
subroutine. In the program on the next page, the
END statement is used.

Subroutines are very helpful when you need to do
the same thing more than once in a program. They
save coding time in that you only enter the lines
once.

TUTORIAL

SUBROUTINES

Example:

10 A = 25:B = 30
20GOSUB 100
30 PRINT C
40 END

100 REM **multiplication subroutine'
HOC = A*B
120 RETURN
RUN

750
Ok

Program flow

lOA a 25:8 = 30

Values are assigned to the variables A and B.

206OSU8 100

A subroutine is called. The program must go to
line 100 to continue.

100 Rl^

Subroutine description.

■pgr TUTORIAL

SUBROUTINES

1t0C = A*B

The value of C is calculated.

120 RETURN

This tells the system to return to the program line
immediately after the GOSUB statement that
called this subroutine. Go to program line 30 and
continue.

^ PRINT C .

The value of C is displayed on the screen.

40ENU

The program is ended and the system returns to
command level.

T53TUTORIAL

SUBROUTINES

Nested subroutines

A subroutine may be called from within another _
subroutine. This is called a nested subroutine.

Example:

10A = 25: B = 30

20 GOSUB 100
30 PRINT C,D
40 END

100 REM **multiplication subroutine*
HOC = A*B
120 GOSUB 200
130 RETURN
200 REM **addition subroutine**
210D = A + B

220 RETURN
RUN
750 55
Ok

Program flow

ItJA = 25.: 8 = 30

Values are assigned to the variables A and B.

20«OSU8JOO

A subroutine is called. The program must go to
line 100 to continue.

3:93- TUTORIAL

SUBROUTINES

100 REAS *''^multi|>tkdt}<%r» subroutin#**

Subroutine description.

1tQC» A*»

The value of C is calculated.

A second subroutine is called. The program must
go to line 200 to continue.

200 RBH subroutine*^

Subroutine description.

210D»A4-&

The value of D is calculated.

TUTORIAL 1:55

SUBROUTINES

220 RETURN

This tells the system to return to the program line
immediately following the GOSUB statement that f
called this subroutine. Go to program line 130 and
continue.

IBORmJRN

The program must go to the line immediately
following the GOSUB statement that called this
subroutine; that is, go to program line 30 and
continue.

30 PRINT CO

Displays the value of C and D on the screen.

40 END

The program is ended and the system returns to
command level.

3^55" TUTORIAL

SUBROUTINES

Summary

A subroutine is a group of statements within
a program that perform a particular function
and may be accessed from any point within
the program.

A subroutine

~ may be called any number of times
during a program

-- starts with a GOSUB statement and
ends with a RETURN statement

-- may contain more than one RETURN
statement depending on logic flow

~ may appear anywhere in the program

~ may be called from within another
subroutine

Never exit a subroutine with a GOTO
statement.

To prevent inadvertent entry into the
subroutine, you may precede it with a STOP,
END, or GOTO statement that directs
program control around the subroutine.

TUTORIAL T57

SUBROUTINES

Notes:

3^5S ^ TUTORIAL

WHERE TO GO FROM HERE

In this tutorial, you have covered only the bare basics of GW-
BASIC. Now you can go on to the Reference Guide section of this
manual to learn more detailed information on the commands and
statements that you have encountered in this tutorial.

Don't be afraid of your personal computer and GW-BASIC. The best
way to learn is to "play" with it. Start with a small program and
keep modifying and adding to it until you have a large program.

Also, there are a lot of good books written about learning the BASIC
language that you can purchase from bookstores or computer stores.

Junior colleges in most areas are offering introductory courses in
computer languages.

TUTORIAL 3^

Notes:

3^7UD TUTORIAL

GENERAL INFORMATION

GENERAL INFORMATION 3^

TABLE OF CONTENTS

1. Modes of operation 4-3

Direct mode 4-3

Program mode 4-4

2. Character set 4-7

3. Constants, variables, and expressions 4-9

Constants 4-10

Variables 4-13

Expressions 4-18

4. Disk file handling 4-31

5. Control characters 4-35

Direct entry of GW-BASIC keywords 4-37

6. Syntax conventions 4-39

gEMEimiWFOHMATION

1. MODES OF OPERATION

After GW-BASIC is loaded into memory and
displays the Ok prompt, it is ready for instructions
from you. This is known as being at command
level.

At this point, the GW-BASIC Interpreter may be
used in either of two modes: the direct mode or the
program mode.

Direct mode

In the direct mode, GW-BASIC statements and
commands are executed as they are entered. They
are not preceded by line numbers. After each
direct statement followed by a carriage return, the
screen will display the "Ok" prompt. Results of
arithmetic and logical operations may be displayed
immediately and stored for later use, but the
instructions themselves are lost after execution.
Direct mode is useful for debugging and for using
the GW-BASIC Interpreter as a "calculator" for
quick computations that do not require a complete
program.

Examples:

Ok

PRINT 32 *3 + 10
106
Ok

A = 15.21

Ok
(Assigns the constant 15.21 to the variable A. You
can use A in successive computations to represent
this value.)

GENERAL INFOftMATIOM

MODES OF OPERATION

Program mode

The program mode is used for entering programs.
To let GW-BASIC know that you are entering a
program line, you will begin with a line number.
The program line is stored in memory. The
program currently stored in memory can be
executed by entering the RUN command.

Example:

Ok
10A = 32

20B = 3

30C = 10
40PRINTA*B + C
RUN

106
Ok

Program Lines and Line Numbers

GW-BASIC program lines may contain a
maximum of 255 characters and have the following
format (square brackets indicate optional input):

nnnnn statement [:statement...] [' comment]

A GW-BASIC program line always begins with a
line number (nnnnn, an unsigned integer in the
range 1 to 65529), and ends with a carriage return.
A program line is stored in memory as soon as you
enter the carriage return. Line numbers indicate
the order in which the program lines are stored in
memory. Line numbers are also used as references
when branching and editing.

If a program line contains more than 255
characters, the extra characters are truncated
when the carriage return is pressed. Even though
the extra characters are displayed on the screen,
they are not processed by GW-BASIC.

GENERAL INFORMATION

MODES OF OPERATION

A statement is either executable or non
executable. Executable statements are program
instructions that tell BASIC what to do next while
running a program. For example, PRINT X is an
executable statement. Non-executable statements,
such as DATA or REM, do not cause any program
action when GW-BASIC sees them.

Statements in a program line may be entered in
either upper or lowercase, or a combination of both.
GW-BASIC will convert everything to uppercase,
except for remarks, DATA statements, and strings
enclosed in quotation marks.

More than one GW-BASIC statement may be
placed on a line, but each successive statement
must be separated from the last by a colon.

Example:

Ok
100A = 32:B = 3:C=10
200 PRINTA*B + C
RUN

106
Ok

At the end of a GW-BASIC line (before the carriage
return), you may enter a comment string preceded
by a single quotation mark C).

A comment string preceded either by the keyword
REM or by a single quotation mark may also be
written just after the line number.

It is possible to extend a logical program line over
more than one physical screen line by using the
line feed (CTRL CR, CR is the carriage return key).
Line feed lets you continue typing a logical
program line on the next physical screen line
without entering a carriage return. The program
line is not processed until a carriage return is
entered. When there is more than one statement
in a program line, using a line feed can make the
program line more readable. See example on the
next page.

GENERAL INFORMATION ■5:5

MODES OF OPERATION

Examples:

Using the line feed

10FORI = 1 TO 10:
PRINT I;:
NEXT I

Not using the line feed

10 FOR 1=1 TO 10:PRINTI;:NEXTI

Also, you may type up to 255 characters on a
logical program line without issuing either a line
feed or a carriage return. The text is wrapped and
continues on the next physical screen line.

GENERAL INFORMATION

2. CHARACTER SET

GW-BASIC recognizes the following sets of
characters:

• alphabetic characters (upper and lowercase
letters of the alphabet)

numeric characters (the digits 0 through 9)

special characters (see below and next page)

Character Name

blank
= equal sign or assignment symbol
+ plus sign

minus sign
* asterisk or multiplication symbol or

"and"
/ slash or division symbol
\ backslash or integer division

symbol
A up arrow or exponentiation

symbol
(left parenthesis
) right parenthesis
% percent sign
number or pound sign
$ dollar sign
! exclamation point
[left bracket
] right bracket

period or decimal point
, comma
; semicolon

colon

GENERAL INFORMATION

CHARACTER SET

&
7

<

>

@

single quotation mark (apos
trophe)
double quotation mark
ampersand
question mark or symbol that can
be used for PRINT
less than
greater than
at-sign
underscore

See "Appendix A - ASCII Character Codes" for a
complete list of the characters that can be printed or
displayed by GW-BASIC.

GENERAL INFORMATION

CONSTANTS, VARIABLES
AND EXPRESSIONS

This chapter illustrates the principal elements
that may be entered in a GW-BASIC line. They
are:

Constants

Variables

Expressions

GENERAL INFORMATION ■3:5

CONSTANTS, VARIABLES, AND EXPRESSIONS

Constants

Constants are the values GW-BASIC uses during
program execution. There are two types of
constants: string and numeric.

String constants

A string constant is a sequence of up to 255
alphanumeric characters enclosed in double
quotation marks.

Examples:

"HELLO"
"$25,000,000"
"Number of Employees"

Numeric constants

Numeric constants are positive or negative
numbers. A plus sign (-!-) is optional with a
positive number. GW-BASIC numeric constants
cannot contain commas. There are five types of
numeric constants:

Integer

Whole numbers between -32768 and +32767.
Integer constants do not have decimal points.

Fixed-Point

Positive or negative real numbers, i.e., numbers
that contain decimal points.

GENERAL INFORMATION

CONSTANTS. VARIABLES, AND EXPRESSIONS

Floating-Point

Positive or negative numbers represented in
exponential form (similar to scientiftc notation). A
floating-point constant consists of an optionally
signed integer or fixed-point number (the
mantissa) followed by the letter E (single
precision) or D (double precision) and an optionally
signed integer (the exponent). The letter E (or D)
means "times ten to the power of. The range for
floating-point constants is lOE-38 to lOE-l-38.
Study the examples below.

Examples:

50E-5

where 50 is the mantissa, E means single precision,
and -5 is the exponent. This floating point constant
could be read as "50 times ten to the -5 power".
Examine the program below.

Ok
10 PRINT 50E-5
20 PRINT 50* 10 A.5
RUN

.0005

.0005
Ok

Another way to find the equivalent of a floating
point constant is to look at the exponent.

If the exponent is negative, start with the decimal
point and move it to the left, adding zeroes, if
necessary. For example:

235.988E-4 is equivalent to .0235988
235E-4 is equivalent to .0235

If the exponent is positive, start with the decimal
point and move it to the right, adding zeroes, if
necessary. For example:

235.988E4 is equivalent to 2359880
235E4 is equivalent to 2350000

GENERALINFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Hex

Hexadecimal numbers begin with the prefix &H
and can have up to four digits. Hexadecimal digits
are 0-9 and A-F. For example:

&H76
&H32F

&HFFAA

Octal

Octal numbers begin with the prefix &0 or just &
and can have up to six digits. Octal digits are 0-7.
For example:

&0347
&1234

Single and double precision form for numeric constants

Numeric constants may be either single or double
precision numbers. Single precision numeric
constants are stored with 7 digits of precision, and
printed with up to 6 digits of precision. Double
numeric constants are stored with 16 digits of
precision and printed with up to 16 digits of
precision.

A single precision constant is any numeric
constant that has:

seven or fewer digits, or
exponential form using E, or
a trailing exclamation point (!)

A double precision constant is any numeric
constant that has:

eight or more digits, or
exponential form using D, or
a trailing number sign (#)

Examples:

Single Precision
-1.09E-06
3489.0

22.5!

Double Precision
-1.09432D-06
3489.0#
7654321.1234

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Variables

Variables are names used to represent values that
are used in a GW-BASIC program. There are two
types of variables: numeric and string.

The value of a variable may be assigned explicitly
by you, or it may be assigned as the result of
calculations in the program. When assigning data
to a variable, the types must match. For example,
you cannot assign a character string to a numeric
variable.

Before a numeric variable is assigned a value, its
value is assumed to be zero. String variables are
assumed to be null—contain no characters and
have a length of zero.

Variable names

GW-BASIC variable names may be any length.
However, only the first 40 characters are
significant. Variable names can contain letters,
numbers, and the decimal point. The first
character must be a letter. Special type
declaration characters are allowed as the last
character of the name.

A variable name may not be a reserved word, but
embedded reserved words are allowed. A reserved
word is a word that has special meaning to GW-
BASIC. Reserved words include all GW-BASIC
commands, statements, function names and
operator names. (See Appendix D for a complete
list of GW-BASIC reserved words.) For example,
you could not have a variable name of READ but
you could have a variable name of BREAD.

If a variable begins with FN, it is assumed to be a
call to a user-defined function.

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Declare variable types

Variables may represent either a numeric value or
a string. Also, if numeric, what precision it is.

String Variable Declaration

String variable names are written with a dollar
sign ($) as the last character. For example,
A$ = "SALES REPORT". The dollar sign is a
variable type declaration character; that is, it
"declares" that the variable will represent a string.

Numeric Variable Declaration

Numeric variable names may declare integer,
single precision or double precision values. The
type declaration characters for these variable
names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is
single precision.

Integer variables produce the faster and most
compact object code. For example, the following
program executes approximately 30 times faster
when the loop control variable "I" is replaced with
"I%".

10 FOR I = 1 TO 10
20 A{l) = 0
30 NEXT I

See the examples on the next page of GW-BASIC
variable names.

(SENeRAL INFORMATION

CONSTANTS. VARIABLES, AND EXPRESSIONS

Examples:

PI#
PAY!

LII\/IIT%
N$
X

declares a double precision value
declares a single precision value
declares an integer value
declares a string value
represents a single precision value

There is a second method by which variable types
may be declared. The GW-BASIC statements
DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types of
certain variable names. These statements are
described in detail in Chapter 19.

Array variables

An array is a group or table of values referenced by
the same variable name. Each element in an array
is referenced by an array variable that is
subscripted with an integer or an integer
expression. An array variable name has as many
subscripts as there are dimensions in the array.
For example V(10) would reference a value in a
one-dimension array, T(l,4) would reference a
value in a two-dimension array, and so on. For
more detailed information on arrays, see Chapter 2
in the Reference section of this manual.

Memory requirements

Variables Type
Integer
Single Precision
Double Precision

Array Type
Integer
Single Precision
Double Precision

Bytes
2

4

8

2 per element
4 per element
8 per element

Strings:
3 bytes overhead plus the present contents of
the string

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Type conversion

When necessary, GW-BASIC will convert a
numeric constant from one type to another. The
following rules and examples should be observed:

1. If a numeric constant of one type is assigned
to a numeric variable of a different type, the
nun^ber will be stored as the type declared in
the variable name. For example:

10A% = 23.42

20 PRINT A%
RUN

23
Ok

If a string variable is assigned to a numeric
value or vice versa, a Type mismatch error
occurs.

During expression evaluation, all of the
operands in an arithmetic or relational
operation are converted to the same degree
of precision, i.e., that of the most precise
operand. Also, the result of an arithmetic
operation is returned to this degree of
precision.

10D# = 6#/7
20 PRINT D#
RUN

.8571428571428571
Ok
The arithmetic is performed in double
precision and the result is returned in 0# as
a double precision value.

10 D = 6#/7
20 PRINT D

RUN

.8571429
Ok

The arithmetic is performed in double
precision and the result is returned to D
(single precision variable), rounded and
printed as a single precision value.

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

When a floating-point value is converted to
an integer, the fractional portion is rounded.

10C% = 55.88
20 PRINT C%

RUN

56
Ok

If a double precision variable is assigned a
single precision value, only the first seven
digits (rounded) of the converted number
will be valid. This is because only seven
digits of accuracy were supplied with the
single precision value. The absolute value of
the difference between the printed double
precision number and the original single
precision value will be less than 6.3E-8
times the original single precision value.
For example:

10A = 2.04
20B# = A

30 PRINT A;B#
RUN

2.04 2.039999961853027

Ok

Logical operators convert their operands to
integers and return an integer result.
Operands must be in the range -32768 to
32767 or an "Overflow" error occurs. A full
description of Logical Operators follows
later in the chapter.

GENERAL INFORMATION "3^7

CONSTANTS, VARIABLES. AND EXPRESSIONS

Expressions and operators

An expression may be a string or numeric
constant, or a variable, or a combination of
constants and variables with operators. An
expression always produces a single value.

Operators perform mathematical or logical
operations on values. The GW-BASIC operators
may be divided into five categories:

Arithmetic
Relational
Logical
Functional
String

Arithmetic operators

The arithmetic operators, in order of precedence,
are:

Sample
r Ooeration Expression

Exponentiation X^Y

Negation -X

Multiplication, X*Y
Floating-Point Division X/Y

Integer Division X\Y

Modulus Arithmetic XMODY

Addition, X-l-Y
Subtraction X-Y

If arithmetic operators of the same priority are in
the same equation, then the system will work from
left to right on these operators.

2rT5" GENERALINPORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

How To Change Priority of Arithmetic
Operators

Priority of arithmetic operators can cause
problems. For example, if you needed to add or
subtract before you multiply or divide, how could
this be done?

To change the order in which the operations are
performed, use parentheses. Operations within
parentheses are performed first. Within the
parentheses, the usual order of operations is
maintained.

Here are a few rules that apply to the use of
parentheses.

• Parentheses force the innermost calcula
tions to be accomplished first.

• The number of left parentheses must equal
the number of right parentheses.

Extra pair of parentheses have no effect.
(So if they help you, do not hesitate
use them.)

to

On the next page are some examples of algebraic
formulas and the way they would look as GW-
BASIC statements.

GENERAL INfORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Formula

A + B
C

Statement

10E = A + B/C

In the example below, the addition needs to take
place before the division is performed. So B + C is
put in parentheses in the statement.

15 W = A/(B + C)
B + C

In the next two examples, can you see why the
parentheses are used.

Atl
CiD

D-B

61A

45 X = (A*B)/(C*D)

35 F = (D-B)/(6*A)

Integer Division and Modulus Arithmetic

Two additional operators are available in GW-
BASIC: integer division and modulus arithmetic.

Integer division is denoted by the backslash (\).
The operands are rounded to integers (must be in
the range -32768 to 32767) before the division is
performed, and the quotient is truncated to an
integer.

Examples:

Ok
PRINT 10\4

2
Ok

PRINT 25.68\6.99
3
Ok

Integer division follows multiplication
floating-point division in order of precedence.

and

4:20" GENERALINPORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Modulus arithmetic is denoted by the operator
MOD. Modulus arithematlc yields the integer
value that is the remainder of an integer division.

Examples:

PRINT 10.4 MOD 4
2 (10\4 = 2 with a remainder of 2)
Ok
PRINT 25.68 MOD 6.99
5 (26\7 = 3 with a remai nder of 5)
Ok

Division Bv Zero and Overflow

If, during the evaluation of an expression, a
division by zero is encountered, the "Division by
zero" error message is displayed, machine infinity
(the largest number that can be represented in
floating-point format) with the sign of the
numerator is supplied as the result of the division,
and execution continues. If the evaluation of an
exponentiation results in zero being raised to a
negative power, the Division by zero error message
is displayed, positive machine infinity is supplied
as the result of the exponentiation, and execution
continues. For example:

10A=5:B = 10
20C = A/0:D = A*B:PRINT C,D
RUN
Division by zero
1.701412E + 38 50

Ok

If overflow occurs, the Overflow error message is
displayed, machine infinity with the algebraically
correct sign is supplied as the result, and execution
continues. For example:

10 A = 1.701411834000001D + 38:B = 8
20C=10:D=15
30 E = B/A:F = C + D:PRINT E,F
RUN
Overflow
4.701978E-38 25
Ok

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Relational operators

Relational operators are used to compare two
values. The result of the comparison is either
"true" (-1) or "false" (0). This result may then be
used to make a decision regarding program flow
(see the IF statements in Chapter 5 of the Reference
section olf this manual).

Operator Relation Tested

= Equality

< >

(or X)

<

>

Inequality

Less than

Greater than

< = Less than or equal to
(or = <)

> = Greater than or equal to
(or= >)

Expression

X=Y

XOY

X<Y

X>Y

X<=Y

X>=Y

(The equal sign is also used to assign a value to a
variable.)

When arithmetic and relational operators are
combined in one expression, the arithmetic is
always performed first.

Examples:

50 If X + Y < (T-1)/Z then print "true"

The above expression is true (-1) if the value of X
plus Y is less than the value of T-1 divided by Z.

200IFSIN(X) < OGOTO 1000

500 IF I MOD J <> 0THEN K = K + 1

GENERALINFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Logical operators

Logical operators perform tests on multiple
relations, bit manipulation, or Boolean operations.
The logical operator returns a bitwise result which
is either "true" (not zero) or "false" (zero). In an
expression, logical operations are performed after
arithmetic and relational operations. The outcome
of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

NOT

AND

OR

XOR

X

1

0

X
1

1

0
0

X

1

1

0
0

X

1

1

0

0

Y

1

0
1

0

Y

1

0
1

0

Y

1

0
1

0

NOTX

0
1

XANDY

1

0
0

0

XORY

1

1

1

0

XXORY

0
1

1

0

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

EQV

IMP

X

1

1

0

0

X

1

1

0
0

Y

1

0
1

0

Y

1

0
1

0

XEOVY
1

0
0
1

XIMPY

1

0
1

1

Just as the relational operators can be used to
make decisions regarding program flow, logical
operators can connect two or more relations and
return a true or false value to be used in a
subsequent decision.

Examples:

20 IF D<200 AND F>4THEN 80

100IFI=10ORK = 0THEN50

60IFNOTPTHEN 100

Logical operators work by converting their
operands to 16 bit, signed, two's complement
integers in the range -32768 to +32767. If the
operands are not in this range, an error results. If
both operands are supplied as 0 or -1, logical
operators return 0 or -1. The given operation is
performed on these integers in bit-by-bit, i.e., each
bit of the result is determined by the corresponding
bits in the two operands.

general INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Thus, it is possible to use logical operators to test
bytes for a particular bit pattern. For instance, the
AND operator may be used to "mask" all but one of
the bits of a status byte at a machine I/O port. The
OR operator may be used to "merge" two bytes to
create a particular binary value. The following
examples will help demonstrate how the logical
operators work.

63 AND 16= 16

15AND14=14

-1 AND8 = 8

40R2=6

100R10=10

-1 0R-2 = -1

N0TX = -(x + 1)

the result is 16, as
63 = binary 111111
16 = binary 010000

010000

the result is 14, as
15 = binary 1111
14 = binary 1110

1110

the result is 8, as
-1= binary 1111111111111111
8= binary 0000000000001000

0000000000001000

the result is 6, as
4 = binary 100
2 = binary _10

110

the result is 10, as
10= binary 1010
10 = binary 1010

1010

the result is-1, as
-1= binary 1111111111111111
-2 = binary 1111111111111110

1111111111111111

The two's complement of any
integer is the bit ocmplement
plus one.

GENERAL INformatiun

CONSTANTS, VARIABLES, AND EXPRESSIONS

For example:

1111100110011000 original value (negative)

Invering all the bits:

0000011001100111

Adding 1

0000011001101000

inverted value

absolute value
(inverted + 1)

So the value of the given pattern is: -1640

GENERAL INFORMATION

CONSTANTS, VARIABLES. AND EXPRESSIONS

Functional operators

When a function is used in an expression, it calls a
predetermined operation that is to be performed on
an operand. GW-BASIC has "intrinsic" functions
that reside in the system, such as SQR (square
root) or SIN (sine). All GW-BASIC intrinsic
functions are described in the Referecne section of
the manual.

GW-BASIC also allows "user-defined" functions
that are written by the programmer. They are
discussed in Chapter 27 of the Reference section.

GENERALINFORMATION "3:27

CONSTANTS, VARIABLES, AND EXPRESSIONS

String operators

Strings may be concatenated using the plus sign
(+).

Example:

10A$="FILE":B$="NAME"
20PRINTA$ + B$
30 PRINT "NEW" + A$ + B$
RUN
FILENAME
NEW FILENAME

Ok

Strings may be compared using the same
relational operators that are used with numbers:

= equal < > not equal
< less than < = less than or equal to
> greater than > = greater than or equal

to

String comparisons are made by taking one
character at a time from each string and
comparing the ASCII codes (see Appendix D for a
complete list of the ASCII codes). If all the ASCII
codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes
the higher. If, during string comparison, the end of
one string is reached, the shorter string is said to
be smaller.

Leading and trailing blanks are significant.

String comparisons can be used to test string
values or to alphabetize strings.

All string constants used in comparison
expressions must be enclosed in quotation marks,

See examples on next page.

GENERAL INFORMATION

CONSTANTS. VARIABLES, AND EXPRESSIONS

Examples:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&">"X#"
"CL " > "CL"
"kg">"KG"
"SMYTH" <"SMYTHE"
B$ < "9/12/84"

where B$ = "8/12/84"

All of the above are true statements.

GENERAL INFORMATION

CONSTANTS, VARIABLES, AND EXPRESSIONS

Notes:

03 GbNERALINPORMATION

4. DISK FILE HANDLING

Wherever a file name is required in a disk
command or statement, use a name that conforms
to the file naming conventions for your operating
system. The MS-DOS operating system will
append a default extension .BAS to the file name
given in a SAVE, RUN, MERGE or LOAD command.

Device Independent input/output

GW-BASIC provides device-independent input/
output that permits flexible approaches to data
processing. Using device independent I/O means
that the syntax for access is the same for any
device.

The following statements, commands, and
functions support device-independent 1/0 (see
individual descriptions in the Reference section).

BLOAD
BSAVE
CHAIN

CLOSE
EOF
GET
INPUT#
INPUTS
LINE INPUT#
LIST

LOAD
LOC

LOF
MERGE

OPEN
PCS
PRINT#
PRINT# USING
PUT

RUN
SAVE
WIDTH

WRITE#

GENERAL INFORMATION

DISK FILE HANDLING

How MS-DOS keeps track of your files

A file is a collection of records. The names of files
are kept in directories on disk. These directories
also contain information on the size of the files,
their location of the disk, and the dates that they
were created and updated. The directory you are
working in is called your current "working"
directory.

An additional system area is called the File
Allocation Table. It keeps track of the location of
your files on the disk. It also allocates the free
space on your disk so that you can create new files.

These two system areas, the directories and the
File Allocation Table, enable MS-DOS to recognize
and or|[anize the files on your disks. The File
Allocation Table is created onto a new disk when
you format it and one empty directory is created,
known as the "root" directory.

Naming files

File specifications follow MS-DOS naming conven
tions. The filespec is a string expression with the
following format;

[de vice:] filename

All filespecs may begin with a device specification
such as A: or B: or COMl: or LPTl:. If no device is
specified, the current drive is assumed.

A file name can comprise:

one to eight characters. For example,
NEWFILE.

one to eight characters, followed by a period
(.) and a one to three character file name
extension. For example, NEWFILE.DAT.

GENERAL INFORMATION

DISK FILE HANDLING

A file name may be made up of any of the following
characters:

A-Z
%

@

0-9
»

A

$ &
()
{ }

#

Alphabetic characters within the file name can be
entered in upper or lower case, but MS-DOS will
translate lower case letters into upper case.

GW-BASIC supplies the extension .BAS if no
extension is given, but NAME and KILL do not
follow this rule; they do not supply any extension.

File specification for communications devices is
slightly different. The file name is replaced with a
list of options specifying such things as line speed.
Refer to Chapter 4 of the Reference section for
details.

Remember that if you use a string constant for the
filespec, you must enclose it in quotation marks.
The only exception to this rule is the GWBASIC
command, where a file specifier is string constant
not included in quotation marks.

Examples:

LOAD "BrARSENALRED"

GWBASIC PAYROLL

GENERAL INFORMATION "3:33

DISK FILE HANDLING

Naming devices

The device name is a string of four characters or
less followed by a colon (;), and may be one of the
following:

A: first disk drive
B: second disk drive
C: first hard disk drive
D: second hard disk drive
KYBD: keyboard
SCRN: screen
LPTl: first printer
LPT2: second printer
LPT2: third printer
COMl:RS232Coml
COM2:RS232Com2
COM3:RS232Com3
COM4:RS232Com4

(any access mode)
(any access mode)
(any access mode)
(any access mode)
(Input only)
(Output only)
(Output or random)
(Output or random)
(Output or random)
(Input and Output)
(Input and Output)
(Input and Output)
(Input and Output)

GENERAL INFORMATION

CONTROL CHARACTERS

You can generate control characters by holding
down the CTRL or ALT key while pressing another
key. GW-BASIC recognizes the following control
characters:

CTRL BREAK

Can be used for different purposes:

To interrupt the program at the
following GW-BASIC instruction and
return to GW-BASIC comand level.

To cancel automatic line numbering
mode while entering a program.

To return to command level, without
saving any changes that you made to
the current line.

CTRLG

Sounds the bell

CTRL NUM LOCK

Causes the system to pause so as to
temporarily halt printing or program
listing. The pause continues until you press
any key (except SHIFT, CTRL or ALT).

CTRLT

Scrolls the function key display horizontally
across the screen (on the 25th screen line),
when the width is 40. When the width is 80,
it toggles the function key display ON and
OFF.

GENERAL INFORMATION "5:35

CONTROL CHARACTERS

ALT CTRL DEL

Perform a System Reset by holding down the
CTRL and ALT keys, and then pressing the
DEL key.

CTRLPRTSC

All text sent to the screen is also sent to the
system printer. You can stop printing by
repeating the key sequence.

If you press PRTSC while holding down
SHIFT, MS-DOS will make a single printed
copy of the entire display screen.

To print both text and graphics, you have to
use the MS-DOS GRAPHICS command
before entering GW-BASIC.

CTRLL

Outputs a formfeed character. It has the
same function as the CLS statement, i.e., it _
clears the screen or the current graphics
viewport (if a viewport has been defined).

CTRLZ

Sets an end of file condition.

Other control characters are described in Chapter
12 of the Reference section.

GENERAL INPORMATION

CONTROL CHARACTERS

Direct Entry of GW-BASIC Keywords

A GW-BASIC Keyword is entered by holding down
the ALT key while pressing one of the alphabetic
keys (A-Z). Keywords associated with each letter
are listed below:

A-AUTO N-NEXT

B-BLOAO O-OPEN

C-COLOR P-PRINT

D-DELETE

E-ELSE R-RUN

F-FOR S-SCREEN
G-GOTO T-THEN

H-HEX$ U-USING
l-INPUT V-VAL

W-WIDTH

K-KEY X-XOR

L-LOCATE Y-llll

M-MERGE

**** = unused keys

GENERAL INFORMATION

CONTROL CHARACTERS

Notes:

^ GENERALINFORMATION

6. SYNTAX CONVENTIONS

1. Uppercase letters and words, and the
symbols listed below, should be typed in the
actual line exactly as shown.

()
7 >

77

/

\ #

In the statement:

WRITE#//7enom, list-of-expressions

WRITE# and the comma (,) after filenum
should be typed as shown.

Lowercase italics letters and words
represent "variable information" (or
"parameters") that you must provide.

In the statement:

KILL fHespec

filespec should be replaced by a specified
value; for example, "MYFILE.DAT".

GENERAL INFORMATION "3:39

SYNTAX CONVENTIONS

3. The symbols listed below are used to define
the syntax of a line, but should not be typed
in the actual line:

I vertical stroke ("or" sign), to indicate
alternatives

{ } braces, to indicate a choice

[1 brackets, to indicate optional

ellipsis, to indicate repetition

hypen, to join multiple-name
parameters.

In some statements or commands (e.g., LIST,
LLIST, etc.), the hyphen is used as an
operator to separate parameters. In this
case, bold face is used to distinguish
hyphens that are used for this purpose from
hyphens used to join multiple-name
parameters.

3^ GENERAL INFORMATION

REFERENCE

REFERERtE 5h

Notes:

Shi reference

TABLE OF CONTENTS

1. Alphabetical listing 5-1

2. Arrays 5-11

3. Assembly language subroutines 5-29

4. Asynchronous communications 5-51

5. Branching 5-73

6. Chaining programs 5-89

7. Conversion functions 5-101

8. Debugging 5-113

9. Devices and Input/Output port
information 5-115

10. Disk data Hies — sequential and
and random access 5-129

11. Disk files 5-171

12. Editing 5-189

13. Error handling 5-201

14. Event trapping 5-211

15. Graphics and screen attributes 5-215

REFERENCE Sh"

TABLE OF CONTENTS

16. GW-BASIC and child processes 5-283

17. Input data 5-289

18. Looping 5-303

19. Miscellaneous statements, commands,
and functions 5-309

20. Multiple directories 5-345

21. Music 5-357

22. Numeric functions 5-367

23. Output to screen or printer 5-379

24. Program interrupts 5-417

25. Program handling 5-425

26. String manipulation 5-439

27. User-deflned functions 5-449

^ REFERENCE

ALPHABETICAL LISTING

This chapter is an alphabetical listing of all the
GW-BASIC commands, statements and functions
with a short description of each and the page
number where they are described. Some
commands, statements and functions can be used
to do more than one task, they will have more than
one page number listed.

ABS function, 5-368
Returns the absolute value of a numeric expression.

ASC function, 5-102
Returns a numeric value that is the ASCII code for the
first character of a given string.

ATN function, 5-369
Returns the arctangent of the argument.

AUTO command, 5-426
Generates a line number after every carriage return.

BEEP statement, 5-310
Activates the bell.

BLOAD command, 6-42
Loads a memo^ image file into memory.

BSAVE command, 5-44
Saves sections of the main memory on the specified file.

CALL statement, 5-33
Transfers control to a machine language subroutine.

CALLS statement, 5-39
Is executed in the same way as the CALL statement and
should be used when accessing routines written with
FORTRAN calling conventions.

CDBL function, 5-103
Converts a given numeric expression to a double
precision number.

CHAIN statement, 5-90
Transfers control and passes variables to another
program.

CHDIR coWand, 5-352
Changes the current ''working'' directory.

CHR$ function, 5-104
Returns a one-character string whose ASCII code is the
value of the argument.

CINT function, 5-105
Converts any numeric argument to an integer by
rounding the fractional portion.

Ci RCLE Statement, 5-227
Draws a circle (or an ellipses) with the specified center
and radius (graphics mode only).

3^REFERENCE

ALPHABETICAL LISTING

CLEAR command, 5-311
Clears all numeric variables to zero, all string variables
to null, and closes all open files. Options sets the h^hest
memory location available for use by GW-BASIC and
the amount of stack ̂ ace.

CLOSE statement, 5-116^ 5-143
Terminates I/O to a file (6-143) or device (5-116).

CLS statement, 5-380
Erases all or part of the screen.

COLOR (medium resolution mode) statement, 5-231
Defines the palette background and foreground colors.
In addition, the default grapics foreground and
background colors, and the text foreground color can be

COLOR ?hig^ resolution mode) statement, 5-234
Defines the (default) graphics foreground, the graphics

^ background and the text foreground colors.COLOR (super resolution mode) statement, 5-236
Defines the (default) graphics foreground, the graphics
background and the text foreground colors.

COLOR (text mode) statement. 5-382
_ ̂ Sets the text foreground and background colors.

COM(n) statement, 0-66
(50M(n) ON enables, COM(n) OFF disables, and
COM(n) STOP suspends event trapping of

- communications activity on the specified channel.
COMMON statement, 5-95

Defines a common area which is not erased by the
CH AINed program, and allows you to pass variables from
one program to another.

CONT command, 5-422
Resumes program execution after a CTRL BREAK has
been typed or a STOP or END statement has been
executed.

COS function, 5-370
Returns the cosine of the argument.

CSNG function, 5-106
Converts any numeric argument to a single precision
number.

CSRLIN function, 5-385
Returns the current line (row) position of the cursor.

CVI, CVS, CVD functions, 5-144
Convert string values to numeric values.

DATA statement, 5-290
Creates an "internar file, i.e., a sequence of data
belonging to the program. Each data item will then be

^ . ^,.^assigned to a program variable by a READ statement.
DATES function, 5-313

^Retrieves the current date.
DATES statement, 5-313

Sets the current date.
DEF FN statement, 5-449

Defines and names a user-written function.
DEF SEG statement, 5-46
^ ̂ Assigns the current "segment" address.
DEF USR statement, 5-47

Enables access to a machine language subroutine by

5-315
Declares the variable type in accordance with the
letter(s) specified.

5T- REFERENCE

ALPHABETICAL LISTING

DELETE command, 5-199
Erases program lines.

DIM statement, 5-21
Specifies the array name(s), the number of dimensions
and the subscript(s) upper bound per dimension.

DRAW statement, 5'23S
Draws an object as defined by a sequence of single
character commands, (graphics mode only)

EDIT command, 5-200
Lets you change a specified program line.

END statement, 5-420
Terminates program execution, closes all open data files,
and returns to command level.

ENVIRON statement, 5-316
Allows modification of parameters in GW-BASIC*s
Environment String Table.

ENVIRONS function, 5-318
Allows you to retrieve the specified Environment String
from GW-BASIC's Environment String Table. ̂

EOF function, 5-61 (com file), 5-145 (d&ta file)
Indicates that the end of a file has been reached.

ERASE statement, 5-26
Releases space and variable names previously reserved
for arrays.

ERDEV function, 5-117, 5-202
Holds the actual value of a device error.

ERDEVS function, 5-117, 5-202
Holds the name of the device causing the error if it was a
character device.

ERR function, 5-203
Returns the error code.

ERL function, 5-203
Returns the number of the line which contains the error.

ERROR statement, 5-205
Simulates the occurrence of a GW-BASIC error, or
generates a user-defined error.

EXP function, 5-371
Returns e (base of natural logarithms) to the power of
the argument.

FIELD statement, 5-146
Allocates space for variables in a random file buffer.

FILES command. 5-175
Displays the names of files residing on the specified

FIX function[l^-372
Returns the truncated integer part of the argument.

FOR...NEXT statements, 5-304
Allows a series of statements to be performed in a loop a
given number of times.

FRE function, 5-320
Returns the number of bytes in memory not being used
by GW-BASIC.

GET (COM files), 5-62
Reads a specified number of bytes into the
communications buffer.

GET (files), 5-149
Reads a record from a random disk file into a random
buffer.

REFERENCE

ALPHABETICAL LISTING

GET (graphics), 5-243
Reads points from a screen area.

GOSUB...RETURN statements, 5-74
GOSUB transfers control to a GW-BASIC subroutine by
branching to the specified line. RETURN transfers
control to the statement following the most recent
GOSUB (or ON...GOSUB) executed.

GOTO statement, 5-76
Trarisfers control to a specified program line.

GWBASIC command, 5-321
Initializes GW-BASIC and the operating environment
(GWBASIC is an MS-DOS command, not a GW-BASIC
command).

HEX$ function, 5-107
Returns a string which represents the hexadecimal
value of the decimal argument.

IF..GOTO..ELSE or IF..THEN..ELSE statements, 5-77
Makes a decision regarding program flow based on the
result of a specified condition.

INKEY$ function, 5-295
Returns a one- or two-character string read from the
keyboard or a null string if no character is pending at

^ the keyboard.
INP function, 5-118

Returns the byte read from a port.
INPUT Statement, 5-297

Allows input from the keyboard during program
execution.

INPUT# statement, 5-151
Reads data items from a sequential disk file and assigns
them to program variables.

INPUTS function, 5-63, 5-153, 5-299
Returns a string of characters from the keyboard (5-299)
or file (COM files 5-63; data files (5-153).

INSTR function, 5-440
Searches for the first occurrence of a given substring in a
string and returns the position at which the match is
found.

INT function, 5-373
Returns the largest integer that is equal to or less than
the argument.

lOCTL statement, 5-119
Sends a ''Control Data" string to a Character Device
Driver anytime after the Driver has been OPE Ned.

lOCTLS function, 5-121
Returns a "Control Data" string from a Character
Device Driver that is OPEN.

KEY statement, 5-328
Sets a function key to automatically type any sequence
of characters. Other options allow you to ensible or
disable the function key display from the 25th line, or to
list the function key values.

KEY(n) statement, 5-83
KEY(n) ON enables, KEY(n) OFF disables, and KEY(n)
STOP sui^ends e^nt trapping of the specified key.

KILLcomman<
Deletes a disk file.

REFERENCE

ALPHABETICAL LISTING

LCOPY command, 5-386
Dumps the screen (text and graphics) to the line printer.

LEFTS function, 5-441
Returns a substring extracting a number of characters
to the left of a given string, as specified by the length
parameter.

LEN function, 5-442
Returns the number of characters in a given string.

LET statement, 5-300
Assigns a value to a variable.

LINE statement, 5-245
Draws either a line or a rectangle, or a filled rectangle
(graphics mode only).

LINE INPUT statement, 5-301
Inputs an entire line (up to 254 characters) to a string
variable, without the use of delimiters.

LINE INPUT# statement, 5-154
Reads an entire line (up to 254 characters), without
delimiters, from a sequential disk data file to a string
variable.

LIST command, 5-429, 5-437
Lists the current program to the screen (5-429) or a
specified file or device (5-437).

LLIST command, 5-429
Lists the current program on the printer.

LOAD command, 5-180
Loads a program into memory from a specified drive.
You can run the program , if you specify the option R.

LOC function, 5-64, 5-156
Returns the current position in the file (COM files, 5-64;
data files 5-156).

locate (graphics) statement, 5-248
Moves the cursor to the specified position. LOCATE may
also turn the cursor on and off and define the shape and
blinkrate of the cursor.

LOCATE (text) statement, 5-387
Moves the cursor to the specified position on the active
page. LOCATE may also turn the cursor on and off and
define the size of either the user cursor, or both the user
and overwrite cursors.

LEFTS function, 5-441
Returns a substring extracting a number of characters
to the left of a given string, as specified by the length
parameter.

LOF function, 5-65, 5-157
Returns the number of bytes allocated to the file (COM
files 5-65; data files 5-157).

LOG function, 5-374
Returns the natural logarithm of a positive argument.

LPOS function, 5-390
Returns the current position of the print head within the
printer buffer.

LPRINT statement, 5-393
Prints data on the printer.

LPRINT USING statement, 5-396
Prints data to the printer using a specified format.

LSET/RSET statements, 5-158, ̂391
Moves data from memory to a random file buffer (5-158)
or left-, right-justifies a string value in a string variable
(5-391).

"T5REFERENCE

ALPHABETICAL LISTING

MERGE command, 5-99
Merges the current program with a specified file
oreviously saved in ASCII format.

MID$ function, 5-443
^ ̂ Returns a substring from a specified string.

MI D$ Statement, 5-444
Replaces a part of a string with another string. f >

MKDIR command, 5-350
Permits the creation of a new directory on a specified

^ disk. ̂
MKI$, MKS$, MKD$ functions, 5-159

Change numeric values to string type values.

NAME command, 5-182,5-184
Changes the name of a disk file (5-184) or moves a file
from one directonr to another (5-182).

NEW command, 5-42b
Deletes the current program and clears all variables,
allowing you to enter a new program.

OCT$ function, 5-108
Returns a string which represents the octal value of the
decimal argument.

ON COM(n) G05LIB statement, 5-66
Specifies the first line number of a subroutine to be
activated as soon as characters arrive in the
communications buffer.

ON ERROR GOTO statement, 5-297
Enables error trapping and specifies the first line

^ a subroutine to be executed if an error occurs.
ON...GOSUB statement, 5-81

Calls one of several specified subroutines, depending on
the value of a specified expression.

ON...GOTO statement, 5-81
Branches to one of several specified line numbers,

ON KEv1!5
Specifies the first line number of a subroutine to be
executed when a specified function key or cursor control
ItAT/ IG tlf^AGGAtfl

ON PLA/(n) GOSUB statement, 5-358
SpeciRes the first line number of a subroutine to be
executed when the music buffer contains fewer than n
notes. .

ON TIMER(n) GOSUB statement, 5-333
Causes an event trap every n seconds.

OPEN statement, 5-122,5-lBO
Allows I/O to a file (5-160) or device (5-122).

OPEN COM statement, 5-69
Opens and initializes a communications channel for
input/output.

OPTION BASE statement, 5-28
Defines the minimum value for array subscripts.

OUT statement, 5-125
Transmits a bj^e to an output port.

5:^ REFERENCE

ALPHABETICAL LISTING

PAINT statement, 5-252
Paints an enclosed area on the screen with a specified
color (graphics mode only).

PEEK function, 5-48
Returns the byte read from the specified memory
location.

PLAY statement, 5-360
Plays music in accordance with a string which specifies
the notes to be played, and the way in which the notes
are to be played.

PLAY(n) function, 5-364
Returns the number of notes currently in the music
background buffer.

PLAY {ONTOFF STOP} statement, 5-358
PLAY ON enables, PLAY OFF disables, and PLAY STOP
suspends pl^ event trapping.

PMAP function, 5-257
Maps physical coordinates to world coordinates or world
coordinates to physical coordinates (graphics mode
only).

POINT function, 5-259
Returns the color of a pixel on the screen or the current
graphics coordinate (graphics mode only).

POKE ̂atement, 5-49
Writes a byte into a memory location.

POS function, 5-392
Returns the current cursor column position.

PRESET statement, 5-261
Draws a point at the specified position on the screen
(graphics mode only).

PRINT statement, 5-393
Outputs data to the screen.

PRINT USING Statement, 5-396
Outputs data to the screen using a specified format.

PRINT# statement, 5-164
Writes data sequentially to a disk file.

PRINT# USING statement, 5-164
Writes data sequentially to a disk file using a specified
format.

PSET statement, 5-262
Illuminates a pixel at a specified position on the screen

PUT (cW&T&teSWt, 5-72
Writes a specified number of bytes to a communications
nie.

PUT (files) statement, 5-167
Writes a record from a random buffer to a random disk
file.

PUT (graphics) statement, 5-264
Transfers the graphics image stored in an array to the

RANDOMIZE statement, 5-335
Reseeds the random number generator.

READ statement, 5-292
Reads values from one or more DATA statements and
assigns them to variables.

REM statement, 5-337
Allows explanatory remarks to be inserted in a program.

RENUM command, 5-433
Changes the line numbers of the current program.

REFERENCE ■3:7

ALPHABETICAL LISTING

RESET command, 5-172
Closes all open data files on all drives.

RESTORE statement, 5-294
Permits DATA statements to be re-read either from the
beginning of the internal file or from a specified line.

RESUME Statement 5-209
Continues program execution after an error trapping
routine has been performed.

RIGHli tunction, 5-445
Returns a substring from a specified string, extracting
its rightmost characters.

RMDIR command, 5-354
Removes a directory from a specified disk.

RND function, 5-338
Returns a random number between 0 and 1.

RUN command, 5-178, 5-432
Runs the current program or loads a program from disk
and runs it.

SAVE command, 5-186, 5-435
Saves the current program on disk and gives it a name.

SCREEN function, 5-402
Returns the ASCII code (0-255) or the color number for
the character at the specified screen location.

SCREEN statement, 5-267, 5-403
Sets the specifications for the display screen.

SGN function, 5-375
Returns I if the argument is positive, 0 if the argument
is zero, and -1 if the argument is negative.

SHELL command, 5-283
Loads and executes another program (.EXE, .COM. or
.BAT).

SIN function, 5-376
Calculates the sine of the argument.

SOUND statement, 5-365
Produces sound via a speaker,
function, 5-446

^ Returns a string of a specified number of spaces.
SRC function, 5-40B

Skips n spaces in a PRINT, LPRINT, or PRINT# statement.
SQR function, 5-377

Returns the square root of a positive numeric
expression.

STOP statement, 5-421
Terminates program execution then returns to
command level.

STR$ function, 5-109
Returns the string representation of the value of a
specified numeric expression.

string! function, 5-447
Returns a string of specified length whose characters all
have the same ASCII code or equal the first character of
a given string.

SWAP statement, 5-339
Exchanges the values of two variables.

SYSTEM command, 5-423
Closes all open data files and returns control to MS-
DOS.

5^3" REFERENCE

ALPHABETICAL LISTING

TAB function, 5-409
Tabs the cursor or the print head to a specified position,
in PRINT, LPRINT, or PRINT# statements.

TAN function, 5-378
^ Returns the tangent of the argument.

TIMES function, 5-340
Retrieves the current time.

TIMES statement, 5-340
Sets the current time.

TIMER function, 5-342
Returns a single precision number indicating the
seconds that have elapsed since midnight or system

TIMER statement, 5-333
TIMER ON enables, TIMER OFF disables, and TIMER
STOP suspends real time event trapping.

TRON command, 5-114
Causes the line number of each statement executed to be
displayed.

TROFF command, 5-114
Stops the line number displaying initiated by TRON.

USR function, 5-39
Calls a machine language subroutine.

VAL function, 5-110
Converts the string representation of a number to its
numeric value.

VARPTR function, 5-50, 5-169
\/ARPTR(var/ab/e) (page 5-50) returns the address of
variable, VARPTR(f/7enu/n) (page 5-169) returns the
starting address of the disk I/O buffer (for sequential
files) or the starting address of the FIELD buffer (for
random files).

VARPTRS function, 5-343
Returns a character form of the memory address of the
variable.

VIEW statement 5-272
Defines subsets of the screen called "viewports**, into
these, window contents will be mapped, (graphics mode

VIEW PRI^T statement, 5-410
Sets the boundary of the text window.

WAIT statement, 5-126
Suspends program execution while monitoring the
status of a machine input port.

WHILE...WEND statements, 5-307
Loop through a series of statements as long as a given
condition remains true.

WIDTH statement, 5-127, 5-276, 5-411
Sets the line width in characters.

WINDOW statement, 5-279
Defines the logical dimensions of the current viewport,
(graphics mode only)

WRITE statement, 5-416
Writes data to the screen.

WRITE# statement, 5-170
Writes data to a sequential file.

REFERENCE

ALPHABETICAL LISTING

Notes:

REFERENCE

2. ARRAYS

This chapter describes arrays and the statements
that are used with arrays.

The subsections are

Definition of an array
One-dimension array
Two-dimension array
DIM statement

ERASE statement

OPTION BASE statement

"m

ARRAYS

Detinition of an array

An array is a group or table of values referenced by
the same variable name. Each element in an array
is referenced by an array variable that is
subscripted with an integer or an integer
expression.

An array variable name has as many subscripts as
there are dimensions in the array. For example,
V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-
dimension array, and so on.

The maximum number of dimensions for an array
is 255.

The maximum number of elements per dimension
is 32,767. Both these values are also limited by the
memory size of your system.

Memory Requirements

The number of bytes required by an array is listed
below.

Array Tvpe

Integer
Single Precision
Double Precision

Bytes

2 per element
4 per element
8 per element

5^ REPCftENCC

ARRAYS

One-dimension array

A one-dimension array is a group of related data
items which are stored in memory and can be
accessed by a subscripted variable. The
subscripted variable consists of an array variable
name followed by a subscript enclosed in
parentheses. For example, X(5) is a subscripted
variable; X5 is not.

The subscripted variable (as with the simple
variable) names a memory location inside the
system where to store data. Think of it as follows:

Subscripted Variable
(where X is the array
variable name and (n)
is the subscript)

Data stored in location

X(0) 25

X(1) 10

X(2) 13

X(3) 51

X(4) 24

1 1
33

where the value of X(0) is 25, X(l) is 10, X(2) is 13,
and so on.

REFERENCE "5^

ARRAYS

This is helpful when you want to work with a large
quantity of related data and it is easier working
with one variable that is subscripted than having
to use many variables (e.g., A, B, C, D, E, etc.) and
trying to remember what each of these variables
represent. '

Variables as Subscripts

Variables can also be used for subscripts. For
example, the subscripted variable, X(A), has the
variable A for a subscript.

If A=5 then X(A) would be X(5), the value of
X(5) = 33.

If A = 2 then X(A) would be X(2), the value of
X(2) = 13.

Expressions as Subscripts

You can also use expressions as subscripts. For "
example, the subscripted variable X(Y+3) when
Y=l. After the system calculates the subscript,
the subscript would be equal to four. So the
subscripted variable would be X(4) and the value of
X(4) = 24.

See the DIM, ERASE, and OPTION BASE
statements in this chapter for information on
dimensioning arrays, redimensioning of
arrays, and changing the default base of the
subscript.

5^ REFERENCE

ARRAYS

Assign values to a one-dimension array

The INPUT or READ/DATA statements with a FOR-
NEXT loop can be used to assign values to a one-
dimension array.

Using the INPUT Statement

In the example proCTam below, the INPUT
statement is used to fill the example array with
data.

Example:

10 FOR Y = 0TO5
20 PRINT "Enter value for xr; Y;
30 INPUT X(Y)
40 NEXT X
RUN

Enter value for X(0)? 25
Enter value for X(1)? 10
Enter value for X(2)? 13
Enter value for X(3)? 51
Enter value for X(4)? 24
Enter value for X(5)? 33
Ok

(Note: The bold text is what you would enter at the
keyboard followed by a Return.)

Notice that the counter Y in the FOR statement is
also used for the subscript in X(Y) causing the
subscript to be incremented by one each time
through the loop (e.g., first time through Y=0 so
X(Y) is X(0), second time through Y = 1 so X(Y) is
X(l), and so on).

Using this program, the system asks for input six
times. After six values have been entered, tne first
value 25 is assigned to X(0), second value 10 is
assigned to X(l), third value 13 is assigned to X(2),
and so on.

REFERENCE "5^

ARRAYS

Using the READ/DATA Statements

In the example below, READ/DATA statements are
used to fill the example array with data.

E.xample:

5 rem ***using READ/DATA statements
10 FOR Y = 0TO5
20 READ X(Y)
30 PRINT "X(";Y; ") = X(Y)
40 NEXT
50 DATA 25, 10, 13,51,24, 33
RUN

X(0)= 25
X(1) = 10
X(2) = 13
X(3) = 51
X(4) = 24
X(5) = 33
Ok

This program is the same as the one on the
previous page except that instead of inputting the
data via the keyboard you are reading the data
from the program.

Using Direct Input

A third way to fill an array with data is to store a
constant value directly into the array.

Example:

10 rem ***set individual subscripts***
20X(0) = 25:X(1) = 10:X(2) = 13
30 X(3) = 51 : X(4) = 24: X(5) = 33
40 rem ***display array values***
50 FOR I = 0 TO 5
60 PRINT "Xr; I; ") = X(l)
70 NEXT
RUN

X(1) = 10
X(2) = 13
X(3) = 51
X(4)= 24
X(5) = 33
Ok

REFERENCE

ARRAYS

Two-dimension array

The two-dimension array is similar to the one-
dimension array except that is has two subscripts
instead of one (e.g., X(l,4)). Think of it as an array
made up of rows and columns.

X(1.1) 24 X(1.2) 15

X(2,1) 10 X(2,2) 33

X(3,1) 87 X(3.2) 90

X(4.1) 34 X(4.2) 16

where the value of X(l,l) is 24, X(3,2) is 90, X(3,l)
is 87, and so on.

REFERENCE

ARRAYS

To get a data item out of the array, you must
address it. This is done by telling the system which
row and column to look for.

X(3,2)

Name of array Row address Column address

Variables as Subscripts

As with one-dimension arrays, variables can also
be used for subscripts. For example, the
subscripted variable, X(A,B), has the variables A
and B for a subscripts.

If A = 2 and B = 2 then X(A,B) would be X(2,2), the
value of X(2,2) = 33.

If A=4 and B = 2 then X(A,B) would be X(4,2), the
value of X(4,2) = 16.

Expressions as Subscripts

You can also use expressions as subscripts. For
example, the subscripted variable X(Y-2,Y-1)
where Y=3. After the system calculates the
subscripts, the subscripted variable would be
X(l,2) and the value of X(l,2) = 15.

See the DIM, ERASE and OPTION BASE
statements in this chapter for information on
dimensioning arrays, redimensioning of
arrays and changing the default base of the
subscript

REFERENCE

ARRAYS

Assign values to a two-dimension array

The INPUT or READ/DATA statements with a FOR-
NEXT loop can be used to assign values to a two-
dimension array.

Using the INPUT Statement

In the example program below, the INPUT
statement is used to fill the example array with
data.

Example:

10 FOR R = 1 T0 4
20FORC = 1 T0 2
30 PRINT "Enter value for X("; R;
40 INPUT X(R.C)
SONEXTQR
RUN
Enter value for X(1,1)? 24
Enter value for X(1,2)? 15
Enter value for X(2,1)? 10
Enter value for X(2, 2)? 33
Enter value for X(3,1)? 87
Enter value for X(3, 2)? 90
Enter value for X(4,1)? 34
Enter value for X(4,2)7 16
Ok

{Note: The bold text is what you would enter at the
keyboard followed by a Return.)

Notice that the counters R and C in the FOR state
ments are also used for the subscripts in X(R,C)
causing the subscripts to be incremented by one
each time through the loop (e.g., data is assigned to
the array as follows: X(l,l), X(l,2), X(2,l), X(2,2),
etc.).

The system asks for input eight times. After the
values have been entered, value 24 is assigned to
X(l,l), value 15 is assigned to X(l,2), value 10 is
assigned to X(2,l), and so on.

"3^REFERENCE

ARRAYS

Using READ/DATA Statements

In the example below, READ/DATA statements are
used to fill the example array with data.

Example:

10 FOR R = 1 T0 4
20 FOR C = 1 TO 2

30 READ X(R,C)
40 PRINT "X("; R; C; ") = X(R,C),
SO NEXTC
60 PRINT
70 NEXTR
80 DATA 24, 15, 10, 33, 87, 90, 34, 16
RUN

X{ 1 , 1) = 24 X(1 ,2) = 15
X(2, 1) = 10 X(2,2) = 33
X(3 , 1) = 87 X(3 , 2) = 90
X(4, 1) = 34 X(4,2) = 16
Ok

This program is the same as the one on the
previous page except that instead of inputting the
data via the keyboard you are reading the data
from the program.

Using Direct Input

A third way to fill an array with data is to store a
constant value directly into the array.

Example:

10X(1,1) = 24:X(1,2) = 15
20X(2,1) = 10;X(2,2) = 33
30X(3,1) = 87:X(3,2) = 90
40X(4,1) = 34: X(4,2) = 16
50 FOR R = 1 TO 4
60 PRINT
70 FOR C = 1 TO 2

80 PRINT "X("; R; C; ") = X(R,C),
90 NEXT C, R
RUN

X(1 , 1)
X(2,1)
X(3,1)
X(4,1)
Ok

24

10
87
34

X(1 ,2) = 15
X(2 , 2) = 33
X(3,2) = 90
X(4,2) = 16

5^ REFERENCE

ARRAYS

DIM statement

The DIM statement specifies the array name, the
number of dimensions and the subscript upper
bound per dimension. The DIM statement may
specify one or more arrays.

Syntax:

DIM array(Hst'Of-subscripts)i array(list-of'
subscripts)]...

where

array is a valid array name. Any legal
variable name may be used.

list-of-subscripts is one or more numeric
expressions which specify the array
dimensions. Each subscript must be
separated from the next by a comma. The
number of subscripts specifies the number of
dimensions, and the value of each specifies
the subscript upper bound.

The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement.

If an array name is used without a DIM statement,
the maximum value of its subscript(s) is assumed
to be 10.

If a subscript is used that is greater than the
maximum specified, a Subscript out of range error
occurs.

The DIM statement sets all the elements of the
specified numerical arrays to an initial value of
zero and elements of string arrays to null strings.

REFERENCE

ARRAYS

If you wish to have an array with a subscript
greater than 10, you need to use the DIM
statement.

Example:

10 REM ***DIM Statement***
20 DIM A(20)
30 FOR X = 1 T015

40A(X) = X
50 PRINT A(X);
60 NEXT
RUN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ok

In the above program, the A(X) array is
dimensioned to be able to have a subscript of 0 to
20. You can have up to 20 as your subscript but no
greater. If you try to use 21 as a subscript, you will
get the error message Subscript out of range.

Theoretically, the maximum number of
dimensions allowed in a DIM statement is 255 and
the maximum number of elements per dimension
is 32767. In reality, however, these numbers
would be impossible, since the name and
punctuation are also counted as spaces in the line,
and the line itself has a limit of255 characters.

If the default dimension (10) has already been
established for an array variable, and that variable
is later encountered in a DIM statement, a
Duplicate Definition in nnnnn error results.
Therefore, it is good programming practice to put
the required DIM statements at the oeginning of a
program, outside of any processing loops.

If no DIM is specified, the first reference to an array
element in the program will create the array with
the specified number of dimensions. For example,
if a program statement refers to:

AR 1(3,5,10)

then ARl is created with three dimensions and a
default upper bound of 10 for each dimension.

REFERENCE

ARRAYS

An array can be dimensioned only once during the
run of a program. The system will give an error
message and stop executing the program if it comes
to a DIM statement for the same array a second
time. However, you can use more than one DIM
statement in a program if you are dimensioning
different arrays.

Example:

Not allowed

10DIMX(20)
20 FOR I = 1T015:X(I) = I:PRINT X(l);:NEXT
30 DIM X(30)
RUN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Duplicate Definition in 30
Ok

Allowed

10DIMX(20)
20 FOR I = 1 T015:X(I)
30 PRINT

40 DIM Y(30)
50 FOR I = 1 TO10:Y(l)
RUN
1 23456789 10
123456789 10
Ok

= l:PRINTX(l);:NEXT

= l:PRINTY(l);:NEXT

11 12 13 14 15

If you try to redimension an array without first
erasing it, a Duplicate Definition in nnnnn error
occurs, as shown above. You must first use the
ERASE statement to erase an array before
redimensioning it. You will get the same error
message if a DIM statement is preceded by an array
reference.

3^REFERENCE

ARRAYS

If the DIM statement is jumped using the GOTO or
GOSUB statement, the subscript upper bound per
dimension is not set.

Example:

101 = 1
20 GOTO 40

30DIM A(50)
40 A(10) = 3
50A(11) = 45
RUN

Subscript out of range in SO
Ok

The system displays:

Subscript out of range in 50

when statement 50 is executed, as statement 30 is
jumped over and an upper bound of 10 is assumed
by default.

More Information on the DIM Statement

(Note: The two example programs below are not
working examples. They only show the format of
how to use the statement.)

Variables and expressions can also be used to
dimension arrays.

Example:

10A = 25:B = 100:C = 10
20 DIM X(B)
30 DIM Y$(A)
40 DIMZ(C+ 11)

All the DIM statements can be on one line
separated by commas.

Example:

10A = 25:8 = 100:C = 10
20 DIM X(B), DIM Y$(A), DIM Z(C + 11)

5:24- REFBReiMCE

ARRAYS

Number of Elements Per Dimension

no DIM statement

OPTION BASE 0 set 11 elements (subscripts
0-10 are allowed in
each dimension)

OPTION BASE 1 set 10 elements (subscripts
1-10 are allowed in
each dimension^

with DIM statement

OPTION BASE 0 set

OPTION BASE 1 set

the number of elements
in each dimension is
calculated by adding 1
to each upper bound
subscript

the number of elements
in each dimension
coincides with each
upper bound subscript

To Define an Array

Set the subscript lower bound. Use the default
OPTION BASE 0 or set OPTION BASE 1.

Use the DIM statement to

Assign a name to the array

Set the number of dimensions

Set the subscript upper bounds per
dimension

ftCFERENCe ■5:25

ARRAYS

ERASE statement

The ERASE statement releases space and variable
names previously reserved for arrays. The data is
lost and the array(s) no longer exist.

Syntax:

ERASE array [, array]...

where

array is the name of an array to be erased.

Arrays may be redimensioned after they are
ERAS Ed, or the previously allocated array space in
memory may be used for other purposes.

If an attempt is made to redimension an array
without first ERASEing it, a Duplicate Definition in
nnnnn error occurs.

More than one array variable can be used in the
ERASE statement separated by commas (e.g.,
ERASE X,Y).

It is not good programming practice to reuse an
identifier. This may generate errors or reduce the
program readability. You may, however, find it
useful to redeclare an erased array; for example,
when an array name is known by a subroutine and
you want to pass arrays with different number of
dimensions or subscript upper bounds to this
subroutine.

■REFERENCE

ARRAYS

Example:

10DIMX(17)

130 ERASE X
140 DIM X(12,50)

Upon execution of statement 130, array X is
deleted and the corresponding memory space is
made free. You may define another array (see
statement 140) with the same name but different
number of dimensions and upper bounds.

REFERENCE "T27

ARRAYS

OPTION BASE statement

The OPTION BASE statement defines the minimum
value for array subscripts.

Syntax:

OPTION BASE n

where

n is an integer expression and may be 1 or 0.

The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is 1.

Example:

10 OPTION BASE 1
20 FORX = 0TO 5
30 A(X) = X
40 PRINTA(X)
50 NEXT

RUN

Subscript out of range in 30
Ok

In this example, the minimum value of the array
subscript was set to 1. But in line 30, the first
array subscript is 0. So, the Subscript out of range
error message is displayed.

A CHAINed program may have an OPTION BASE
statement if no arrays are passed. The CHAINed
program will inherit the OPTION BASE value of the
CHAINing program.

REFERENCE

ASSEMBLY LANGUAGE
SUBROUTINES

You may call assembly language subroutines from
your GW-BASIC program with the USR function or
the CALL or CALLS statement.

The USR function allows you to call an assembly
language subroutine to return a value in the same
way you call GW-BASIC intrinsic functions.
However, it is recommended that you use the CALL
or CALLS statement for interfacing machine
language programs with GW-BASIC. These
statements produce more readable source code and
can pass multiple arguments. In addition, the
CALL statement is compatible with more languages
than is the USR function.

Memory allocation

Memory space must be set aside for an assembly
language subroutine before it can be loaded. To do
so, use the /M: option of the GWBASIC command
(see ""GWBASIC command" in Chapter 19). The /M:
option sets the highest memory location to be used
by GW-BASIC.

In addition to the GW-BASIC code area, GW-
BASIC uses up to 64K of memory beginning at its
data segment (DS).

If more stack space is needed when an assembly
language subroutine is called, you can save the
GW-BASIC stack and set up a new stack for use by
the assembly language subroutine. The GW-
BASIC stack must be restored, however, before you
return from the subroutine.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

Loading subroutines into memory

An assembly language subroutine can be loaded
into memory in several ways, the most simple
being to use the BLOAD command {see the ""BLOAD
command'* in this chapter). Also, you could SHELL a
program that exits, but stays resident, leaving the
linked, relocated image in memory [see Chapter
16). As a third choice, you could execute a program
that exits but stays resident, and then run GW-
BASIC.

The following guidelines must be observed if you
choose to BLOAD, or read and poke, an .EXE file
into memory:

1. Make sure the subroutines do not contain
any long references, address offsets that
exceed 64K or that take the user out of the
code segment. These long references require
handling by the .EXE loader.

2. Skip over the first 512 bytes (the header) of
the linker's output file .(EXE), then read in
the rest of the file.

The following two sections illustrate two standard
ways of loading assembly language subroutines.

Using the POKE Statement

Short, assembly language subroutines can be
POKEd {see the ""POKE statement" in this chapter)
into memory as follows: after assembling the
subroutine machine code, you should create DATA
statements containing the value in hexadecimal of
each byte of code (represented as &Hxx). The
subroutine is then POKEd into the specified area of
memory, byte-by-byte, in a loop.

5^ REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

The subroutine may then be called using the USR
function or the CALL statement. If you use the USR
function, then the subroutine entry address must
be defined with a DEF USR statement. This defines
the USR function call offset into the current
segment. If you use the CALL statement, then the
subroutine entry address is the value of the
numeric variable entered just after CALL. This
variable must contain the offset into the current
segment. In both cases, the segment is defined by
the DEF SEG statement.

Using the BLOAD Command

An assembly language subroutine can be BLOADed
into memory as follows:

1. Firstly, create an .EXE file of the subroutine
using the linker, then load GW-BASIC
under DEBUG by entering:

DEBUG GWBASICEXE

2. To determine the location of GW-BASIC in
memory, display and record the values
contained in registers OS, IP, SS, SP, OS,
and ES, using the R command (for use in
step 5).

3. Load the .EXE file into high memory using
DEBUG, overlaying the transient section of
COMMAND.COM.

4. To determine the subroutine memory
location, display the registers using the R
command. The CS and IP register values
should be recorded for use in steps 6 and 7.

5. Reset the register values to their original
values as recorded in step 2 using the R
command. Breakpoints may optionally be
included in the subroutine using the G
command which branches to the GW-BASIC
entry point.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

Load your application program. Modify the
DEF SEG and either the OEF USR statement
or the CALL variable to correspond with the
subroutine memory location as defined in
step 4 (i.e., the CS register value for DEF SEG
and the IP register value for the DEF USR or
CALL variable).

The subroutine memory area should be
BSAVEd in GW-BASIC direct mode, using
both the CS and IP register values from step
4, and the assembler listing or LINK map
code length.

Ensure that your application program
contains a DEF SEG with the appropriate CS
register value, followed by a BLOAD
statement.

BLOAD can place a subroutine in an
alternate location if the subroutine is self-
relocatable. Possible alternatives include
an unused screen or file buffer, or a string
variable area. {Refer to the "BLOAD
command" and "VARPTR function" in this
chapter.) In this case, remember also to
mowy the associated DEF SEG statement.

Finally, the updated application program
should be saved.

Note: If GW-BASIC is run under DEBUG, DEBUG
is loaded first, as a precaution against being
overwritten. Any breakpoints, or the SYSTEM
command, returns control to DEBUG.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

Calling the subroutine from GW-BASIC

CALL Statement

The CALL statement is the recommended way of
calling machine language programs with GW-
BASIC. It is preferable to the USR function unless
you are running programs that already contain
USR functions.

The syntax of the CALL statement is:

CALL numvar [(variable [, variable]...)]

where
numvar contains the offset into the current
segment that is the starting point in memory
of the subroutine being called

variables indicates a list of variables,
separated by commas, that are to be passed to
the subroutine as arguments.

The current segment is either the default, or that
which has been defined by a DEF SEG statement.

Invoking the CALL statement causes the following
to occur:

1. For each variable specified in the statement,
the two-byte offset of the variable's location
within the GW-BASIC segment is pushed
onto the stack.

2. The GW-BASIC return address code
segment (CS), and offset (IP) are pushed
onto the stack.

3. Control is transferred to the machine
language routine using the segment
address, which is given in the last DEF SEG
statement and the offset given in numvar.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

The following two diagrams illustrate the state of
the stack at the time the CALL statement is
executed, and the condition of the stack during
execution of the called subroutine, respectively.

high
addresses

s

t

a

c

k

c

o

u

n

t

e

r

low

addresses

argument 0

argument n-1

argument n

return segment address

return offset

SP + 4 + (2*n)

Each argument is a
2-byte pointer into
memory

SP + 6

SP + 2

SP <-stack pointer
(SP register
contents)

The above diagram illustrates the stack layout
when the CALL statement is activated.

After the CALL statement has been activated, the
subroutine has control. Arguments may be
referenced by moving the stack point (SP) to the
base point (BP) and adding a positive offset to BP.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

high
addresses

s

t

a

c

k

c

o

u

n

t

e

r

▼

low

addresses

argument 0

argument 1

argument n

return segment address

return offset

local variables

(data pushed on stack)

This space may be used
during procedure

execution

-Absent if any argument is
referenced within a nested

procedure

<-Absent in local procedure

<-Stack pointer

(SP register contents)

Stack pointer may change

during procedure execution

The above diagram illustrates the stack layout
during execution of a CALL statement.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

Observe the following rules when coding a
subroutine:

1.

2.

3.

5.

The called routine must preserve segment
registers DS, ES, SS, and BP. If interrupts
are disabled in the routine, they must be
enabled before exiting. The stack must be
cleaned up on exit.

The called program must know the number
and length of the arguments passed. The
following routine shows an easy way to
reference arguments:

push
mov

add

then:

BP

BP,SP
BP, (2*number of arguments) + 4

argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2*n

(number of arguments = n -I- 1)

Variables may be allocated either in the
Code Segment or on the stack. Be careful
not to modify the return segments and offset
stored on the stack.

The called subroutine must clean up the
stack. A preferred way to do this is to
perform a RET n statement (where n is two
times the number of arguments in the
argument list) to adjust the stack to the
start of the calling sequence.

Values are returned to GW-BASIC by
including in the argument list the name of
the variable that will receive the result.

REFEftENCE

ASSEMBLY LANGUAGE SUBROUTINES

6. If the argument is a string, the argument's
offset points to 3 bytes which, as a unit, are
called the "string descriptor". Byte 0 of the
string descriptor contains the length of the
string (0 to 255). Bytes 1 and 2, respectively,
are the lower and upper 8 bytes of the string
starting address in string space.

Note: If the argument is a string literal in the
program^ the string descriptor will point to
program text. Be careful not to alter or
destroy your program this way. To avoid
unpredictable results, add -h to the string
literal in the program. For example, use:

20 A$ = "BASIC" + ""

This will force the string literal to be copied
into string space. Then the string may be
modified without affecting the program.

7. The contents of a string may be altered by
user routines, but the descriptor must not be
changed. Do not write past the end-of-
string. GW-BASIC cannot correctly
manipulate strings if their lengths are
modified by external routines.

Data areas needed by the routine must be
allocated either in the CODE segment of the
user routine or on the stack. It is not
possible to declare a separate data area in
the user assembler routine.

See example on next page.

REFERENCE "T37

ASSEMBLY LANGUAGE SUBROUTINES

Example:

100DEFSEG = &H8000
110VAR = &H7FA

120 CALLVAR (A,B$,C)

Line 100 sets the segment to 80000 Hex. The value
of variable VAR is added into the address as the
low word after the DEF SEG value is left shifted 4
bits, i.e., multiplied by 16. (This is a function of the
microprocessor, not of GW-BASIC.) Here. VAR is
set to &H7FA, so that the call to VAR will execute
the subroutine at location 80000;7FA Hex
(absolute address 8007F.A Hex).

The following sequence in 8086 assembly language
demonstrates access to the arguments passed. The
returned result is stored in the variable C.

PUSH
MOV

ADD
MOV
MOV

MOV

MOV
MOV
MOVS
POP
RET

BP

BP,SP
BP,(4 + 2*3)
BX,[BP-21
CL,[BX]
DX,1[BX]

SI,[BP]
DI[BP-4]
WORD
BP

6

;Set up pointer to arguments

;Get address of B$ descriptor
;Get length of B$ in CL
;Get address of B$ text in DX

;Get address of in SI

;Get pointer to 'C* in DI
;Store variable 'A' in *C

;Restore pointer
; Restore stack, return

Note: The called program must know the variable
type for the numeric arguments passed. In the
previous example, the instruction:

MOVS WORD

will copy only two bytes. This is fine if variables A
and C are integer. You would have to copy four
bytes if the variables were single precision format
and copy 8 bytes if they were double precision.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

CALLS Statement

The CALLS statement should be used to access
subroutines that were written using MS-
FORTRAN calling conventions. CALLS works just
like CALL and has the same syntax, except that
with CALLS the arguments are passed as
segmented addresses, rather than as unsegmented
addresses.

Because MS-FORTRAN routines need to know the
segment value for each argument passed, the
segment is pushed and then the onset is also
pushed. For each argument, four bytes are pushed
rather than two, as in the CALL statement.
Therefore, if your assembler routine uses the
CALLS statement, n in the RET statement is four
times the number of arguments.

USR Function

Although using the CALL statement is the
recommended way of calling assembly language
routines, the USR function is also available for this
purpose. This ensures compatibility with older
programs that contain USR functions.

The syntax of the USR function is:

USR [n] (argument)

where

n is an integer from 0 to 9. It speciRes which
USR routine is being called. If n is omitted,
USRO is assumed.

argument is any numeric or string
expression.

A DEF SEG statement must be executed prior to a
USR function call to ensure that the code segment
points to the subroutine being called. The segment
address given in the DEF SEG statement
determines the starting segment of the subroutine.

T39REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

For each USR function, a corresponding DEF USR
statement must be executed to define the USR
function call offset. This offset and the currently
active DEF SEG address determine the starting
address of the subroutine.

When the USR function call is made, register AL
contains a value that specifies the type of
argument that was given. The value in AL may be
one of the following:

Value
in AL

2

3
4

8

Tvpe of argument

Two-byte integer (two's complement)
String
Single precision floating-point number
Double precision floating-point
number

If the argument is a number, the BX register
points to the Floating-Point Accumulator (FAC)
where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the argument.
FAC-3 contains the lower 8 bits of the argument.

If the argument is a single precision floating-point
number:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

If the argument is a double precision floating-point
number:

FAC-7 through FAC-4 contain four more bytes of
mantissa (FAC-7 contains the lowest 8 bits).

5^30" REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

If the argument is a string, the DX register points
to 3 bytes which, as a unit, are called the "string
descriptor". Byte 0 of the string descriptor
contains the length of the string (0 to 255
characters). Bytes 1 and 2, respectively, are the
lower and upper 8 bits of the string starting
address in the GW-BASIC data segment. If the
argument is a string literal in the program, the
string descriptor will point to program text. Be
careful not to alter or destroy the program this
way.

Usually, the value returned by a USR function is
the same type (integer, string, single precision, or
double precision) as the argument that was passed
to it.

GW-BASIC has extended the USR function
interface to allow calls to MAKINT and FRCINT.
This allows access to these routines without giving
their absolute addresses. The address ES:BP is
used as an indirect far pointer to the routines
FRCINT and MAKINT.

To call FRCINT from a USR routine use CALL
DWORD ES:[BP]. To call MAKINT from a USR
routine use CALL DWORD ES:[BP + 4].

Example:

110DEFUSR0 = &H8000 'Assumes user jmve /M:32767
120X = 5
130Y = USRO(X)
140 PRINT Y

The type (numeric or string) of the variable
receiving the function call must be consistent with
that of the argument passed.

REFERENCE ■5:51

ASSEMBLY LANGUAGE SUBROUTINES

BLOAD command

Loads a memory image file into memory.

Syntax:

BLOAD "fUespec" [, offset]

where

"filespec" is a string expression
specifies the file to be loaded.

which

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

offset is an integer expression in the range 0
to 65535. This is the offset into the segment
declared by the last DBF SEG statement at
which loading is to start.

The BLOAD and BSAVE statements allow you to
load into memory, and save on a file, machine
language routines. When these routines are
resident in memory, they can be CALLed from your
GW-BASIC program by a CALL statement.

The BLOAD and BSAVE statements also allow you
to load and save any portion of memory, for
instance, you can save and display screen images
(specifying the screen buffer as the current
segment by a DBF SEG statement).

If offset is omitted, the offset specified at BSAVE is
assumed, and the file is loaded into the same
location from which it was saved.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

If offset is specified, a DEF SEG statement should be
executed before the BLOAD. When offset is given,
GW-BASIC assumes the user wants to BLOAD at
an address other than the one saved. The last
known DEF SEG address will be used If no DEF SEG
statement has been given, the GW-BASIC data
segment will be used as the default because it is
the default for DEF SEG.

Warning: BLOAD does not perform an address
range check. It is therefore possible to load a file
anywhere in memory. You must be careful not to
load over GW-BASIC, or the operating system.

Examples:

10 'Load a machine language program into
memory at 60: FOOO
20 DEF SEG 'Restore segment to GW-BASIC's DS
30 BLOAD "B:PROGr,&HFOOO 'Load PR0G1 into
theDS

10 'Load the screen buffer
20 DEF SEG = &HB800 'Point segment at screen
buffer
30 BLOAD "FILEr.O 'Load FILE1 into screen buffer

Note the DEF SEG statement in 20 and the offset of
0 in 30; this guarantees that the correct address is
used.

An example under BSAVE illustrates how FILEl
was saved.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

BSAVE command

Saves sections of the main memory on the specified
file.

Syntax:

BSAVE "filespec", offset, length

where

"fiiespec" is a string expression which
specifies the name of the file to be saved.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

offset is an integer expression in the range 0
to 65535. This is the offset into the segment
declared by the last DEF SEG.

length is an integer expression in the range
1 to 65535, specifying the length of the
memory image to be saved.

A memory image file is a byte-for-byte copy of what
is in memory.

The BLOAD and BSAVE statements allow you to
load into memory, and save on a file, machine
language routines. When these routines are
resident in memory, they can be CALLed from your
GW-BASIC program by a CALL statement.

The BLOAD and BSAVE statements also allow you
to load and save any portion of memory, for
instance, you can save and display screen images
(specifying the screen buffer as the current
segment by a DEF SEG statement).

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

A DEF SEG statement should be executed before the
BSAVE. The last known DEF SEG address is always
used for the save.

Examples:

10'Save PR0G1
20 DEFSEG = &H6000
30 BSAVE "PROG 1",&HF000,256

This example saves 256 bytes starting at
60000:F000 in the file PROGl.

10 'Save the screen buffer
20 DEF SEG = &HB800 'Point segment at screen
buffer
30 BSAVE "FILEI",0,16384 ' Save screen buffer in
FILE1

The DEF SEG statement must be used to set up the
segment address to the screen buffer. The offset of
0 and the length 16384 specify that the entire 16K
screen buffer is to be saved.

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

DEF SEG statement

Assigns the current "segment" of memory.

Syntax:

DEF SEG [= address]

where

address is a numeric expression returning
an unsigned integer in the range 0 to 65535.
The address specified identifies the segment
address used by BLOAO, BSAVE, PEEK,
POKE, DEF USR, and CALL.

If address is omitted, the segment is set to GW-
BASIC's data segment. This is the initial default
value.

If address is specified, the value is shifted left 4 bits
(i.e., if address is in hexadecimal, a zero is
appended) to form the current segment address.

Note: GW-BASIC does not check if the resultant
segment is valid.

If you enter a value outside the specified range, an
llleQal function call error results. Previous value
will be retained.

If you do not separate DEF and SEG by at least one
blank, GW-BASlC would interpret DEF SEG as the
name of a variable. For instance:

100DEFSEG = 150

would assign the value 150 to variable DEFSEG.

Example:

10 DEFSEG = &HB800'set segment to screen buffer
100 DEF SEG 'Restore segment to GW-BASIC's DS

Note that in statement 10 the screen buffer is at
absolute address B8000 hex, as the last
hexadecimal digit is dropped on the DEF SEG
statement.

5:35" REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

DEF USR statement

Enables access to a machine language subroutine
by specifying the starting address. The subroutine
may be subsequently called by the associated USR
function.

Syntax;

DEF USR [n] = offset

where

n may be any digit from 0 to 9. The digit
corresponds to the number of the USR
routine whose address is being specified. If
n is omitted, DEF USRO is assumed.

offset is an integer expression from 0 to
65535. It specifies the starting address of
the subroutine as an offset into the current
segment which is defined by the last DEF
SEG statement executed.

Any number of DEF USR statements may appear in
a program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary. To obtain the starting
address of a subroutine, GW-BASIC adds the value
of offset to the current segment value.

Example:

100 DEF SEG = 0

200 DEF USRO = 24000
210 X = USR0(Y*2/2.89)

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

PEEK function

Returns the byte read from the specified memory
location.

Syntax:

PEEK(offeet)

where

offset is a numeric expression returning an
integer in the range -32768 to 65535. It
indicates the address of the memory location
from which a byte will be returned. It is the
offset from the current segment, which was
defined by the last DEF SEG statement. For
the interpretation of a negative value of
offset, see the VARPTR function described in
this chapter.

The returned value is an integer in the range 0 to
255.

If offset is outside the specified range, an Illegal
function call error is returned.

PEEK is the complementary function of the POKE
statement.

Example:

lOOA = PEEK(&H5A00)

5:^5" REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

POKE statement

Writes a byte into a memory location.

Syntax:

POKE offset, byte

where

offset is a numeric expression returning an
integer in the range 0 to 65535. It indicates
the address of the memory location where
the data is to be written. It is the offset from
the current segment, which was defined by
the last DEF SEG statement.

byte is the data byte. It must be in the range
0 to 255.

You can use POKE and PEEK for passing arguments
and data to assembly language subroutines.

If either offset or byte is outside the specified
range, an Illegal function call error is returned.

The complementary function to POKE is PEEK.

Warning: Use POKE carefully. If it is used
incorrectly, it can cause GW-BASIC or MS-
DOS to crash.

Example:

10POKE&H5A00,&HFF

REFERENCE

ASSEMBLY LANGUAGE SUBROUTINES

VARPTR function

Returns the address of the first byte of data
identified with variable.

Syntax:

VARPTR(var/ab/e)

where

variable is any numeric or string program
variable.

The address returned will be an integer in the
range -32768 to 32767. This integer value is the
offset into GW-BASIC's Data Segment. If a
negative address is returned, add it to 65536 to
obtain the actual address.

The variable must have been defined prior to
execution of VARPTR. Otherwise an Illegal
function call error results. Variables are defined
by executing any reference to the variable. Both
numeric and string variables may be used. For
string variables, the address of the first byte of the
string description is returned. (See Appendix F on
how GW-BASIC allocates variables.)

VARPTR is usually used to obtain the address of a
variable or array so that it may be passed to an
assembly language subroutine. A function call of
the form VARPTR(A(0)) is usually specified when
passing an array, so that the lowest-addressed
element of the array is returned. All simple
variables should be assigned before calling
VARPTR for an array, because the address of the
arrays change whenever a new simple variable is
assigned.

Example:

10 X = USR(VARPTR(Y))

530" REFERENCE

ASYNCHRONOUS
COMMUNIC ATIONS

This chapter describes how GW-BASIC may be
used to support RS232 asynchronous communi
cations with other computers and peripherals.

This chapter is intended for experienced
programmers interested in setting up and using
asynchronous communications.

The GW-BASIC statements used for communi
cations are also described in this chapter.

The subsections are

Opening communications file
Communication I/O
An exercise in communication I/O
EOF function
GET (COM files) statement
INPUTS function
LOG function
LOF function
ON COM(n) GOSUB and COM(n) statements
OPEN COM statement
PUT (COM files) statement

REFERENCE

ASYNCHRONOUS COMMUNICATIONS

Opening communications Mes

The OPEN COMmunications statement allocates a
buffer for input and output in a similar manner as
the OPEN statement for disk files. Refer to the
OPEN COM statement in this chapter for a full
description.

53r REPeRENCE

ASYNCHRONOUS COMMUNICATIONS

Communication I/O

Since the communication port is opened as a file,
all Input/Output statements that are valid for disk
files are valid for COM.

COM sequential input statements are the same as
those for disk files. They are:

INPUT#
LINE INPUT#
INPUTS

COM sequential output statements are the same as
those for disk, and are;

PRINT #
PRINT# USING
WRITE #

For details of coding syntax and usage of these
statements, refer to the alphabetized listing of the
commands, statements and functions in Chapter 1.

The GET and PUT statements are only slightly
different for COM files. (See the GET (COM files)
and PUT (COM files) statements described in this
section.)

Communication 1/0 Functions

The most difficult aspect of asynchronous
communication is being able to process characters
as fast as they are received. At rates above 2400
bps, it may be necessary to suspend character
transmission from the host computer long enough
to catch up. This can be done by sending XOFF
(CHR$(19)) to the host and XON (CHR$(17)) when
ready to resume.

REFERENCE T33

ASYNCHRONOUS COMMUNICATIONS

GW-BASIC provides three functions which help in
determining when an overrun condition is
imminent. These are;

LOC(/) Returns the number of characters in the
input buffer waiting to be read. The
input buffer can hold more than 255
characters determined by the /C: switch
option in the GWBASIC command line
(see the "GWBASIC command" in
Chapter 19). If there are more than 255
characters in the buffer, LOC(0 returns
255. Since a string is limited to 255
characters, this practical limit means
that you do not have to test for string
size before reading data into it. If fewer
than 255 characters remain in the
buffer, LOC(/) returns the actual count.

LOHf) Returns the amount of free space in the
input buffer. That is, s/ze-LOC(^, where
size is the size of the communications
buffer as set by the /C: option. LOF may
be used to detect when the input buffer
is reaching its maximum capacity.

EOF(^ If true (-1), indicates that the input
buffer is empty. Returns false (0) if any
characters are waiting to be read.

Possible Errors

Communication Buffer Overflow
If a read is attempted after the input buffer is full
(i.e., LOF(/) returns 0).

Device I/O Error
If any of the following line conditions are detected
on reception: Overrun Error (OE), Framing Error
(FE), or Break Interrupt (BI). The error is reset by
subsequent inputs but the character causing the
error is lost.

Device Fault
If Data Set Ready (DSR) is lost during I/O.

535" REFERENCE

ASYNCHRONOUS COMMUNICATIONS

The INPUTS Function for COM Files

The INPUTS function is preferable to the INPUT#
and LINE INPUT# statements when reading COM
files, since all ASCII characters may be significant
in communications. INPUT# is least desirable
because input stops when a comma (,) or CR
(carriage return) is received and LINE INPUT#
terminates when a CR is received.

INPUT allows all characters read to be assigned to a
string. Remember from the coding rules that
INPUTS {n,f) will return n characters from the #f
file. The following statements are therefore the
most efficient for reading a COM file:

10 WHILE NOT E0F(1)
20 AS = INPUT (L0C(1),#1)

Process data returned in AS

60 WEND

The above statements return the characters in the
buffer into A$ and process them, provided there are
characters in the buffer. If there are more than 255
characters, only 255 will be returned at a time to
prevent String Overflow. If this is the case, E0F(1)
is false and input continues until the input buffer
is empty. The sequence of events is therefore
simple, concise, and fast.

REFERENCE

ASYNCHRONOUS COMMUNICATIONS

An exercise in communication I/O

The following program enables your personal '
computer to be used as a conventional terminal.
Besides Full Duplex communication with a host,
the TTY program allows data to be "Down-loaded"
to a file. Conversely, a file may be "Up-loaded"
(transmitted) to another machine.

In addition to demonstrating the elements of
Asynchronous communication, this program
should be useful in transferring GW-BASIC
programs and data to and from your system.

10REM
20 REM *** RS232 TEST PROGRAM ***
30REM
40 SCREEN 0,0
SO KEY OFF:CLS:CLOSE
60DEFINTA-Z

70 FALSE = 0:TRUE = NOT FALSE
80 MENU = 5 '
90 XOFF = CHR$(19):X0N$ = CHR$(17)
100 ON COM(1) GOSUB 730
110COMFIL$ = "COM1:1200,E,7"
120 0PENC0MFIL$AS1
130 REM

140 REM *** TALK MODE ***
150 REM
160 CLS
170 LOCATE 25,1:PRINT "RS232 test
running in TALK MODE";
180 PAUSE = FALSE
190 LOCATE 1,1
200 A$ = INKEY$:IF A$ = "" THEN 220
210 IF ASC(A$) = MENU THEN 290 ELSE
PRINT#1,A$;
220IFEOF(1)THEN200
230 IF LOC(1)>50 THEN PAUSE = TRUE:
PRINT#1,X0FF$;
240A$ = INPUT$(LOC(1),1)
250PRINTA$;:IFLOC(1)>0 THEN 230
260 IF PAUSE THEN PAUSE = FALSE:
PRINT#1,X0N$;
270 GOTO 200

program

5:55- REFERENCE

ASYNCHRONOUS COMMUNICATIONS

test program

"): LOCATE 1,1
';TXRX$

280 REM
290 REM *** COMMAND MODE **"
300 REM
310 CLS
320 LOCATE 2S.1:PRINT "RS232
running in COMMAND MODE";
330 LOCATE 1,1
340 INPUT "FILE ";DSKFIL$
350 LOCATE 1,1;PRINT STRING (80,'
360 INPUT "(T)ransmit or (R)eceive
370 IF RXRX$ = "T" THEN OPEN DSKFIL$ FOR INPUT
AS 3: GOTO 580
380 IF TXRX$ = "R" THEN 410
390 GOTO 350
400 REM

410 REM *** FILE RECEIVE MODE ***
420 REM
430 LOCATE 25,32:PRINT "FILE RECEIVE MODE
440 OPEN DSKFIL$ FOR OUTPUT AS 3
450 IF E0F(1) THEN GOSUB 520
460 IF L0C(1) > 50 THEN PAUSE = TRUE:
PRINT# 1,X0FF$;
470 A$ = INPUT$(L0C(1), 1)
480 PRINT#3,A$;
490IFLOC(1) > 0 THEN 460
500 IF PAUSE THEN PAUSE = FALSE:
PRINT#1,X0N$;
510 GOTO 450
520 FOR I = 1 TO 5000

530 IF NOT E0F(1) THEN RETURN
540 NEXT I

550 CL0SE#3
560 RETURN 140
570 REM
580 REM *** FILE TRANSMIT MODE ***
590 REM
600 LOCATE 25,32 : PRINT "FILE TRANSMIT MODE
II ,

610COM(1)ON
620 XFLAG = 1
630 WHILE NOT EOF(3)
640A$ = INPUT$(1,3)
650 WHILE XFLAG = 0:WEND
660 PRINT#1,(A$);
670 WEND
680COM(1)OFF
690 PRINT#1,CHR$(26);
700 CLOSE 3
710 GOTO 140

REFERENCE 5^

ASYNCHRONOUS COMMUNICATIONS

720 REM
730 REM ***XON/XOFF RECEIVING ROUTINE***
740 REM
750 IF E0F(1) THEN RETURN
760 B$ = INPUT$(L0C(1),1)
770 IF LEN(B$) = 2 THEN 790
780 IF B$ = XOFF$ THEN 810
790 XFLAG = 1
800 RETURN

810 XFLAG = 0
820 RETURN

Notes on the TTY programming example

Line No. Comments

10-90 Define the screen attributes and
initialize program variables.

100 Specifies the line number of the first
statement of the COM trap routine
associated with channel number 1.

110-120 Open and initialize communications
channel 1 with a speed of 1200 bps,
parity even, and 7 data bits.

170 Displays message indicating the
operation mode (Talk Mode) on the
25tb screen line.

180-260 Send characters entered from key
board to channel number 1, and
display characters received from the
channel. Statement 210 transfers
control to statement 290 (where
Command Mode is entered), if the
user enters CTRL + E.

320 Displays a message indicating the
new mode (Command Mode) on the
25th screen line.

535" REFERENCE

ASYNCHRONOUS COMMUNICATIONS

Line No. Comments

340 Asks the user to enter the name of the
file to transmit or receive, depending
on the character (T or R) entered upon
execution of statement 360.

370 If the user enters T, opens the
specified file for INPUT and branches
to statement 580.

380 If the user enters R, branches to
statement 410 (where Receive Mode is
entered).

410-560 The program is in Receive Mode, as
displayed by statement 430 on the
25th screen line. Statement 440

opens the specified file for OUTPUT.
Statement 450 checks if characters
are pending on the receive buffer. If
no characters are pending, control is
transferred to statement 520,
otherwise to the following statement
(line 460).

520-540 A FOR...NEXT loop is activated to wait
until characters arrive in the receive
buffer. If no character arrives within
the specified number of iterations, the
Receive Mode is exited. Control is
then transferred to statement 550
where the file is closed, and then to
statement 140 returning in "TALK
MODE".

If characters arrive, control is
transferred to statement 460.

460 Checks if the number of characters in
the receive buffer is greater than 50.
If the number is greater than 50, it
sends an XOFF character to the
channel to stop transmission.

470-480 If the number of characters in the
receive buffer is less than or equal to
50, characters are read from the
receive buffer and written to the file.

REFERENCE T39

ASYNCHRONOUS COMMUNICATIONS

Line No. Comments

490-510 Check if there are still characters in
the receive buffer. If yes, control is
transferred to statement 460. If no,
an XON character is sent (if an XOFF
was sent before) and control is
transferred to statement 450.

570-710 The program is in Transmit Mode, as
displayed by statement 600 on the
25th screen line ("File Transmit
Mode"). The file has already been
opened for input at statement 370.
Statement 610 enables COM
trapping. Statements 630 to 670 form
a WHILE...WEND loop to read and
transmit the file (statement 640 reads
one character at a time and statement
660 sends it to the communications
channel).

The character transmission is
suspended if an XOFF character is
received (see statement 650). The
character transmission is resumed if
an XON character is received.
Statements 680 to 710 disable COM
trapping, send an EOF character,
close the file and return to "Talk
Mode".

730-820 Form the COM trap routine. State
ment 750 checks if characters are
pending in the receive buffer. If no
character is pending, a RETURN is
executed. If two characters are
pending, the transmission of
characters is enabled (statement 790)
and the routine is exited (RETURN).
Two characters in the receive buffer
means that both an XON and an
XOFF have been received. If only one
character is pending, the trans
mission of characters is disabled (if
this character is XOFF) or enabled (if
this character is XON).

5:50" REFERENCE

ASYNCHRONOUS COMMUNICATIONS

EOF function

Tests for the end-of-file condition.

Syntax:

E0F(f/7enum)

where

filenum is the file number specified in the
OPEN statement.

When EOF is used with a communications device,
the definition of the end-of-file condition is
dependent on the mode (ASCII or binary) in which
the device was OPENed.

In binary mode, EOF is true when the input queue
is empty (LOC(n) = 0). It becomes false when the
input queue is not empty.

In ASCII mode, EOF is false until a CTRL Z is
received, and from then on it will remain true until
the device is closed.

REFERENCE

ASYNCHRONOUS COMMUNICATIONS

GET (COM files) statement

Reads a sijecified number of bytes into the
communications buffer.

Syntax:

GET[#] filenum , length

where

filenum is an integer expression returning a
valid file number.

length is an integer expression returning
the number of bytes to be transferred into
the communications buffer, length cannot
be greater than the value specified by the
LEN clause in the OPEN COM statement.

Example:

100 GET #2,80

REFERENCE

ASYNCHRONOUS COMMUNICATIONS

INPUTS function

Returns a string of characters read from a file.

Syntax:

INPUTS (length, [#]fi7enum)

where

length is an integer expression specifying
the number of characters to be read from a
file.

filenum is the file number specifying the file
to be read.

The INPUTS function is preferred over INPUT# and
LINE INPUT# statements, when reading COM files,
since all ASCII characters may be significant in
communications. INPUT# is least desirable
because input stops when a comma (,) or carriage
return is encountered and LINE INPUT# terminates
when a carriage return is encountered.

Example:

10 WHILE NOT E0F(1)
20 AS = INPUTS(L0C(1),#1)

Process data returned in AS

60 WEND

The above sequence of statements is read: "While
there is something in the input queue, return the
number of characters in the queue and store them
in A$. If there are more than 255 characters, only
255 will be returned at a time to prevent String
Overflow. Further, if this is the case, E0F(1) is
false and input continues until the input queue is
empty."

REFERENCE

ASYNCHRONOUS COMMUNICATIONS

LOC function

Returns the current position in the file.

Syntax:

LOC(filenum)

where

filenum is the number under which the file
wasOPENed.

For communications files, LOC is used to determine
if there are any characters in the input queue
waiting to be read. The input queue can hold more
than 255 characters determined by the /C: switch
option in the GWBASIC command line (see the
''GWBASIC command" in Chapter 19).

If there are more than 255 characters in the queue,
LOC returns 255. Since strings are limited to 255
characters, this practical limit removes the need to
test for string size before reading data into them.

If fewer than 255 characters remain in the queue,
the value returned by LOC depends on whether the
device was opened in ASCII or binary mode. In
either mode, LOC will return the number of
characters that can be read from the device.
However, in ASCII mode, the low level routines
stop queueing characters as soon as end-of-file is
received. The end-of-file itself is not queued and
cannot be read. Any attempt to read the end-of-file
will result in an Input past end error.

Example:

100IFLOC(2) > 100 THEN STOP

5:53- REFEftENCE

ASYNCHRONOUS COMMUNICATIONS

LOF function

Returns the length of the named file in bytes.

Syntax:

LOf(filenum)

where

filenum is the number under which the file
was OPENed.

For communications files, LOF may be used to
check if the input buffer is getting full as it returns
the amount of free space in the input buffer. That
is:

buffer-size - lOC(filenum)

where buffer-size is the size of the communications
buffer. It defaults to 256 bytes, but may be
changed with the /C: option in the GWBASIC
command line {see ''GWBASIC command" in
Chapter 19).

ftCFEfteNCE

ASYNCHRONOUS COMMUNICATIONS

ON COM(n) GOSUB
COM(n) statements

These statements are used for conditional
branching. Specifies the first line number of a
subroutine to be executed as soon as characters
arrive in the communications buffer. This is also
known as "event trapping".

Syntax:

ON COM(n; GOSUB linenum

COM(n) ON I OFF | STOP

where

n is an integer expression that specifies the
number of the communications channel. It
may be 1,2, 3, or 4.

linenum is the line number of the subroutine
that is to be performed when the characters
arrive in the communications buffer. A line
number of 0 disables the communications
event trap.

The COMfn) statement enables or disables
trapping of communications activity on the
specified channel.

The ON COMfn) GOSUB statement specifies the
first program line of a subroutine to be performed
when characters arrive in the communications
buffer.

REFeRENCe

ASYNCHRONOUS COMMUNICATIONS

To enable the ON COM(n) GOSUB statement, a
COM(n) ON statement must first be executed.
While trapping is enabled, and if a non-zero
linenum is ^ecified in the ON COM(n) GOSUB
statement, GW-BASIC checks between every
statement to see if activity has occurred on the
communications channel. If it has, the ON COM(n)
GOSUB statement is executed and the
corresponding subroutine activated.

The COM(n) OFF statement disables the trapping
routine. If a COM(n) OFF statement is executed
and an event takes place, the GOSUB is not
performed and the event is not remembered.

The COM(n) STOP statement suspends the trap. If
an event occurs, it is remembered. If a COM(n)
STOP statement is executed and an event takes
place, the GOSUB is not performed but will be
performed as soon as a COM(n) ON statement is
executed.

When a trap occurs (i.e., the GOSUB is performed),
an automatic COM(n) STOP statement is executed
so that recursive traps cannot take place. The
RETURN from the trap subroutine will
automatically perform a COM(n) ON statement
unless an explicit COM(n) OFF statement was
performed inside the subroutine.

The RETURN linenum form of the RETURN
statement may be used to return to a specific line
number from the trapping subroutine. Use this
type of RETURN with care, however, because any
other GOSUBs, WHILEs, or FORs that were active at
the time of the trap will remain active, and errors
such as FOR without NEXT may result.

Event trapping does not take place when GW-
BASIC is not executing a program, and event
trapping is automatically disabled when an error
trap occurs resulting from an ON ERROR
statement.

REFERENCE "5:57

ASYNCHRONOUS COMMUNICATIONS

Typically, the COM trap routine will read an
entire message from the COM port before
returning. The COM trap should not be used for
single character messages since, at high baud
rates, the overhead of trapping and reading for
each individual character may cause the COM
interrupt buffer to overflow.

Example:

100 ON C0M(2) GOSUB 1000
110COM(2) ON

1000 REM COM activity

1050 RETURN 200

5^ REFERENCE

ASYNCHRONOUS COMMUNICATIONS

OPEN COM statement

Opens and initializes a communications channel
for input/output.

Syntax:

OPEN "COMn : [speed][, [parity]l, [data][,
[stop] [,RS][,CS [till ,DS[t]][,BIN][,ASC][,LF
]]]] " [FOR mode] AS [#] f/7e# [LEN =
record length]

where

n is 1, 2, 3, or 4. It specifies the number of a
legal communications device.

speed is an integer constant which sets the
baud rate in bits per second of the device to
be opened. Valid values are: 75, 110, 150,
300, 600, 1200, 1800, 2400, 4800 or 9600.
The default value is 300 bps.

parity designates the parity of the device to
be opened. Valid entries are:

E(even) - default value
M (mark)
N (none)
O(odd)
S (space)

data designates the number of data bits per
byte. Valid entries are: 5, 6, 7 (default), or
8.

stop designates the stop bit. Valid entries
are: 1, 1.5, or 2. If omitted, then 75 and 110
bps transmit two stop bits, all others
transmit one stop bit.

RS suppresses RTS (Request To Send).

■5:59REFERENCE

ASYNCHRONOUS COMMUNICATIONS

CS[t] controls CTS (Clear To Send).

DS[t] controls DSR (Data Set Ready).

CD[t] controls CD (Carrier Detect).

BIN opens the device in binary mode. BIN is
selected by default, unless ASC is specified.

ASC opens the file in ASCII mode.

LF specifies that a linefeed is to be sent after
a carriage return.

mode is one of the following string
expressions:

OUTPUT Specifies sequential output
mode.

INPUT Specifies sequential input
mode.

If the mode expression is omitted, it is
assumed to be random input/output.
Random cannot, however, be explicitly
chosen as mode.

filenum is the number of the file to be
OPENed.

record-length is the length of the records
written to or read from a communications
buffer. This value cannot be greater than
the value fixed by the /C: switch in the
GWBASIC command line {see ''GWBASIC
command" in Chapter 19). The default
record-length for the receive buffer is 2
bytes. The length of the transmit buffer is
128 bytes.

The OPEN COM statement must be executed before
a device can be used for RS232 communications.

A COM device may be OPENed to only one file
number at a time.

Any syntax errors in the OPEN COM statement
will result in a Bad file name error.

570" REFERENCE

ASYNCHRONOUS COMMUNICATIONS

The speed, parity, data, and stop options must be
listed in the order shown in the syntax. The
remaining options may be listed in any order, but
they must be listed after the speed, parity, data,
and stop options.

The CS, DS, and CD options allow you to specify a
time (t) to wait for the signal before returning a
Device Timeout error. This time is expressed in
milliseconds, ranging from 0 to 65535. Default
values are: CD = 0, CS = 1000, DS = 1000.

LF allows communication files to be printed on a
serial line printer. When LF is specified, a linefeed
character (OAH) is automatically sent after each
carriage return character (ODH). This includes the
carriage return sent as a result of the width
setting. Note that INPUT# and LINE INPUT#, when
used to read from a COM file that was opened with
the LF option, stop when they see a carriage return,
ignoring the linefeed.

The LF option is superseded by the BIN option.

In the BIN mode, tabs are not expanded to spaces, a
carriage return is not forced at the end-of-lme, and
CTRL Z is not treated as end-of-file. When the
channel is closed, CTRL Z will not be sent over the
RS232 line. The BIN option supersedes the LF
option.

In ASC mode, tabs are expanded, carriage returns
are forced at the end-of-line, CTRL Z is treated as
end-of-file, and XON/XOFF protocol is enabled.
When the channel is closed, CTRL Z will be sent
over the RS232 line.

Example:

10 OPEN "COM1:9600,N,8,1,BIN" AS # 2

Opens communications channel 1 in random mode
at a speed of 9600 baud with no parity bit, 8 data
bits, and 1 stop bit. Input/Output will be in binary
mode. Other lines in the program may now access
channel 1 as file number 2.

■5:71REFERENCE

ASYNCHRONOUS COMMUNICATIONS

PUT (COM files) statement

Writes a specified number of bytes to a
communications file.

Syntax:

PUT [#] f/7enum[,/engt/)]

where

filenum is an integer expression returning a
valid file number.

length is an integer expression returning
the number of bytes to be transferred out of
the communications buffer, length cannot
exceed the value specified by the LEN clause
in the OPEN COM statement.

Example:

100 PUT #2,80

REFERENCE

5. BRANCHING

This chapter describes the different ways to branch
to other segments of a program.

There are two types of branching:

Unconditional

Conditional

The following statements are used for
unconditional branching:

GOSUB... RETURN

GOTO

These statements are used for conditional
branching:

IF...GOTO [...ELSE]

IF...THENI...ELSE]

ON ...GOSUB

ON ... GOTO

ON KEY(n) GOSUB

3^

BRANCHING

GOSUB... RETURN statements

GOSUB unconditionally transfers control to a GW- ' '
BASIC subroutine by branching to the specified
line number. RETURN transfers control to the
statement following the most recent GOSUB (or
ON...GOSUB) executed, or to a specified line
number.

Syntax:

GOSUB linenuml

RETURN [Iinenum2]

where

linenuml is the first line number of the
subroutine.

Hnenum2 is any line of your program
different from linenuml and from the line
number of the GOSUB statement.

A subroutine may be called any number of times in
a program, and it may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement(s) in a subroutine cause
GW-BASIC to branch back to the statement
following the most recent GOSUB or ON...GOSUB
statement executed. A subroutine may contain
more than one RETURN statement, should logic
dictate a return at different points in the
subroutine.

5:73- REFERENCe

BRANCHING

The Iinenum2 option may be included in the
RETURN statement to return to a specific line
number from the subroutine. Use this type of
RETURN with care, however, because any other
GOSUBs, WHILES, or FORs that were active at the
time of the GOSUB will remain active, and errors
such as FOR without NEXT may result.

Subroutines may appear anywhere in the program,
but it is recommended that the subroutine be
readily distinguishable from the main program.
To prevent inadvertent entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around the
subroutine.

Never exit a subroutine with a GOTO statement.

If either linenum 1 or Iinenum2 does not exist in the
program, an Undefined line number error is
returned.

Example:

10A = 25:B = 30
20 GOSUB 100
30 PRINTC
40 END
100 REM multiplication subroutine
110C = A*B
120 RETURN
RUN

750
Ok

REFERENCE "5775

BRANCHING

GOTO statement

The GOTO statement unconditionally branches out
of the normal program sequence to a specified
program line number.

Syntax:

(30T0 linenum

where

linenum is the number of a line in the
program.

If linenum is the line number of an executable
statement, that statement and those following are
executed.

If it is the line number of a nonexecutable ^
statement, execution begins at the first executable
statement encountered after linenum.

If the specified linenum does not exist in the
program, an Undefined line number error is
returned.

Example:

10 READ R
20 PRINT "R =";R,
30A = 3.14*R^2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12
RUN

R = 5 AREA = 78.5
R = 7 AREA =153.86
R = 12 AREA = 452.16
Outof DATAin 10 '
Ok

REFERENCE

BRANCHING

IF ... GOTO [... ELSE]
IF... THEN f... ELSE] statements

These statements are used for conditional
branching. They make a decision regarding
program flow based on the result of a specified
condition.

Syntax 1:

IF condition GOTO linenum [ELSE
statement(s) or linenum]

Syntax 2:

IF condition THEN 5tatement(s) or linenum

where

condition may be a numeric, relational, or
logical expression. GW-BASIC determines
whether the condition is true or false by
testing the result of the expression for non
zero and zero, respectively. A non-zero
result is true and a zero result is false.
Because of this, you can test whether the
value of a variable is non-zero or zero by
merely specifying the name of the variable
as condition.

statements are one or more statements.

Each statement must be separated from the
preceding one by a colon (:).

linenum is a line number of the program in
memory.

ftEFERENCE ■3:77

BRANCHING

If the result of condition is true (not zero), the
GOTO or THEN clause is executed. GOTO is always
followed by a line number. THEN may be followed
by either a line number for branching or one or
more statements to be executed.

If the result of condition is false (zero), the GOTO
or THEN clause is ignored and the ELSE clause, if
present, is executed. Execution continues with the
next executable statement.

A comma is allowed before the THEN.

If an IF...THEN statement is followed by a line
number in the direct mode, an Undefined line error
results unless a statement with the specified line
number had previously been entered in the
program mode.

When using IF to test equality for a value that is
the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test should
be against the range over which the accuracy of the
value may vary. For example, to test a computed
variable A against the value 1.0, use:

lOOIFABS(A-I.O) < 1.0E-6THEN...

This test returns true if the value of A is 1.0 with a
relative error of less than l.OE-6.

See examples on next page.

5:7s" "REFERENCE

BRANCHING

Examples:

This statement GETs record number I from a
random file, if I is not zero.

200IFITHENGET#1,I

In the example below, a test determines if I is less
than 20 and greater than 10. If I is in this range,
DB is calculated and the result displayed on the
screen then execution branches to line 40. If I is
not in this range, execution continues with line 30.

101 = 15
20 IF (l<20) * (I> 10) THEN DB =

1979-1 iPRINT DBiGOTO 40
30 PRINT "OUT OF RANGE"
40 END
RUN

1978
Ok

Note the asterisk (*) in line 20, In this case, the
asterisk does not mean to multiply, it means "and'*.
The word ''and" could have been used instead of the
asterisk.

In the following example, statement 30 causes
output to go either to the screen or the printer
depending on the value of the variable (lOFLAG).
In this case, lOFLAG is equal to one so the output
is displayed on the screen. If statement 20 was
changed to 20 IOFLAG=0, then output would go to
the printer.

10A$= "HELLO"
20 lOFLAG = 1
30 IF lOFLAG THEN PRINT A$ ELSE LPRINT A$
RUN

HELLO
Ok

REFERENCE "5779

BRANCHING

Nesting of IF statements

IF...THEN...ELSE statements may be nes
Nesting is limited only by the length of the line

Examples:

300 IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS" ELSE PRINT "EQUAL"

The above example is a legal statement.

be nested.

If the statement does not contain the same number
of ELSE and THEN clauses, each ELSE is matched
with the closest unmatched THEN.

100 IF A = 8 THEN IFB = CTHEN PRINT "A = C" ELSE
PRINT "AOC"

will not print "A< >0" when A< >B.

5:80" REFERENCE

BRANCHING

ON... GOSUB
ON...GOTQ statements

These statements are used for conditional
branching. Branches to one of several specified
line numbers, depending on the value returned
when an expression is evaluated.

Syntax:

ON numexp GOSUB linenum [, linenum]...

ON numexp GOTO linenum [, linenum]...

where

numexp is a numeric expression (from 0 to
255) which determines which line number in
the list will be used for branching. For
example, if the value is three, the third line
number in the list will be the destination of
the branch. If numexp is not an integer, it
will be rounded up to an integer.

linenum is the line number to which the
branch will be made.

In the ON...GOSUB statement, each line number in
the list must be the first line number of a
subroutine.

If the value of numexp is either zero or greater
than the number of items in the list (but less than
or equal to 255), GW-BASIC continues with the
next executable statement.

If the value of numexp is negative or greater than
255, an Illegal function call error occurs.

■3:51REFERENCE

BRANCHING

Example:

100L = 5
110 ON L-1 GOTO 200, 300. 400, 500
120 END

200 PRINT "L = 1"
210END
300 PRINT "L = 2"
310 END
400 PRINT "L = 3"
410 END
500 PRINT "L = 4"
510 END
RUN
L = 4

Ok

In the example, L is equal to 5. After the
expression L-1 is calculated, L is equal to four. ̂
in this case, program flow would go to line number
500 since it is the fourth number in the ON...GOTO
statement.

5^52" REFERENCE

BRANCHING

ON KEY(n)GOSUB
KEY(n) statements

These statements are used for conditional
branching. Specifies the first line number of a
subroutine to be executed when a specified key is
pressed. This is also known as "event trapping".

Syntax:

ON KEY(nj GOSUB linenum

KEY(n) ON | OFF | STOP

where

n is an integer in the range 1 to 20 and
indicates the key to be trapped.

1-10 Function keys F1 to FIO
11 Cursor up key
12 Cursor left key
13 Cursor right key
14 C ursor down key
15-20 Keys defined in the form

KEY n, CHR$(s/7/ft) + CH R$(scan
code)
(See ''KEY statement" in Chapter
19)

linenum is the line number of the subroutine
that is to be performed when the specified
function or cursor direction key is pressed.
A line number of 0 disables the event trap.

(NOTE: Do not confuse KEY ON and KEY OFF,
which displays! erases the value of the functions keys
at the bottom of the screen, with the event trapping
statements described in this section.)

REFERENCE 3^53

BRANCHING

The KEY(n) statement enables or disables trapping
of a specified key during the execution of a
program.

The ON KEY(n) GOSUB statement specifies the first
program line of a subroutine to be performed when
the specified key is pressed.

To enable the ON KEY(n) GOSUB statement, a
KEY(/7) on statement must first be executed.
While trapping is enabled, and if a non-zero
linenum is specified in the ON KEY(n) GOSUB
statement, GW-BASIC checks between every
statement to see if the specified key has been
pressed. If it has, the ON KEY(n) GOSUB statement
is executed and the corresponding subroutine
activated. The text that would normally be
associated with the specified key is not displayed.

The KEY(n) OFF statement disables the trapping
routine. If a KEY(n) OFF statement is executed for
the specified key, the GOSUB is not performed and
the event is not remembered.

The KEY(n) STOP statement disables the trap; but
if the specified key is pressed, it is remembered. If
a KEY(n) STOP statement is executed for a specified
key, the GOSUB is not performed but will be
performed as soon as a KEY(n) ON statement is
executed.

When a trap occurs (i.e., the GOSUB is performed),
an automatic KEY(n) STOP statement is executed so
that recursive traps cannot take place. The
RETURN from the trap subroutine will
automatically perform a KEY(n) ON statement
unless an explicit KEY(n) OFF statement was
performed inside the subroutine.

When a key is trapped, that occurrence of the key
is destroyed. Therefore, you cannot subsequently
use INPUTS or INKEY$ to find out which key caused
the trap. So, if you wish to assign different
functions to particular keys, you must set up a
different subroutine for each key, rather than
assigning the various functions within a single
subroutine.

5:33" "EEFEREMCE

BRANCHING

The RETURN linenum form of the RETURN
statement may be used to return to a specific line
number from the trapping subroutine. Use this
type of RETURN with care, however, because
anyother GOSUBs, WHILEs, or FORs that were
active at the time of the trap will remain active,
and errors such as FOR without NEXT may result.

Event trapping does not take place when GW-
BASIC is not executing a program, and event
trapping is automatically disabled when an error
trap occurs resulting from an ON ERROR
statement.

Example:

10KEY(1)ON
20 KEY(2) ON
30 KEY(3) ON
40 ON KEY(1)G0SUB 1000
SOON KEY(2) GOSUB 2000
60 ON KEY(3) GOSUB 3000
70 CIS
80 LOCATE 10,30
90 PRINT "F1 - TIME"
100 LOCATE 12,30
110 PRINT "F2 - DATE"
120 LOCATE 14,30
130 PRINT "F3 - EXIT"
140 LOCATE 18,10
ISO PRINT "PRESS FUNCTION KEY DESIRED"
160 FORX = 1 TO 40000:NEXT-.CLS:END
1000 REM ***F1 PRESSED***
1010 CLS
1020 LOCATE 12,20
1030 PRINT "THE TIME IS ";TIME$
1040 FOR Y = 1 TO 1000: NEXT Y
10S0 RETURN 70
2000 REM ***F2 PRESSED***
2010 CLS
2020 LOCATE 12,20
2030 PRINT "THE DATE IS ";DATE$
2040 FOR Y = 1 TO 1000:NEXT Y

20S0 RETURN 70
3000 REM ***F3 PRESSED***
3010 CLS

3020 END

(See next page for execution of this program.)

3:55REFERENCE

BRANCHING

When the program on the previous page is
executed, the screen is cleared and the following is
displayed.

F1 - TIME

F2 - DATE

F3 - EXIT

PRESS FUNCTION KEY DESIRED

If F1 is pressed, the screen will clear, display the
time for a few seconds and then return to the above
screen.

If F2 is pressed, the screen will clear, display the
date for a few seconds and then return to the above
screen.

If F3 is pressed, the screen will clear, exit the
program, and system returns to command level.

The above screen will only be displayed for about a
minute then the program is exited. If you want to
stay in the program longer, you can change the
loop in program line 160 to more than 40000. Also,
if you want the time and/or date to be displayed
longer, you can change the loop in program lines
1040 and 2040,respectively, to a larger value.

See more examples on the next page.

5:55" fteFEftENCE

BRANCHING

10 KEY 4, "SCREEN 0,0" 'assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

key 4 pressed

200 'Subroutine for screen

250 RETURN

In the above example, the programmer has
overridden the normal function associated with
function key 4, and replaced it with "SCREEN 0,0",
which will be displayed whenever that key is
pressed. The value may be reassigned and it will
resume its standard function when the system is
rebooted.

100KEY 15,CHR$(&H04) + CHR$(83)
105 REM **Key 15 now is CTRL DEL **
110KEY(15)ON

1000 PRINT "If you want to stop processing for a
break"
1010 print "press the CTRL key and DEL at the
same time".
1030 ON KEY (15) GOSUB 3000.

The user presses CTRL DEL

3000 REM ** Suspend processing loop.
3010 CLOSE #1
3020 RESET
3030 CLS
3035 PRINT "Enter CONT to continue."
3040 STOP
3050 OPEN "A", #1, "ACCOUNTS.DAT"
3060 RETURN

In the above example, the programmer has enabled
the CTRL DEL key to enter a subroutine which
closes the files and stops program execution until
the operator is ready to continue.

REFERENCE 3:87

BRANCHING

Notes:

5^SS REFERENCE

CHAINING PROGRAMS

This chapter describes the statements used when
chaining programs together.

They are:

CHAIN

COMMON

MERGE

REFERENCE 3:59

CHAINING PROGRAMS

CHAIN statement

CHAIN transfers control and passes variables to
another program.

Syntax:

CHAIN [MERGE] "fUespec" I [linenum] [,
[ALL] LDELETE range]]]

where

'Jilespec" is a string expression which
specifies the name of the called program file.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

linenum is a line number or an expression ^
that evaluates to a line number in the called
program. It is the starting point for
execution of the called program. If it is
omitted, execution begins at the first line.
linenum is not affected by a RENUM
command.

range is the range of line numbers to be
deleted, if the DELETE option is used, range
line numbers are affected by the RENUM
command.

Before running a CM A! Ned program, CHAIN carries
out a RESTORE. This resets the pointer to the
beginning of the internal data file.

REPERENCC

CHAINING PROGRAMS

If the MERGE option is used, a MERGE operation is
performed with the current program and the
CHAINed program. The CHAINed program must be
an ASCII file. If any lines in the disk file have the
same line numbers as lines in the program in
memory, the lines from the file on disk will replace
the corresponding lines in memory. MERGEing
may be thought of as "inserting" the program lines
on disk into the program in memory. The MERGE
option leaves the files open, preserves the current
OPTION BASE setting, and preserves variable types
and user-defined functions, for use by the CHAINed
program.

User-defined functions should be placed before any
CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be
undefined after the merge is complete.

If the MERGE option is omitted, the CHAINing
program is lost (except common variables) before
loading the CHAINed program. CHAIN does not
preserve variable types or user functions. Thus,
any DEFtype or DEF FN statements containing
shared variables must be repeated in the CHAINed
program.

If the ALL option is used, every variable in the
current program is passed to the CHAINed
program.

If the ALL option is unused and linenum is omitted,
two commas must be inserted between the
"fUespec" and the ALL option. For example:

100 CHAIN "NEXTPROG"„ALL

is correct, but:

100 CHAIN "NEXTPROG",ALL

is incorrect. In this case, GW-BASIC assumes that
ALL is a variable name and evaluates it as a line
number.

REFERENCE

CHAINING PROGRAMS

If the ALL option is omitted, the current program
must contain one or more COMMON statements to
list the variables that are passed. (See the
COMMON statement in this chapter.)

If the DELETE option is used, a section of the
current program (specifled by range of line
numbers) will be deleted before loading the
CHAINed program.

DELETE is often used with MERGE and line options,
to load overlays. After an overlay is brought in, it
is usually desirable to delete it so a new overlay
may be brought in.

CHAIN is used in two different ways in the
following examples.

Example 1:

In the first example, the two string arrays are
dimensioned and declared as common variables.
When PROGl gets to line 90, it chains to PR0G2,
which loads the three elements of the B$ array. At
line 100 of PR0G2, control chains back to PROGl
starting at program line 100. This process can be
observed through the descriptive text that prints
as the programs execute.

Ok
NEW

10 rem this program demonstrates chaining using
COMMON to pass variables.
20 rem save this module on disk as "PROGl" using
the A option.
30 DIMA$(2),B$(3)
40 COMMON A$(),B$()
50 A$(1) = "Variables in common must be"
60 A$(2) = "assigned values before chaining."
70 B$(1) = "" : B$(2) = "" :B$(3) = ""
90 CHAIN "PR0G2"
100 PRINT
110 PRINT B$(1)
120 PRINT B$(2)
130 PRINT B$(3)
140 PRINT
ISO END
SAVE "PROGl ",A
Ok

REFERENCE

CHAINING PROGRAMS

Example 1: - (continued)

Ok
NEW

Ok

10 rem the statement "DIM A$(2), B$(3)" may only
be executed once.
20 rem hence, it does not appear in this module
30 rem save this module on the disk as "PROG2"
using the A option
40 COMMON A$(),B$()
50 PRINT
60 PRI NT A$(1): PRI NT A$(2)
70 B$(1)="Note how the option of specifying a
starting line"
80 B$(2) = "number when chaining avoids"
90 B$(3) = "the dimension statement in PR0G1."
100CHAIN "PROGI'M00
110 END
SAVE "PR0G2",A
Ok
RUN "PR0G1"

Variables in common must be
assigned values before chaining.

Note how the option of specifying a starting line
number when chaining avoids
the dimension statement in PR0G1.

Ok

REFERENCE 3:53

CHAINING PROGRAMS

Example 2:

[n the second example, the MERGE, ALL, and
DELETE options are used. After A$ is loaded from
the MAINPRG program, control chains to line
1010 of OVRLAYl. At line 1040 of OVRLAYl, it
chains to line 1010 of 0VRLAY2, keeping all
variables and deleting all of OVRLAYl program
lines. Control then passes to 0VRLAY2. This
process can be observed through the descriptive
text that prints as the programs execute.

Ok
NEW

Ok

10 rem this program demonstrates chaining using
the MERGE, ALL, and DELETE options.
20 rem save this module on the disk as
"MAINPRG".
30 A$ = "MAINPRG"
40 CHAIN MERGE "OVRLAYl ",1010,ALL
50 END
SAVE "MAINPRG"
Ok
NEW
Ok
1000 rem save this module on the disk as
"OVRLAY1" using the A option.
1010 PRINT A$; " HAS CHAINED TO OVRLAYl."
1020 A$= "OVRLAYl"
1030 B$ = "0VRLAY2"
1040 CHAIN MERGE "0VRLAY2", 1010, ALL,
DELETE 1000-1050
1050 END
SAVE "OVRLAYl ".A
Ok
NEW
Ok

1000 rem save this module on the disk as
"0VRLAY2" using the A option.
1010 PRINT A$; " HAS CHAINED TO ";B$;"."
1020 END
SAVE "0VRLAY2".A
Ok
RUN "MAINPRG"
MAINPRG HAS CHAINED TO OVRLAYl.
OVRLAYl HAS CHAINED TO 0VRLAY2.
Ok

5:54- REFERENCe

CHAINING PROGRAMS

COMMON statement

COMMON defines a common area which is not
erased by the CHAINed program, and allows you to
pass variables from one program to another.

Syntax:

COMMON variable[, variable]...

where

variable is the name of a numeric or string
variable which is required to be passed to
the CHAINed program. For array variables,
place a set of parentheses "()" after the
variable name.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON statements
may appear anywhere in a program, though it is
recommended that they appear at the beginning.

Variables specified in COMMON statements are
allocated in the common area starting from the
beginning and in the order in which they appear in
the program.

The CHAINed program need not specify, through
the use of COMMON statements, the common
variable specified by the CHAINing program. The
CHAINed program will use these variables with the
same names specified in the CHAINing program.
Each type definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common variables,
must precede the associated COMMON statements
and must be repeated in the CHAINed program.

Common variables must always be initialized
within the CHAINing program. Common arrays
must be explicitly described by DIM statements in
the CHAINing program but not in the CHAINed
program; otherwise, a Duplicate definition error
occurs. The DIM statements must be written
before the associated COMMON statements.

REFERENCE 3:95

CHAINING PROGRAMS

Example 1:

The example below shows that the CHAINed
program need not specify, through the use of
COMMON statements, the common variables
specified by the CHAINing program.

In this example, the values of the variables Al, Bl,
CI, and Dl$ in the program PGl are passed to the
CHAINed program PG2, which may display them
(see program line 20).

10REM PGl
20 COMMON A1,B1.C1.D1$

80 CHAIN "PG2"
90 END

10REMPG2

20 PRINT A1,B1,C1,D1$

120 END

Example 2:

Each type definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common variables,
must precede the associated COMMON statement
and must be repeated in the CHAINed program.
Note the DEFDBL statements, both with PGl and
PG2.

10REMPG1
20 DEFDBLC
30 COMMON A1,B1,C1,D1$

90 CHAIN
100 END

'PG2"

10REMPG2
20 DEFDBLC

130 END

5^ REFERENCE

CHAINING PROGRAMS

Example 3:

It is not good programming practice to repeat the
same variable name (in this case A$) either in
different COMMON statements of the same
program, or in the same COMMON statement. In
any case, multiple definitions are equivalent to a
single definition.

10 REM PROG RAM 1
20 COMMON A$, B$, C$
30 COMMON A$,A1

100 END

Example 4:

A COMMON statement can also specify array
names. Such specifications are followed by a pair
of parentheses.

Each use of common array must be explicitly
described by a DIM statement in the CHAINing
program (but not in the CHAINed one; otherwise, a
Duplicate definition error occurs).

The DIM statement must be written before the
associated COMMON statement.

10REMPG1
20DIM A1(15,20)
30 COMMON A1(),B1,C1

100 CHAIN "PG2"
110END

10REMPG2

50 PRINTA1(1,1)

90 END

REFERENCE

CHAINING PROGRAMS

Example 5:

The COMMON statement is a declarative
statement, thus it allocates a common area even if
control of execution does not pass through it.

When executing program "MODI", program
"M0D2" is CHAINed: it displays both A and B
variables, even if statement 50 of "MODI" is
jumped over.

10REM MODI
20A=1:B = 2
30 COMMON A
40 GOTO 60
50 COMMONS
60 CHAIN "M0D2''

10REM M0D2
20 PRINT A;B

REFERENCE

CHAINING PROGRAMS

MERGE command

Merges the current program with a specified file
previously saved in ASCII format.

Syntax:

MERGE "filespec'

where

"fUespec" is a string expression which
specifies the name of the called program file.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

The MERGE command allows you to include a
specified program saved (in ASCII format) on a
disk, with the program in memory.

MERGE is similar to LOAD, except that the
program in memory is not erased before the disk
program is loaded. Instead, the disk program is
merged into the resident program. That is,
program lines in the disk program will simply be
inserted into the resident program in sequential
order. If a line of the disk program and a line of the
resident program have the same line number, the
line of the disk program replaces that in memory.

Example:

MERGE "B:PAYROLL"

REFERENCE

CHAINING PROGRAMS

Notes:

mJD REFERENCE

7. CONVERSION FUNCTIONS

This chapter describes the functions that are used
for conversion. For example, converting a given
numeric expression to a double precision number.

The following functions are described:

ASC
CDBL

CHR$
CINT

CSNG
HEX$
OCT$
STR$
VAL

REFERENCE "mn

CONVERSION FUNCTIONS

ASC function

ASC returns the ASCII decimal code for the first
character of a given string.

Syntax:

ASC{sthngexp)

where

stringexp can be a string of text enclosed with
quote marks ("TEST") or a string variable
(X$).

The ASC function returns the ASCII code (0-255)
corresponding to the first character of the
stringexp. See Appendix A for a complete list of all
ASCII codes.

IIstringexp is null, an Illegal function call error is
returned.

See the CHR$ function in this chapter for ASCII-to-
string conversion.

Examples:

The following example shows that the ASCII code
for capital letter'T' is 84.

10X$ = "TEST''
20 PRINTASC(X$)
RUN

84
Ok
PRINT ASCC'TEST")
84

Ok

S^TDT REFERENCE

CONVERSION FUNCTIONS

CDBL function

CDBL converts a given numeric expression to a
double precision number.

Syntax:

CDBL(nomexp)

where

numexp can be a number or a numeric
variable.

Examples:

10 A = 454.67
20 PRINT A, CDBL(A)
RUN
454.67 454.6700134277344
OK
PRINT CDBL(454.67)
454.6700134277344
Ok

3^REFERENCE

CONVERSION FUNCTIONS

CHR$ function

CHR$ returns a one-character string whose ASCII
decimal code is the value of the argument.

Syntax:

CHR$(n)

where

n is an integer expression which must be in
the range of 0 to 255. It represents an ASCII
code. If it is outside the specified range, an
Illegal function call is returned.

CHR$ is normally used to send a special character
to the screen or printer. For instance, the BEL
(beep) character (CHR$(7)) could be sent as a
preface to an error message, or a form feed
character (CHR$(12)) could be sent to clear the
screen and return the cursor to the home position.

PRINT CHR$(n) may also be used to display an
ASCII character, where n is the ASCII code (see
Appendix A).

See the ASC function in this chapter for ASCII-to-
numeric conversion.

Examples:

Ok
PRINT CHR$(66)
B

Ok

100 PRINT CHR$(7) 'BEEP
150 PRINT CHR$(LINEFEED%)
200 IF CHR$(INP(IN.PORT%)) = "A" THEN GOSUB
1000

REFERENCE

CONVERSION FUNCTIONS

CINT function

CINT converts any numeric argument to an integer
by rounding the fractional portion.

Syntax:

CINT{ni//r)exp)

where

numexp is a number or numeric variable.

If numexp is not in the range -32768 to 32767, an
Overflow error occurs.

If the fractional portion of numexp is > = .5, the
integer part is rounded up; otherwise, a truncation
occurs.

See the CDBL and CSNG functions in this chapter for
details on converting numbers to the double
precision and single precision data types,
respectively. See also the FIX and INT functions in
Chapter 22, both of which return integers.

Examples:

10 P = 45.67

20 PRINT P, CINT(P)
RUN

45.67 46
Ok
PRINT aNT(-3.71)
-4

Ok

REFERENCE

CONVERSION FUNCTIONS

CSNG function

CSNG converts any numeric argument to a single
precision number.

Syntax:

CSNG(numexp)

where

numexp is a number or numeric variable.

See the CINT and CDBL functions in this chapter for
converting numbers to the integer and double
precision data types, respectively.

Examples:

10A# = 975.3421115
20 PRINTA#,CSNG(A#)
RUN

975.3421115 975.3421
Ok
PRINT CSNG(975.3421115)
975.3421
Ok

REFERENCE

CONVERSION FUNCTIONS

HEX$ function

HEX$ returns a string which represents the
hexadecimal value of the decimal argument.

Syntax:

HEX$(numexp)

where

numexp is a number or numeric variable.

numexp is rounded to an integer before HEX$ is
evaluated.

If numexp is negative, the two's complement form
is used.

See the OCTS function on the next page for octal
conversion.

Examples:

10INPUTX
20A$ = HEX$(X)
30 PRINIX "decimal is " A$ " hexadecimal"
RUN
?32
32 decimal is 20 hexadecimal
Ok
PRINT HEX$(32)
20
Ok

REFERENCE "3^

CONVERSION FUNCTIONS

OCT$ functioiL

OCT$ returns a string which represents the octal f ^
value of the decimal argument.

Syntax:

OCT$(numexp)

where

numexp is a number or numeric variable.

numexp is a numeric expression from -32768 to
65535, which is rounded to the nearest integer
before OCT$ is evaluated.

If numexp is negative, the two's complement form
is used.

See the HEX$ function on the previous page for
hexadecimal conversion.

Examples:

10 INPUT X
20A$ = OCT$(X)
30 PRINTX "decimal is " A$ " octal"
RUN
?24
24 decimal is 30 octal
Ok
PRINT OCT$(24)
30
Ok

STTUS" REFERENCE

CONVERSION FUNCTIONS

STR$ function

STR$ returns the string representation of the value
of a specified numeric expression.

Syntax:

STR$(nomexp)

where

numexp is a number or numeric variable.

See the VAL function on the next page.

Examples:

10 INPUT "ENTER A NUMBER'';N
20 PRINT N, LEN(STR$(N))-1
RUN
ENTER A NUMBER? 6789
6789 4
Ok
In the above example, to use the LEN function to
find the total number of digits entered, N has to be
converted.

10A$ = STR$(70)
20 PRINT A$
Ok
RUN
70
Ok
In the above example, 70 (the argument of STR$) is
a number, but the contents of A$ is a two character
string whose value is 70.

10A! = 1.3
20A# = VAL(STR$(A!))
30 PRINT A#
RUN

1.3
Ok
The conversion in line 20 causes the value of A! to
be stored accurately in the double-precision
variable A#.

REFERENCE "57TU9

CONVERSION FUNCTIONS

VAL function

VAL converts the string representation of a number
to its numeric value.

Syntax:

\/Al{stringexp)

where

stringexp must be a numeric character(s)
stored as a string.

The VAL function strips leading blanks, tabs, and
linefeeds from the argument string.

The remaining string is converted to a number, if it
is a valid numeric representation; otherwise, VAL
returns 0 (zero). For example:

VAL("-3")

returns -3.

VALC'ABC")

returns 0.

See the STR$ function in this chapter for numeric-
to-string conversion.

STTRT REFERENCE

CONVERSION FUNCTIONS

Example:

10 READ PERSON$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$) < 90000 THEN PRINT PERSONS
TAB(25) "OUT OF STATE" ELSE PRINT PERSONS
TAB(25) "CALIFORNIA"
30 GOTO 10
40 DATA BOB JONES, REDWOOD, CA, 90777
50 DATA LINDA SMITH, DENVER, CO, 60233
60 DATA BILL DOE, LONG BEACH, CA, 91811
70 DATA JOHN DOE, BEAUMONT, TX, 77507
RUN

BOB JONES CALIFORNIA
LINDA SMITH OUT OF STATE
BILL DOE CALIFORNIA
JOHN DOE OUT OF STATE
Out of DATA in 10
Ok

REFERENCE

CONVERSION FUNCTIONS

Notes:

REFERENCE

8. DEBUGGING

This chapter describes the commands used for
debugging a program.

REFERENCE "5^

DEBUGGING

TRON/TROFF commands

IRON (TRACE ON) causes the line number of each
statement executed to be listed.

TROFF (TRACE OFF) stops the line number listing
initiated by TRON.

Syntax:

TRON

TROFF

The TRON command executed in either direct or
program mode is used as a debugging tool. With
TRON in operation, each line number of the
program is displayed on the screen as it is
executed.

The numbers appear enclosed in square brackets.

The trace flag is disabled with the TROFF command
or when a NEW command is executed.

Example:

10K = 10

20 FOR J = 1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K = K + 10
60 NEXT
70 END
TRON
Ok
RUN

[io:
[50
i5o:
Ok
TROFF
Ok

[20][30
(601(30
(601(70

(401
(401

1 10 20
2 20 30

REFERENCE

9. DEVICES AND
I/O PORT INFORMATION

This chapter describes the following statements
and functions:

CLOSE
ERDEV

ERDEVS
INP

lOCTL
IOCTL$
OPEN
OUT
WAIT

WIDTH

REFERENCE 3^

DEVICES AND I/O PORT INFORMATION

CLOSE statement

Terminates I/O to a device.

Syntax:

CLOSE [l#]devicenum[,[#]devicenum]...]

where

devicenum is the number under which the
device was opened.

A CLOSE with no arguments closes all open files
and devices.

The association between a particular device and
device number terminates upon execution of a
CLOSE statement. The device may then be
reopened using the same or a different device
number; likewise, a device number may now be
reused to open any device.

irrrr REFERENCE

DEVICES AND I/O PORT INFORMATION

ERDEV and ERDEV$ functions

ERDEV is an integer function which contains the
error code returned by the last device to declare an
error.

ERDEV$ is a string function which contains the
name of the device driver which generated the
error.

Syntax:

ERDEV or ERDEV$

ERDEV is set by the Interrupt X'24' handler, when
an error within MS-DOS is detected. ERDEV will
contain the INT 24 error code in the lower 8 bits,
and the upper 8 bits will contain the "Word
attribute bits" (bl5-bl3) from the Device header
block.

If the error was on a character device, ERDEV$ will
contain the 8-byte character device name. If the
error was not on a character device, ERDEV$ will
contain the two character block device name (A:,
B:, D:, etc.)

For the sake of compatibility between different
releases, it is advisable to perform error checking
by using ERDEV rather than ERDEV$.

Example:

If a user installed device driver "MYLPT2" caused
a Printer out of Paper error via INT 24, and the
driver's error number for that problem was 9,
ERDEV will contain the error number 9 in the lower
8 bits and the device header word attributes in the
upper 8 bits, and ERDEV$ will contain "MYLPT2".

"5^REFERENCE

DEVICES AND I/O PORT INFORMATION

IN P function

Returns the byte read from a port.

Syntax:

\HP(portnum)

where

portnum is a valid port number in the range 0
through 65535.

INP is the complementary function to the OUT
statement.

Examples:

100 A = INP(54321)

3TTW REFERENCE

DEVICES AND I/O PORT INFORMATION

lOCTL function

Sends a "Control Data" string to a Character
Device Driver anytime after the Driver has been
OPENed.

Syntax:

IOCTL[#]///enom, string

where

filenum is the file number open to the Device
Driver.

string is a string expression containing the
Control Data.

lOCTL commands are generally two to three
characters optionally followed by an alphanumeric
argument. An lOCTL command string may be up to
255 bytes long.

The lOCTL statement works only if:

1. The device driver is installed.

2. The device driver processes lOCTL strings.

3. GW-BASIC performs an OPEN on a file on
that device.

Most standard MS-DOS device drivers don't
process lOCTL strings, and it is necessary for you to
determine whether the specified driver can handle
the command.

REFERENCE "5TO

DEVICES AND I/O PORT INFORMATION

If a user has installed his own Driver to replace
LPTl, and that Driver is able to set Page Length,
then an lOCTL command to set or change the page
length might be:

PLn

where n is the new page length.

Also see the IOCTL$ function on the next page.

Example:

Opening the new LPTl driver and setting the Page
Length to 66 lines would then be:

10OPEN "LPTl:" FOR OUTPUT AS #1
20 I0CTL#1, "PL66"

Possible Errors

Bad file number
lOCTL to a Driver that is not OPEN.

Illegal function call
Device does not support lOCTL.

Device Fault
Error in Control Data.

REFERENCE

DEVICES AND I/O PORT INFORMATION

IOCTL$ function

Returns a "Control Data" string from a Character
Device Driver that is OPEN.

Syntax:

IOCTL$((#]fi7enum)

where filenum is the file number open to the
device.

The IOCTL$ function is most frequently used to
receive acknowledgement that an lOCTL statement
succeeded or failed, or to obtain current status
information.

IOCTL$ could be used to ask a communications
device to return the current baud rate, information
on the last error, logical line width, etc.

The IOCTL$ function works only if:

1. The device driver is installed.

The device driver processes lOCTL strings.2.

3. GW-BASIC performs an OPEN on a file on
that device.

Example:

10OPEN"FNr AS#1
20 IOCrL#1,"RAW"
30 IF I0CTL$(1) = "0" THEN CLOSE 1

if the Character Driver "FNl" gives a "false"
return from the Raw data mode lOCTL request,
then close the file and stop processing.

Possible Errors

Bad file number
lOCTL to a Driver that is not OPEN.

Illegal function call
Device does not support lOCTL

REFERENCE "TTn

DEVICES AND I/O PORT INFORMATION

OPEN statement

Allows I/O to a device.

Syntax:

OPEN device [FOR mode] AS [#] devicenum

where

device is a string expression which specifies
the device to be opended.

mode is a literal string not enclosed in
quotation marks. The valid modes are:

INPUT specifies sequential input mode.

OUTPUT specifies sequential output mode.

If the FOR mode clause
specifies random I/O mode.

is omitted, it

devicenum is an integer expression returning
a number in the range 1 through 255. The
number is used to associate an I/O buffer with
a device. This association exists until a
CLOSE or CLOSE devicenum statement is
executed. The device is referred in any I/O
statement by this number.

OPEN allocates a buffer for I/O to the device and
determines the mode of access that will be used
with the buffer. The devicenum parameter
specifies the number which will be associated with
the device as long as it is open and will be used by
other I/O statements to refer to the device.

REPERENCE

DEVICES AND I/O PORT INFORMATION

For each device, the following OPEN modes are
allowed:

KYBD: INPUT only
SCRN: OUTPUT only
LPT1: OUTPUT or random*
LPT2: OUTPUT or random*
LPT3: OUTPUT or random*
C0M1: INPUT or OUTPUT
COM2: INPUTor OUTPUT
COM3: INPUT or OUTPUT
COM4: INPUT or OUTPUT

*GW-BASIC will not send a line feed after each
carriage return, if a printer has been opened in
random mode with a width of 255.

The GW-BASIC file I/O system allows you to take
advantage of user installed devices.

Character devices are opened and used in the same
manner as disk files. However, characters are not
buffered by GW-BASIC as they are for disk files.
The record length is set to one.

GW-BASIC only sends a CR (carriage return X'OD')
as end of line. If the device requires a LF (line feed
X'OA'), the driver must provide it. When writing
device drivers, keep in mind that GW-BASIC users
will want to read and write control information.
Writing and reading of device control data is
handled by the GW-BASIC lOCTL statement and
IOCTL$(fj function.

See examples on next page.

REFERENCE

DEVICES AND I/O PORT INFORMATION

Examples:

If you write and install a device called FOl, then
the OPEN statement might appear as:

10 OPEN "FOl" FOR OUTPUT AS #1

To open the printer for output, you could use the
line:

100 OPEN "LPT1:" FOR OUTPUT AS #1

which uses the GW-BASIC device driver, or as part
of a pathname as in:

100 OPEN "DEV LPT1" FOR OUTPUT AS #1

which uses the MS-DOS device driver.

Possible Errors

Device not avdilable

You have attempted to open a nonexistent
device.

Device I/O error

Reception error. Usually caused by an
incorrectly written device driver (user-
installed).

REFERENCE

DEVICES AND I/O PORT INFORMATION

OUT statement

Transmits a byte to an output port.

Syntax:

OUT port,byte

where

port is an integer expression in the range 0 to
65535 and represents a port number.

byte is an integer expression in the range 0 to
255 and represents the data to be
transmitted.

OUT is the complementary statement to the INP
function.

If port or byte is outside the specified range, an
Illegal function call error is returned.

Example:

100 OUT 1234,255

REFERENCE

DEVICES AND I/O PORT INFORMATION

WAIT statement

Suspends a program execution while monitoring
the status of a machine input port.

Syntax:

WAIT portJlj]

where

port is an integer expression in the range 0 to
65535 and represents a port number.

i,j are integer expressions from 1 to 255.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read at
the port is OR'ed with the integer expression), and
then AND'ed with /. If the result is zero, GW-
BASIC loops back and reads the data at the port
again. If the result is nonzero, execution continues
with the next statement. If j is omitted, it is
assumed to be zero.

Note: It is possible to enter an infinite loop with the
WAIT statement, in which case, it will be necessary
to manually restart the machine. To avoid this,
WAIT must have the specified value at port during
some point in the program execution.

Example:

100 WAIT 32,2

5^T25" REFERENCE

DEVICES AND I/O PORT INFORMATION

WIDTH statement

Sets the line width in characters. GW-BASIC adds
a carriage return after outputting the specified
number of characters.

Syntax:

WIDTH device, size

where

device is a string expression indicating the
device that is to be used. Valid devices are:
SCRN:, LPT1:, LPT2:, LPT3:, C0M1:, COM2:,
COM3:, or COM4:.

size is an integer expression in the range 0 to
255. It specifies the new width.

The default line width for the specified device is set
to size. The line widths of currently open files are
not modified.

Stores the new size without changing the current
width, if the device is already open. A subsequent
OPEN device FOR OUTPUT AS i^devicenum will use
the specified value for width initially.

If size is 255, the line width is "infinite"; that is,
GW-BASIC never inserts a carriage return.
However, the position of the cursor or the print
head, as given by the POS or IPOS functions,
returns to zero after position 255. WIDTH 255 is
the default for communications files.

If size is outside the above specified ranges, an
Illegal function call error is returned. The previous
value is retained.

See example on next page.

REFERENCE 3^77

DEVICES AND I/O PORT INFORMATION

Example:

10WIDTH"LPT1:'',5
20 OPEN "LPT1:" FOR OUTPUT AS #1
30 PRINT #1, " 1234567890"
40 PRINT #1, ""
50WIDTH#1,6
60 PRINT #1, "1234567890"
RUN

will yield on the printer:

12345
67890

123456
7890

5Tr25" REFERENCE

10. DISK DATA FILES --
SEQUENTIAL AND
RATsrnoM ArrF.ss

This chapter describes disk data files.

There are two types of disk data files that may be
created and accessed by a GW-BASIC program.
They are:

Sequential files

Random access files

In this chapter, two items will be covered.

First, how to create and access sequential files and
random access files.

Second, the statements and functions pertaining to
disk data files will be described.

lEFERERtr

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Creating and accessing disk data files

Sequential files

Sequential files are easier to create than random
access files but are limited in flexibility and speed
when it comes to accessing the data. The data that
is written to or read from a sequential file is a
series of ASCII characters which are stored and
loaded, one item after another (sequentially).

The statements and functions used with sequential
files are:

OPEN PRINT# INPUTS LOC
CLOSE PRINT# USING INPUT# LOF
EOF WRITE # LINE INPUT#

Creating a sequential file

The following program steps are required to create
a sequential file and access the data in the file;

OPEN the file in "O" mode.

OPEN "O",#!,"EMPLOYEE'

2. Write data to the file using the PRINT#
statement. (WRITE# may be used instead.)

PRINT #1, EMP$; DEPT$; HIREDATE$

REFERENCE

DISK DATA FILES --- SEQUENTIAL AND RANDOM ACCESS

To access the data in the file, you must
CLOSE the file and reOPEN it in "I" mode.

CLOSE #1
OPEN "I",#1,"EMPLOYEE"

Use the INPUT# statement to read data from
the sequential file into the program.

INPUT#1,EMP$,DEPT$,HIREDATE$

A program that creates a sequential file can also
write formatted data to the disk with the PRINT#
USING statement. For example, the statement

PRINT#1,USING"####.##/';A,B,C,D

could be used to write numeric data to disk without
explicit delimiters. The comma (,) at the end of the
format string serves to separate the items in the
disk file.

If you want commas to appear in the file as
delimiters between variables, the WRITE statement
can be used. The statement

WRITE 1,A,B$

could be used to write these two variables to the
file with a comma delimiting them.

The LOC function, when used with a sequential
file, returns the number of sectors that have been
written to or read from the file since it was
OPENed. A sector is a 128-byte block of data. For
example,

100IFLOC(1) > 50 THEN STOP

would end program execution if more than 50
sectors had been written to, or read from, file #1
since it was OPENed.

REFERENCE

DISK DATA FILES--SEQUENTIAL AND RANDOM ACCESS

Program 1 is a short program that creates a
sequential file, "EMPLOYEE", from information
you input at the keyboard.

PROGRAM 1

CREATE A SEQUENTIAL DATA FILE

10 OPEN "0",#1."EMPL0YEE"
20 INPUT "NAME";EMP$
25 IF EMP$ = "DONE" THEN END
30 INPUT "DEPARTMENT";DEPT$
40 INPUT "DATE HIRED";HIREDATE$
50 PRINT#1,EMP$;".";DEPT$;",";HIREDATE$
60PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/78

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/72

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE
Ok

5rT32" REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Accessin^a_se3uentiaHile_

Program 2 accesses the file "EMPLOYEE" that
was created in Program 1 and displays the name of
everyone hired in 1978.

PROGRAM 2

ACCESS A SEQUENTIAL FILE

10OPEN "l",#1,"EMPLOYEE"
20 INPUT#1,EMP$,DEPT$,HIREDATE$
30 IF RIGHT$(HIREDATE$,2) = "78" THEN PRINT
EMP$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN

Input past end in 20
Ok

Program 2 reads, sequentially, every item in the
file and prints the name of the employees hired in
1978. When all the data has been read, line 20
causes an Input past end error.

To avoid getting this error, insert line 15 which
uses the EOF function to test for end-of-file:

15IFE0F{1)THEN END

and change line 40 to GOTO 15.

Or, you could use the WHILE...WEND control
structure, which also uses the EOF function. The
revised program looks like this:

10 OPEN "I",#1,"EMPLOYEE"
15 WHILE NOTEOF(I)
20 INPUT #1,EMP$,DEPT$,HIREDATE$
30 IF RIGHT$(HIREDATE$,2) = "78" THEN

PRINT EMP$
40 WEND

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Adding data to a sequential file

If you have a sequential file residing on disk and
later want to add more data to the end of it, you
cannot simply open the file in "0" mode and start
writing data. As soon as you open a sequential file
in the output "O" mode, you destroy its current
contents.

Instead, use the append ("A") mode. If the file
doesn't already exist, the OPEN statement will
work exactly as it would if output ("O") mode had
been specified.

Program 3 can be used to add data to the
EMPLOYEE file created earlier.

PROGRAM 3

ADD DATA TO A SEQUENTIAL FILE

10 OPEN "A",#1,"EMPL0YEE"
20 INPUT "NAME^EMPS
30 IF EMP$ = "DONE" THEN 80
40 INPUT "DEPARTMENT";DEPT$
50 INPUT "DATE HIRED";HIREDATE$
60 PRINT #1,EMP$;",";DEPT$;",";HIREDATE$
70 PRINT:GOTO 20
80 CLOSE 1

5TO" REFERENCE

DISK DATA FILES —SEQUENTIAL AND RANDOM ACCESS

Random access files

Creating and accessing random access files
requires more program steps than sequential files,
but there are advantages to using random access
files. One advantage is that random access files
require less room on the disk, because GW-BASIC
stores them in a packed binary format. A
sequential file is stored as a series of ASCII
characters.

The biggest advantage to random files is that data
can be accessed randomly, i.e., anywhere on the
disk. It is not necessary to read through all the
information on disk with random access files, as
with sequential files. This is possible because the
information is stored and accessed in distinct units
called records and each record is numbered.

The statements and functions used with random
access files are;

OPEN

PUT

MKI$
MKS$
MKD$

FIELD

CLOSE

CVI

CVS
CVD

LSET/RSET

GET

LOG

LOF

■FT3BReFERENCe

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

Creating a random access file

The following program steps are required to create
a random access file.

1. OPEN the file for random access ("R" mode).
This example specifies a record length of 32
bytes. If the record length is omitted, the
default is 128 bytes, unless it was set to
another value with the /l/S: switches when
loading GW-BASIC (see "GWBASIC
command" in Chapter 19).

OPEN "R",#1,"CUSTOMER".32

2. Use the FIELD statement to allocate space in
the random buffer for the variables that will
be written to the random access file.

FIELD #1 20 AS CUSTNAME$, 4 AS
AMT$,8ASPH0NE$

3. Use the LSET command to move the data into
the random buffer. Numeric values must be
made into strings when placed in the buffer.
To do this, use the "make" functions: MKI$
to make an integer value into a string, MKS$
to make an integer value into a single
precision value, and MKD$ to make an
integer value into a double precision value.

LSET CUSTNAME$ = CUST$
LSET AMT$ = MKS$(AMT)
LSET PHONES = TEL$

4. Write the data from the buffer to the disk
using the PUT statement.

PUT#1,CODE%

The LOC function, with random access files,
returns the "current record number." The current
record number is one plus the last record number
that was used in a GET or PUT statement. For
example, the statement

IFLOC(I) > 50THEN END

ends program execution if the current record
number in file#l is greater than 50.

5:T3r REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Program 4 writes information that is input at the
keyboard to a random access file. Each time the
PUT statement is executed, a record is written to
the file. The two-digit code that is input in line 30
becomes the record number.

Warning: Do not use a FIELDed string variable in
an INPUT or LET (assignment) statement. This
causes the pointer for that variable to point into
string space instead of into the random access file
buffer.

PROGRAM 4

CREATE A RANDOM ACCESS FILE

10 OPEN "R",#1,"CUSTOMER",32
20 FIELD #1, 20 AS CUSTNAME$, 4 AS AMT$, 8 AS
PHONES
30 INPUT "ENTER 2-DIGIT CODE (99 TO
STOP)";CODE%
35 IF CODE% =99 THEN CLOSE:END
40 INPUT "NAME";CUST$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$:PRINT
70 LSET CUSTNAMES = CUST$
80 LSET AMT$ = MKS$(AMT)
90 LSET PHONES = TEL$
100 PUT#1,C0DE%
110 GOTO 30
RUN

ENTER 2-DIGIT CODE (99 TO STOP)? 10
NAME? JOHN DOE
AMOUNT? 250.00
PHONE? 344-1234

ENTER 2-DIGIT CODE (99 TO STOP)? 20
NAME? TOM SMITH
AMOUNT? 475.00
PHONE? 899-5643

ENTER 2-DIGIT CODE (99 TO STOP)? 99
OK

REFERENCE

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

Accessing a random access file

The following program steps are required to access
a random access file:

1. OPEN the file in "R" mode.

OPEN "R",#1,"CUSTOMER".32

2. Use the FIELD statement to allocate space in
the random buffer for the variables that will
be read from the file.

FIELD #1, 20 AS CUSTNAMES, 4 AS
AMT$.8ASPH0NE$

{Note: In a program that performs both input
and output on the same random access file,
you can often use just one OPEN statement
and one FIELD statement.)

Use the GET statement to move the desired
record into the random buffer.

GET#1,C0DE%

4. The data in the buffer may now be accessed
by the program. Numeric values that are
read in from a random access file buffer
must be converted from strings back into
numbers using the "convert" functions. CVI
converts a 2-byte string to an integer, CVS
converts a 4-byte string to a single precision
number, and CVD converts an 8-byte string
to a double precision number.

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Program 5 accesses the random access file
"CUSTOMER" that was created in program 4. By
inputting the two-digit code at the keyboard, the
information associated with that code is read from
the file and displayed.

PROGRAM 5

ACCESS A RANDOM ACCESS FILE

10 OPEN "R",#1,"CUSTOMER",32
20 FIELD #1, 20 AS CUSTNAME$, 4 AS AMT$, 8 AS
PHONES
30 INPUT "ENTER 2-DIGIT CODE (99 TO
STOP)";CODE%
35 IF CODE% = 99 THEN END
40GET#1,CODE%
SO PRINT CUSTNAMES
60 PRINT USING "$$###.##" ;CVS(Al(/IT$)
70 PRINT PHONE$:PRINT
80 GOTO 30
RUN
ENTER 2-DIGIT CODE (99 TO STOP)? 10
JOHN DOE
$250.00
344-1234

ENTER 2-DIGIT CODE (99 TO STOP)? 99
Ok

REFERENCE ■5:T39

DISK DATA FILES --SEQUENTIAL AND RANDOM ACCESS

Program 6 is an inventory program that illustrates
random file access. In this program, the record
number is used as the part number, and it is
assumed the inventory will contain no more than
100 different part numbers. Lines 900-960
initialize the data file by writing CHR$(255) as the
first character of each record. This is used later
(line 270 and line 500) to determine whether an
entry already exists for that part number.

Lines 130-220 display the different inventory
functions that the program performs. When you
type in the desired function number, line 230
branches to the appropriate subroutine.

PROGRAM 6

INVENTORY PROGRAM

120 OPEN "R",#1,"INVEN.DAT",39
125 PI ELD# 1,1 AS F$,30 AS D$, 2 AS Q$. 2 AS R$, 4

ASP$
130 CLS;PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT3,"DISPLAY INVENTORY FOR ONE

PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6, "DISPLAY ALL ITEMS BELOW
REORDER LEVEL"
220 PRINT;PRINT:INPUT "PLEASE ENTER

FUNCTION";FUNCTION
225 IF (FUNCTION < 1) OR (FUNCTION > 6)

THEN PRINT "BAD FUNCTION NUMBER":
GOTO 130

230 ON FUNCTION GOSUB 900, 250, 390, 480,
560, 680

240 GOTO 130
250 REM ***BUILD NEW ENTRY***
260 GOSUB 840
270 IFASC(F$) <> 255THEN INPUT

"OVERWRITE";ADDR$: IF ADDR$ <> "Y"
THEN RETURN

280LSETF$ = CHR$(0)

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

290 INPUT "DESCRIPTION";DESCRIPT$
300 LSET D$ = DESCRIPTS
310 INPUT "QUANTITY IN STOCK";0TY%
320 LSETQS = MKI$(OTY%)
330 INPUT "REORDER LEVEL";REORDER%
340 LSET R$ = MKI$(REORDER%)
350 INPUT "UNIT PRICE";PRICE
360 LSET P$ = MKS$(PRICE)
370 PUT#1,PART%
380 RETURN
390 REM ***DISPLAY ENTRY***
400 GOSUB 840
410 IF ASC(F$) = 255THEN PRINT "NULL

ENTRY": RETURN

420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND

#####";CVI(0$)
450 PRINT USING "REORDER LEVEL

#####" ;CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";

CVS(P$)
465 PRINT:INPUT "PRESS RETURN KEY TO

RETURN TO MENU ";RET$
470 RETURN

480 REM ***ADD TO STOCK***
490 GOSUB 840
500 IF ASC(F$) = 255 THEN PRINT "NULL

ENTRY": RETURN
510 PRINT D$: INPUT "QUANTITY TO ADD";

ADD%

520 OTY% = CVI(0$) + ADD%
530 LSET 0$ = MKI$(OTY%)
540 PUT#1,PART%
550 RETURN
560 REM ***REMOVE FROM STOCK***
570 GOSUB 840
580 IF ASC(F$) = 255 THEN PRINT "NULL

ENTRY" :RETURN

590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";LESS%
610 0TY% = CVI(0$)
620 IF(OTY%-LESS%) OTHEN PRINT "ONLY";

OTY%; " IN STOCK" :GOTO 600
630 OTY% = OTY%-LESS%
640 IF OTY% < = CVI(R$) THEN PRINT

"QUANTITY NOW";OTY%;" REORDER
LEVEL"; CVI(R$)

650 LSET 0$ = MKI$(OTY%)

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

660 PUT#1,PART%
670 RETURN

680 REM ***DISPLAY ITEMS BELOW REORDER
LEVEL***

690 FORI = 1 TO 100
710 GET#1,I
720 IF CVI(0$) CVI(R$) THEN PRINT D$;"

QUANTITY"; CVI(0$) TAB(50) "REORDER
LEVEL";CVI(R$)

730 NEXT I
735 PRINT:INPUT "PRESS RETURN KEY TO

RETURN TO MENU ";RET$
740 RETURN

B40 INPUT "PART NUMBER";PART%
B50IF(PART% < 1)0R(PART% > 100) THEN

PRINT "BAD PART NUMBER":GOTO B40 ELSE
GET#1.PART%: RETURN

B90END

900 REM ***INITIALIZE FILE***
910 INPUT "ARE YOU SURE";CONFIRM$;IF

CONFIRM$<>"Y" THEN RETURN
920LSETF$ = CHR$(255)
930FORI = 1 TO 100

940 PUT#1,I
950 NEXT I

960 RETURN '

REFERENCE

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

CLOSE statement

For sequential and random access tiles.

Terminates I/O to a file or device.

Syntax:

CLOSE [[#]f/7enum [, [#]f//enuml...]

where

filenum is the number under which the file
was OPENed.

The CLOSE statement is complementary to the
OPEN statement.

A CLOSE with no arguments closes all open files.

The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file may then be reOPENed using
the same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
closes all disk files automatically. STOP does not
close disk files.

Examples:

The following statement causes the files with files
number 1 and 2 to be closed.

300 CLOSE #1,#2

The next statement causes all open files to be
closed.

1500 CLOSE

REFERENCE 3TO

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

CVI.CVS, CVD functions

For random access files only.

Converts string values to numeric values.

Syntax:

C\/\{2-byte string)
C\/S{4-byte string)
CVDfff-fayte string)

Numeric values that are read in from a random file
buffer must be converted from strings back into
numbers.

CVI converts a 2-byte string to an integer.

CVS converts a 4-byte string to a single precision
number.

CVD converts an 8-byte string to a double precision ^
number.

Example:

70 FIELD #1,4 AS N$, 12 AS B$,...
80 GET #1
90Y = CVS(N$)

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

EOF function

For sequential and random access files.

Tests for the end-of-file condition.

Syntax:

EOF (filenum)

where

filenum is the file number specified in the
OPEN statement.

Returns -1 (true) if the end of a sequential file has
been reached. Use EOF to test for end-of-file while
INPUTting, to avoid Input past end errors.

When the EOF function is used with random access
files, it returns "true" if the last executed GET
statement was unable to read an entire record
because of an attempt to read beyond the end.

Example:

5 DIM M(500)
10OPEN "I'M/'PAYROLL"
20C = 0
30IFEOF(1)THEN 100
40 INPUT #1,M(C)
50C = C+1:GOTO 30

This example reads data from the sequential file
named "PAYROLL". Values are read into array M
until the end of file is reached.

Reference

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

FIELD statement

For random access files only.

Allocates space for variables in a random file
buffer.

Syntax:

FIELD [#]filenum, width AS stringvar [,
width AS stringvar]...

where

filenum is the file number specified in the
OPEN statement.

width is the number of characters to be
allocated to stringvar.

stringvar is a string variable name that will
be used for random file access.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPE Ned.
Otherwise, a Field overflow error occurs. The
default record length is 128 bytes.

Any number of FIELD statements may be executed
for the same file. All FIELD statements that have
been executed will remain in effect at the same
time.

Do not use a FIELDed variable name in an INPUT or
LET (assignment) statement.

5-146 REFEReNCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Once a variable name is FIELDed, it points to the
correct place in the random file buffer. If a
subsequent INPUT or LET (assignment) statement
with that variable name is executed, the variable
no longer refers to the random file record buffer,
but to the variables stored in string space.

Note that a variable name, previously defined in a
FIELD statement, may be inserted to the right of the
equal sign in an assignment statement.

See the four examples below.

Example 1:

10 FIELD 1,20 AS N$, 10 AS ID$, 40 AS ADD$

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$, the
next 10 positions to ID$, and the next 40 positions
to ADD$. FIELD does not place any data in the
random file buffer.

Example 2:

10 OPEN "R",#1,"PHONELST'',35
15 FIELD #1,2 AS RECNBR$, 33 AS DUMMY$
20 FIELD #1,25 AS NAMES, 10 AS PHONENBRS
25 GET #1
30 TOTAL = CVKRECNBRS)
35FORI = 2TOTOTAL
40 GET #1.1
45 PRINT NAMES, PHONENBRS
50 NEXT I

Illustrates a multiple defined FIELD statement. In
statement 15, the 35 byte field is defined for the
first record to keep track of the number of records
in the file. In the next loop of statements (35-50),
statement 20 defines the field for individual names'
and phone numbers.

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Example 3:

10FORLOOP% = 0TO7
20 FIELD #1, (LOOP% * 16) AS OFFSETS, 16 AS
A$(LOOP%)
30 NEXT LOOP%

Shows the construction of a FIELD statement
using an array of elements of equal size. The result
is equivalent to the single declaration:

FIELD #1, 16 AS A$(0), 16 AS A$(1),...,16 AS A$(6),
16ASA$(7)

Example 4:

10 FIELD #1,255 AS TSTS

Note that you must observe the maximum length
restriction for various variables. For example in
the FIELD statement above the maximum length of
TST$ is 255.

5TO" REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

GET statement

For random access files only.

Reads a record from a random disk file into a
random buffer.

Syntax:

GET [#]f/7enum, [, recordnum]

where

filenum is the file number specified in the
OPEN statement.

recordnum is the number of the record to be
read, in the range 1 to 16,777,215.

If recordnum is omitted, the next record (after the
last GET) is read into the buffer.

The largest possible record number is 16,777,215.
This permits large files with short record lengths.

After a GET statement has been executed, you can
either refer to FIELDed variables or use INPUT #,
LINE INPUT # to read characters from the random
file buffer. The EOF function may be used after a
GET statement to see if that GET was beyond the
end of file marker.

See example on next page.

"5TOREFERERCT

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Example:

10 OPEN "RM,"EMPLOYEE",48
20 FIELD 1, 20 AS R1$, 20 AS R2$, 8 AS R3$
30 F0RL=1T04
40 GET1,L
50 PRINT R1$, R2$, CVD(R3$)
60 NEXT
70 CLOSE 1
80 END
Ok
RUN

SUPER MANN USA 11234621
ROBIN HOOD England 23462101

This program retrieves information stored in the
specined file. The data read into the buffer may be
accessed by the program. This is done here by a
PRINT statement (see statement 50). These data
items were written to the file by the PUT
statement.

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

INPUT # statement

For sequential files only.

Reads data items from a sequential disk file and
assigns them to program variables.

Syntax:

INPUT ̂ filenum, variable [, variable]...

where

filer)um is the number used when the file was
OPE Ned for input.

variable is a numeric or string variable which
will receive a data item from the file. The
type of data in the file must match the type
specified by the variable name.

With INPUT #, no question mark is displayed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response to
an INPUT statement. With numeric values, leading
spaces, carriage returns and linefeeds are ignored.
The first character encountered that is not a space,
carriage return or linefeed is assumed to be the
start of a number. The number terminates on a
space, carriage return, linefeed or comma.

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

If GW-BASIC is scanning the sequential data file
for a string item, it will ignore leading spaces,
carriage returns and linefeeds. The first character
encountered that is not a space, carriage return, or
linefeed is assumed to be the start of a string item.
If this first character is a quotation mark ("), the
string item will consist of all characters read
between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation
mark as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage return or linefeed or after 255 characters
have been read. If end-of-file is reached when a
numeric or string item is being INPUT, the item is
terminated.

Example:

100 INPUT #1,X$, Y$, Z$

This example uses the INPUT # statement to read
data from a sequential file into the program.

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

INPUT $ function

For sequential files only.

Returns a string of characters read from a file.

Syntax:

INPUT$(/engt/j,#fi7enu/n)

where

length is an integer expression specifying the
number of characters to be read from a file.

filenum is the file number specifying the file
to be read.

INPUTS allows all characters read to be assigned to
a string.

Example:

5 rem list the contents of a sequential file in
hexadecimal
10OPEN "IM,"EMPL0YEE"
20IFEOF(1)THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60 END

REFERENCE "5TO

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

LINE INPUT# statement

For sequential files only.

Reads an entire line (up to 254 characters), without
delimiters, from a sequential disk data file to a
string variable.

Syntax:

LINE INPUT#f/7enum, stringvar

where

filenum is the number under which the file
was OPE Ned.

stringvar is the variable name to which the
line will be assigned.

LINE INPUT# reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/linefeed sequence. The next LINE
INPUT# reads all characters up to the next carriage
return. If a linefeed/carriage return sequence is
encountered, it is preserved.

LINE INPUT# is especially useful if each line of a
data file has been broken into fields, or if a GW-
BASIC program saved in ASCII format is being
read as data by another program.

See example on next page.

5TO" REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

Example:

10 OPEN "OM."LIST"
20 LINE INPUT "Customer? ";C$
30 PRINT #1,C$
40 CLOSE 1
50 OPEN "I",1,"LIST"
60 LINE INPUT #1,C$
70 PRINT C$
80 CLOSE 1
RUN
Customer? Linda Jones 234 Memphis
Linda Jones 234 Memphis
Ok

REFERENCE

DISK DATA FILES --SEQUENTIAL AND RANDOM ACCESS

LOG function

For sequential and random access files.

Returns the current position in the file.

Syntax:

L0C(ft7enum)

where

filenum is the number under which the file
was OPENed.

For sequential files, LOC returns the current byte
position in the file divided by 128. When a file is
opened for APPEND or OUTPUT, LOC returns the
size of the file in (bytes/128).

For random access disk files, LOC returns the
record number just read or written from a GET or
PUT statement.

Example:

200 IF L0C(1) > 50 THEN STOP

ftEPEftENCe

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

LOF function

For sequential and random access files.

Returns the length of the named file in bytes.

Syntax:

LOF(f//enufn)

where

filenum is the number under which the Ale
was OPE Ned.

For sequential and random access files, LOF
returns the size of the file in bytes.

Note that, when a file is OPENed for APPEND or
OUTPUT, LOF returns the size of the file divided by
128.

Examples:

In this example, the variables REG and RECSIZ
contain the record number and recond len^h,
respectively. The calculation determines whether
the specific record is beyond the end-of-file.

110 IF REC * RECSIZ
"INVALID ENTRY"

> L0F(1) THEN PRINT

In the next example, the statements will get the
last record of the file MYFILE (residing on uie disk
in Drive B) assuming that the file was created with
a record length of 128 bytes.

10 OPEN "B:MYFILE" AS #2
20GET#2,LOF(1)/128

REFERENCE ■5TO

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

LSET and RSET statements

For random access files only.

LSET stores a string value in a random buffer field
left-justified.

RSET stores a string value in a random buffer field
right-justified.

Syntax:

LSET stringvar = stringexp

RSET stringvar = stringexp

where

stringvar represents a fielded string variable
(i.e., a string variable previoulsy used in a
FIELD statement)

stringexp represents the string to be left or
right-justified in a given field.

If stringexp requires fewer bytes than were
FIELDed to stringvar, LSET left-justifies the string in
the field, and RSET right-justifies the string.
Spaces are used to pad the extra positions. If the
string is too long for the field, characters are
dropped from the right. Numeric values must be
converted to strings before they are LSET or RSET.

Example:

150 LSET A$ = MKS$(AMT)
160 LSET D$ = MKI$(COUNT%)

S^TSS" REFEftENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

MKI$, MKS$, MKD$ functions

For random access files only.

Converts numeric values to string type values.

Syntax:

M Kl$(/nteger expression)
MKS${single precision expression)
MKD$(doub/e precision expression)

Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be

converted to a string.

MKIS converts an integer to a 2-byte string.

MKSS converts a single precision number to a 4-
byte string.

MKD$ converts a double precision number to an 8-
byte string.

Example:

90AMT=K + T
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT#1

REFERENCE "rT39

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

OPEN statement

For sequential and random access files.

Allows I/O to a file.

Syntax:

OPEN filespec [FOR model] AS [#]f/7enum
[LEN = record-length]

OPEN modeZ, [#]filenum, filespec [, record-
length]

where

filespec is a string expression which specifies
the file to be opened. It may optionally
include a drive name or path name. If drive
name is omitted, the default drive is assumed.
If path name is omitted, the current working
directory is assumed.

model is a literal string not enclosed in
quotation marks. It determines the initial
file pointer position and the action to be taken
if the file does not exist. The valid modes and
actions taken are:

INPUT specifies sequential input mode.
Positions the pointer to the beginning of an
existing file. A File not found error is
given if the file does not exist.

OUTPUT specifies sequential output mode.
Positions the pointer to the beginning of
the file. If the files does not exist, one is
created.

APPEND specifies sequential output after
the last record on the file. Positions the
pointer to the end of the file. If the file does
not exist, one is created.

REFERENCE

DISK DATA FILES —SEQUENTIAL AND RANDOM ACCESS

If the FOR model clause is omitted, the
initial position is at the beginning of the
file. If the file is not found, one is
created. This is the Random I/O mode.
That is. records may be read or written
at will at any position within the file.

filenum is an integer expression returning a
number in the range 1 through 255. The
number is used to associate an I/O buffer
with a disk file. This association exists until
a CLOSE or CLOSE filenum statement is
executed. The file is referred in any I/O
statement by this number.

record-length is an integer expression from
1 to 32767. This value sets the record length
to be used for random access files {see the
FIELD statement). If omitted, the record-
length defaults to 128 byte records. The
specified record-length may not be greater
than the value specified by the /S: switch on
the GWBASIC command line (see ""GWBASIC
command" in Chapter 19). GW-BASIC will
ignore this option if it is used to OPEN a
sequential file.

mode2 is a string expression whose first
character is one of the following:

0 specifies sequential output mode

1 specifies sequential input mode

R specifies random input/output mode

A specifies sequential output mode and
sets the file pointer at the end of the file,
and the record number as the last record
of the file. A PRINT or WRITE statement
will then extend (append) the file.

"5^REFERENCe

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

A disk file must be opened before any disk I/O
operation can be performed on that file.

OPEN allocates a buffer for I/O to the file and
determines the mode of access that will be used in
the buffer. '

The filenum parameter specifies the number which
will be associated with the file as long as it is open
and will be used by other I/O statements to refer to
the file.

The maximum number of files that may be open
simultaneously is set by the /F: switch in the
GWBASIC command line {see "GWBASIC command"
in Chapter 19). This number falls within the range
1 to 15, and defaults to 3.

Rules

1. If you enter a value outside of the
corresponding range, an Illegal function call
error is returned, and the file will not be
opened.

2. If the file is opened for INPUT, attempts to
write to the file will result in a Bad File Mode
error. If a file opened for input does not exist,
a File not found error occurs.

3. When a disk file is opened for APPEND, the
pointer position is initially at the end of the
file and the record is set to the last record of
the file. PRINT# or WRITE# will then extend
the file.

4. If the file is opened for OUTPUT or APPEND,
attempts to read the file will result in a Bad
File Mode error.

5. If you open a file which does not exist for
output, append or random access, you will
create that file.

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

6. A file can be opened for sequential input or
random access on more than one file number
at a time. A file may NOT be opened for
OUTPUT or APPEND on more than one file
number at a time.

Moreover, since it is possible to reference the
same file in a subdirectory via different path
names, it is impossible for GW-BASIC to
know that it is the same file simply by looking
at the path name. For this reason, GW-
BASIC will not let you open the file for
OUTPUT or APPEND if it is on the same disk,
even if the path name is different.

Examples:

10OPEN"r,2,"INVEN"

10 OPEN "MAILING.DAT" FOR APPEND AS 1

Possible Errors

Bad file name

Bad file number

Bad file mode

Too many files (Too many files are open. See the
IF: switch in the "GWBASIC command" in Chapter
19.)

File not found

File already open

Illegal function call (Usually caused by an
excessive record length. See the IS: switch in the
"GWBASIC command" in Chapter 19.)

REFERENCE

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

PRINT# and PRINT# USING statements

For sequential files only.

Writes data sequentially to a disk file.

Syntax:

PRINT#///enu/n, [USING format-string;] list
of expressions

where

filenum is the number used when the file was
OPENed for output.

format-string is a string expression (usually a
constant or variable) composed of formatting
characters described in the PRINT USING
statement. See the alphabetized listing of the
commands, statements and functions for
location of the PRINT USING statement
description.

list of expressions is a list of the numeric
and/or string expressions that will be written
to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the file, just as it
would be displayed on the screen with a PRINT
statement. For this reason, care should be taken to
delimit the data, so that it will be input correctly
from the disk file.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

50PRINT#1,A;B;C;X;Y;Z

5TO" REFERENCE

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

If commas are used as delimiters, the extra blanks
that are inserted between print fields will also be
written to the disk file.

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly in the disk file, use explicit
delimiters in the list of expressions.

For example, let A$ = "CAMERA" and
B$="93604-1". The statement

200PRINT#1,A$;B$

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem,
insert explicit delimiters into the PRINT#
statement as follows:

200 PRINT# 1,A$;",";B$

The image written to the file is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or linefeeds, write them to the disk me
surrounded by explicit quotation marks, using
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC"
andB$=" 93604-1". The statement

300 PRINT#1,A$;B$

would write the following image to file:

CAMERA, AUTOMATIC 93604-1

and the statement

400INPUT#1,A$,B$

would input "CAMERA" to A$ andwould input UAMCiKA
"AUTOMATIC 93604-1" to B$.

"5TOREFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

To separate these strings properly in the disk file,
write double quotation marks to the file image
using CHR$(34). The statement

500 PRINT#1, CHR$(34); A$; CHR$(34);
CHR$(34); B$; CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

600INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and
" 93604-1" to B$.

The PRINT# statement may also be used with the
USING option to control the format of the disk file.
For example,

700 PRINT#1,USING"$$###.##,";J;K;L

REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

PUT statement

For random access files only.

Writes a record from a random buffer to a random
access file.

Syntax:

PUT(#]f/7eni/m[,recordnum]

where

filenum is the number under which the file as
OPENed.

recordnum specifies the number of the record
in the file. It must be in the range 1 to
16,777,215.

LSET, RSET, PRINT#, PRINT# USING and WRITE#
may be used to put characters in the random file
buffer before executing a PUT statement.

In the case of WRITE#, GW-BASIC pads the buffer
with spaces up to the carriage return.

Any attempt to read or write past the end of the
buffer causes a Field overflow error.

See example on next page.

REFERENCE

DISK DATA FILES --SEQUENTIAL AND RANDOM ACCESS

Example:

10 OPEN "R",1,"RAND",48
20 FIELD 1,20ASR1$,20ASR2$,8ASR3$
30 FORL= 1 T04
40 INPUT "Name";N$
45 IF N$= "DONE" GOTO 120
50 INPUT "Address";M$
60 INPUT "Phone",P#
70 LSETR1$ = N$
80 LSETR2$ = M$
90 LSETR3$ = MKS$(P#)
100 PUT1,L
110 NEXTL
120 CLOSE 1
130 END
Ok
RUN
Name? Super Man
Address? USA
Phone? 11234621
Name? Robin Hood
Address? England
Phone? 23462101
Name? DONE
Ok

Statement 10 opens the random file RAND, with a
record length of 48 on the disk in Drive A. The file
number is 1. Statement 20 divides the buffer into
fields.

Statement 100 writes a record to file RAND, with
the record number being set by the control variable
of the FOR...NEXT loop.

5TT?S" REFERENCE

DISK DATA FILES — SEQUENTIAL AND RANDOM ACCESS

VARPTR function

For sequential and random access files.

For sequential files, returns the starting address of
the disk 1/0 buffer assigned to filenum.

For random access files, returns the address of the
FIELD buffer assigned to filenum.

Syntax:

VARPTR(#f//enum)

where

filenum is the number under which the file
was OPENed.

The address returned will be an integer in the
range -32768 to 32767. This int^er value is the
offset into GW-BASIC's Data ^^ent. If a
negative address is returned, add it to 65536 to
obtain the actual address.

REFERENCE "srreg

DISK DATA FILES -- SEQUENTIAL AND RANDOM ACCESS

WRITE# statement

For sequential files only.

Writes data to a sequential file.

Syntax:

WRITE#f/7enun7,//st of expressions

where

filenum is the number under which the file
was OPENed in "O" mode.

list of expressions is a list of string or numeric
expressions. They must be separated by
commas.

The difference between WRITE# and PRINT# is
that WRITE# inserts commas between the items as
they are written to the file and delimits strings
with quotation marks. Therefore, it is not
necessary for you to put explicit delimiters in the
list. A carriage return/linefeed sequence is
inserted after the last item in the list is written to
the file.

If A$ = "CAMERA" and B$ = "93604-1", the
statement:

100WRITE#1,A$,B$

writes the following image to file:

"CAMERA","93604-1"

A subsequent INPUT# statement, such as:

200INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to
B$.

5^70" REFERENCE

11, DISK FILES

This chapter describes how to

Close all open data files
Delete file(s) from disk
Display file names (directory)
Execute (run) a program file (.BAS)
Load a program file (.BAS) from disk into
memory

Move a file from one directory to another
Rename a file
Save a program to disk

RFFERERCr "5^

DISK FILES

Close all open data files

The RESET command/statement closes all open data
files on all drives.

Syntax:

RESET

RESET closes all open data files on all drives, and
forces all blocks in memory to be written to disk.
Thus, if the machine loses power, all files will be
properly updated.

All files must be closed before a disk is removed
from its drive.

Note that RESET performs the same action as
CLOSE with no arguments, if all open data files are
residing on disk.

5TO" REFERENCE

DISK FILES

Delete file(s) from disk

The KILL command/statement deletes a file from
the disk.

Syntax:

KILL "filespec"

where

"filespec" is a string expression which
specifies the file to be deleted. The file name
must include the extension, if one exists.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

The file name may contain question marks (?) or
asterisks (*) used as wildcards. Be extremely
careful when using wildcards with this
command.

If the file name has an extension on it (e.g., .HAS,
.DAT, etc.), the extension has to be included with
the KILL command (e.g., KILL "PAYROLL.DAT"). If
it is not included, a File not found error will occur.

KILL can only be used to delete a file. You must use
the RMDIR command (Chapter 20) to remove a
directory.

KILL is used for all types of disk files: program
files, random data files and sequential data files.

KILL checks to see if the file is open, and if so will
give a File already open error. KILL, like OPEN,
cannot distinguish a file in another directory from
one you may have open. It is possible to get an
unexpected File already open error under these
circumstances.

REFERENCE 3TO

DISK FILES

Examples:

KILL "ACCOUNTS.BAS"

Deletes the program file entitled
ACCOUNTS.BAS from the disk in the default '
drive.

KILL "B:PAYROLL.DAT"

Deletes the file entitled PAYROLL.DAT from the
disk in Drive B.

200 KILL "DATA 1.DAT"

This program line deletes a data file entitled
DATA1.DAT from the disk in the default drive
during execution of a program.

310 KILL "DATA1.*"

This program line deletes all files named DATAl,
regardless of the extension from the disk in the
default drive.

220 KILL "SALES*.DAT"

This program line deletes all files with the
extension .DAT in a subdirectory entitled SALES
of the current "working" directory.

5-174 REFERENCE

DISK FILES

Display file names (directory)

The FILES command/statement displays the names
of files and subdirectories residing on the specified
disk/path name.

Syntax:

FILES ["filespec"]

where

"filespec" is a string expression specifying
either a file name or a path name, and
optionally a drive name. If the drive name is
omitted, the MS-DOS default drive is
assumed. If no path name is specified, the
current "working' directory for the specified
drive is assumed.

If only FILES is specified, all the files on the current
directory of the MS-DOS default drive will be
displayed.

A file name may contain question marks (?) or
asterisks (*) used as wild cards.

If subdirectories exist, they are denoted by
<DIR> following the name. (See the next page
for information on how to display files in
subdirectories.)

See examples on page 5-177.

REFERENCE ■5:175

DISK FILES

To better understand how to display the file names
in a subdirectory, assume you are in the
BASPROGS subdirectory shown below. This is
your current "working" directory.

WP

SALESDAT PAYDAT

ROOT

YOU ARE HERE

To display the file names in one of the
subdirectories of the current "working" directory,
you would type the subdirectory name followed by ^
a backslash. For example,

FILES "SALESDAT\"

will display the file and subdirectory names in the
SALESDAT subdirectory of the current "working"
directory (BASPROGS).

Note: If you did not put a backslash after the
subdirectory name, the system will not display the
file and subdirectory names in the specified
subdirectory. It would only check to see if there is a
file or subdirectory with that name and display the
name again as confirmation.

To display the file and subdirectory names in an
upper level directory which in this case is the root
directory, you would type a backslash. For
example, FILES 'V.

If you wanted to display the file and subdirectory ^
names in the WP subdirectory (which is located
outside the working directory), you would use the
command FILES "\WP\".

5TT75" REFERENCE

DISK FILES

Examples:

FILES

Displays all file and subdirectory names in the
current "working" directory of the disk in the
default drive. Subdirectory names will have
< DIR> displayed beside them.

FILES "B: or FILES "B:"

Displays all file and subdirectory names in the
current "working" directory of the disk in Drive B

FILES "B:*.BAS"

Displays all file names with the extension of .HAS
in the current "working" directory of the disk in
Drive B.

FILES "TEST7.BAS"

Displays all the file names with the first four
characters of TEST, with any fifth character, and
an extension of .BAS in the currect working"
directory of the disk in the default drive.

FILES "SALES"

If SALES is a subdirectory of the current
"working" directory, this command displ^s SALES
< DIR> and the amount of bytes free. If SALES is
a file in the current "working" directory, this
command displays SALES and the amount of bytes
free.

FILES "SALES \MARY"

If MARY is a subdirectory of SALES, this
command will display MARY <DIR> and the
amount of bytes free. If MARY is a file, it will
display MARY and the amount of bytes free.

REFERENCE Tm

DISK FILES

Execute (run) a program file (.BAS)

The RUN command/statement loads a program file
from disk into memory and runs it.

After execution, GW-BASIC returns to command
level.

Syntax:

RUN "f/Vespec" [,R1

where

"filespec" is a string expression which
specifies the program to be loaded and run.

"filespec" is a file name or path name with
an optional drive name. GW-BASIC
appends the default extension .BAS, if none
is specified. If the drive name is omitted, the
default drive is assumed. If the path name is
omitted, the current "working" directory is
assumed.

R is an option. If it is specified, all data files
that were opened before loading the
specified program remain open.

Before loading the specified program, RUN deletes
the current contents of memory and closes all open
files. However, if the R option is specified, all open
data files remain open.

5T7S" REFERENCE

DISK FILES

Examples:

RUN "PAYROLL"

Loads the program file named PAYROLL into
memory from the disk in the default drive and
executes it.

RUN "B:SALES",R

Loads the program file named SALES from the
disk in Drive B, leaves all data files open and
executes the program.

RUN "JOHNMNCOME"

Loads the INCOME program from the subdirectory
named JOHN in the current "working" directory.

REFERENCE ■TT79

DISK FILES

Load a program Hie (.BAS) from disk into
memory

The LOAD command loads a program file (.BAS)
into memory from a specified disk. You can run
the program, if you specify the option R.

Syntax:

LOAD "fUespec" [,R]

where

"fUespec" is a string expression which
specifies the program file to be loaded. The
file name is the name that was used when
the program was SAVEd.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

R is an option. If specified, it will cause the
program to begin execution from the first
statement after loading. In this case, all
open data files are kept open.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the specified program.

If the R option is omitted, GW-BASIC returns to
command level after the program is loaded.

However, if the R option is used with LOAD, the
program is run after it is loaded, and all open data
files are kept open. Thus, LOAD with the R option
may be used to chain several programs (or
segments of the same program). Information may
be passed between the programs using their disk
data files.

REFERENCE

DISK FILES

Note that

RUN "filespec", R

is equivalent to

LOAD "filespec", R

Examples:

LOAD "PAYROLL"

Loads the program file entitled PAYROLL from
the disk in the default drive into memory and
system returns to command level.

LOAD "B:STRTRK",R

Loads the program file entitled STRTRK from the
disk in Drive B into memory and executes it, where
B could be replaced by any drive name

REFERENCE

DISK FILES

Move a file from one directory to another

If you have multiple directories on a disk, the
NAME command can be used to move or move and
rename a file from one directory to another but not
across disks (drives).

Syntax:

NAME 'Y/7espec" AS "newpath name'

where

"filespec" is a string expression which
specifies the file to be moved.

"filespec" is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed. ^

"new path name" is a string expression
which specifies the path name to move the
file to.

If you move a file, the file exists on the same disk
with the same name but resides in a different
directory.

If you move and rename a file, the file exists on the
same disk with a new name and resides in a
different directory.

5^T5r

DISK FILES

Examples:

NAME "JOHN\SALES.BAS" AS "SALLY\SALES.BAS"

This moves the file named SALES.BAS from the
subdirectory JOHN to the subdirectory SALLY.
Both of these are subdirectories of the current
"working" directory.

NAME "JOHN\SALES.BAS" AS "SALLYVIAN.BAS"

This moves the file named SALES BAS from the
subdirectory JOHN to the subdirectory SALLY
and renames the file to JAN.BAS. Both of these
are subdirectories of the current "working"
directory.

REFERENCE "5^

DISK FILES

Rename a Rle

The NAME command/statement changes the name
ofa disk file.

Syntax:

NAME "fi/espec" AS "filename'

where

"filespec" is a string expression
specifies the file to be renamed.

which

"filespec" is a file or path name with an
optional drive name. The file extension does
not default to .BAS. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
directory is assumed.

"filename" is the new name of the file.

The "ff/espec" must exist and "filename'
exist; otherwise, an error will result.

must not

A file mav not be renamed with a new drive name.
If this is attempted, a Rename across disks error
will be generated (e.g., NAME "PAY.BAS" AS
"BiNEW.BAS").

If the "filespec" file is open, it must be closed
before the renaming command is executed.

After a NAME command, the file exists on the same
disk, with the new name. Also, the area allocated
to the file will not be changed.

NAM E cannot be used to rename directories.

reference

DISK FILES

Examples:

NAME "ACCTS.BAS" AS "LEDGER.BAS"

The file that was formerly named ACCTS.BAS on
the disk in the default drive will now be named
LEDGER.BAS on the same disk.

NAME "BiPAY.DAT" AS "B:JANPAY.DAT"

The file PAY. DAT on the disk in Drive B will now
be named JANPAY.DAT, where B could be
replaced with any drive name.

REFERENCE

DISK FILES

Save a program to disk

After creating or editing a program, you can store
it on disk using the SAVE command.

Syntax:

SAVE "fUespec" [,A or ,P]

where

"filespec" is a string expression which
specifies where to save the program and
what file name to save it under.

"filespec" is a file or path name with an
optional drive name. With MS-DOS, the
default extension .BAS is supplied. If the
drive name is omitted, the default drive is
assumed. If the path name is omitted, the
current ''working" directory is assumed.

If a file with the same name already exists on the
selected disk, it will be written over.

Use the A option to save the file in ASCII format.
Otherwise, GW-BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires an ASCII
format file. Attempts to MERGE binary programs
will result in a Baa file mode error. Also, some
operating systems commands such as TYPE may
require an ASCII format file.

Use the P option to protect the file by saving it in
an encoded binary format. When a protected file is
later RUN (or LOADed), any attempt to LIST or EDIT
it will fail with an Illegal function call error.

CAUTION; No way is provided to
"unprotect" such a program.

REFERENCE

DISK FILES

Examples:

SAVE "PAYROLL"

Saves the program PAYROLL.BAS to the disk in
the default drive in binary format.

SAVE "B:SALES",A

Saves the program SALES.BAS to the disk in
Drive B in ASCII format, where B could be
replaced with any drive name.

SAVE "B:PROG",P

Saves the program PROG.BAS to the disk in Drive
B as a protected file.

SAVE "JOHN\PAYROLL"

Saves the PAYROLL.BAS program to the
subdirectory named JOHN of the current
"working" directory.

REFERENCE

DISK FILES

Notes:

5:T58 REFERENCE

12. EDITING

All text entered while GW-BASIC is at command
level is processed by the GW-BASIC Editor. This is
a "screen line editor" which allows you to change a
line anywhere on the screen (only one line at a
time). Changes are only registered when you press
the Return key on that line.

This chapter describes

Special screen editor keys

Correct the current line

Modify program lines

REFERENCE

EDITING

Special screen editor keys

The GW-BASIC Editor recognizes nine numeric
keypad keys, the Backspace key (♦-), and the CTRL
key to move the cursor, insert or delete characters.

The keys and their functions are listed below.

KEY FUNCTION

HOME Home; Positions the cursor in
the top left hand corner of the
screen.

CTRL HOME Clear Screen: Clears the screen
and moves the cursor to the
"Home" position.

t Cursor Up: Moves the cursor up
one line.

4 Cursor Down: Moves the cursor
one position (line) down.

(keypad) Cursor Left: Moves the cursor
one position left. When the
cursor is moved beyond the left
limit of the screen, it appears at
the right side of the screen on
the preceding line.

Cursor Right: Moves the cursor
one position right. If the cursor
is moved beyond the right limit
of the screen, it appears to the
left side of the screen on the
following line.

REFERENCE

EDITING

KEY

CTRL

CTRL

FUNCTION

Next Word: Moves the cursor to
the beginning of the following
word, i.e., to the next character
to the right of the cursor in the
set [A..ZI or [a..z] or (0..9], which
follows a blank or special
character.

For example, in the following
line:

30IFL<=0THEN 20

The cursor is under the letter L.
If you press CTRL the cursor
will move to the beginning of the
next word, which is 0:

30IFL< =gTHEN 20

If you press CTRL again, the
cursor will move to the next
word, which is THEN:

30IFL<=0THEN 20

Previous Word: Moves the
cursor to beginning of the
preceding word, i.e., to the first
character to the left of the cursor
in the set [A..Z] or [a..z] or [0..9]
which is preceded by a blank or a
special character.

For example:

30IFL<=0IHEN 20

The cursor is under the letter T.
If you press CTRL *- the cursor
will move to 0. Pressing CTRL •«-
again, it will move to L.

REFERENCE "5^

EDITING

KEY

END

CTRL END

INS

FUNCTION

End, Append: Moves the cursor
from its current position to the
end of the logical line. Sub-
sequent characters are appended ' ̂
to the line.

Erase to end of line: Erases from
the current cursor TOsition to the
end of the logical line, i.e., until
the carriage return is found.

Switch insert/overwrite mode:
Switches into or out of Insert
Mode. If Insert Mode is off
(Overwrite Mode on), then it
turns it on. If Insert Mode is on,
then it turns it off (sets
Overwrite Mode).

Insert Mode cursor is a half-
height blinking block (in Text
Mode) and is a blinking triangle
to the left of each character (in
Graphics Mode).

Overwrite mode is indicated by a
different cursor, which is a slow-
blinking underline. In Insert
Mode, the character immed
iately above, together with those
following the cursor move to the
right as characters are entered
at the current cursor position.
As characters disappear off the
right side of the screen, they
reappear on the left of the
following line.

When out of Insert Mode,
characters t)rped will replace
existing characters on the line.

Insert Mode is turned off when
you press the INS key again, or if
you press any of the cursor
movement keys or the Return
key.

REFERENCE

EDITING

KEY FUNCTION

Tab: When out of Insert Mode,
pressing —>| moves the cursor
over characters until the next
tab stop is reached. Tab stops
occur every 8 character position
starting from position I.

For example, given the line
below:

20 INPUT "Length"; L

If you press the -^| key, the
cursor will move to the 17th
position as shown:

20INPUT "Length"; L

When in Insert Mode, pressing
^1 causes blanks to be entered
from the current cursor position
to the next tab stop. As
characters disappear off the
right side of the screen, they
reappear on the left on the
following line.

For example, given the line
below:

20INPUT "Length"; L

Blanks are entered up to the
17th position by pressing the INS
key and then the ->| key.

20 INPUT" Length"; L

REFERENCE

EDITING

KEY

DEL

FUNCTION

Delete Character: Erases the
character located at the current
cursor position. All characters
which follow the deleted
character shift one position left.
If a logical line extends beyond
one physical line, characters on
subsequent lines shift left one
position, and the character in
the first column of each
subsequent line is moved up to
the end of the preceding line.

(typewriter) Backspace: Causes the last
character typed to be deleted, or
deletes the character to the left
of the cursor. All characters to
the right of and above the cursor
shift left one position. Sub
sequent characters and lines
within the current logical line
move up as with the DEL key.

CTRL RETURN Line Feed: Causes subsequent
text to start automatically on
the next screen line.

BSC Delete Line: The entire logical
line containing the cursor is
cleared. The line is not entered
for processing. If it is an existing
program line, it is not deleted
from the program currently in
memory.

CTRL BREAK Break: Returns to Command
Level, without saving any
modifications that were made to
the current line being edited.
Unlike BSC, it does not delete the
line from the screen.

REFERENCE

EDITING

Correct the current line

All text entered at GW-BASIC command level is
processed by the Screen Editor. You can therefore
use any of the special screen editor keys previously
described.

GW-BASIC remains at command level after the
prompt Ok and until a RUN command is received.

Character modification

If you make a mistake while entering a line, then
proceed as follows. For example, suppose you have
typed:

RUN "K,PROGR_

when you should have entered

RUN "B:PROG_

Use or other cursor movement keypad keys, to
move the cursor to the appropriate position:

RUN "K,PROG

Type the correct character over the wrong one:

RUN "B:PROG

Move the cursor to the end of the line using or
END keys:

RUN "B:PROG_

Continue typing if the line is not finished:

RUN "B:PROGRAM11"_

Press the Return key to pass the line to GW-
BASIC. In this case, the specified program is
loaded from the disk in Drive B and run.

REFERENCE

EDITING

Character insertion

If you accidentally omit characters in the line you
are entering, then proceed as follows.

For example, suppose you entered;

10 FO K = 1 T0_

instead of:

10 FORK = 1 T0_

Use or other cursor movement keypad keys, to
move the cursor to the appropriate position:

10FO_K = 1 TO

Press INS and type the letter R:

10FOR_K = 1T0

Note that, entering Insert Mode, the cursor
becomes a half-height block.

Press INS again to return to Overwrite Mode and
then press -*■ or END to move the cursor to the end
of the line:

10FORK=1TO

5:W REFERENCE

EDITING

Character deletion

If you accidentally type an extra character in the
line you are entering, then proceed as follows.

For example, suppose you entered:

GOTTO_

instead of:

GOTO_

To erase the extra T, press or other cursor
movement keypad keys, to move the cursor to the
appropriate position:

GOTTO

Press DEL key:

GOTO

Move the cursor using —>

GOTO_

Continue typing:

GOTO 1000

Delete part of a line

To erase a line from the current cursor position,
press CTRL END.

Delete an entire line

To cancel the line you are entering, press ESC
anywhere in the line. It is not necessary to press
the Return key.

REFERENCE "rrg?

EDITING

Modify program lines

Any line of text beginning with a number (0 to
65529) is considered to be a "program line".

Before editing a program, you need to load the
program to be modified (edited) into memory and
list the program contents so that you can see where
the program is to be modified.

Changes to a line are recorded when a Return is
entered while the cursor is somewhere on that line.
The Return enters all changes for that logical line,
and up to the 255 character line limitation, no
matter how many physical lines are included and
no matter where the cursor is located on the line.

Note that any modifications you make by using the
GW-BASIC screen editor only change the program
in memory. To store the updated version of your
program in a disk file, you must use the SAVE
command.

Add a program line

Type the new line number and the program line.
For example, if you needed to add a line between
the existing line numbers 20 and 30, you could use
a line number between 21 and 29, inclusive.

If program memory is exhausted, and a program
line is added to a program, an Out of memory error
message is displayed, and the program line is not
added.

Replace an existing line

Type a line number that matches an existing one,
followed by the contents of the new line. The new
line will replace the existing one.

s^rgs" REFERENCE

EDITING

Delete a program line

Type the line number of the line to be deleted and
press the Return key.

An Undefined line number error is returned if an
attempt is made to delete a line which does not
exist.

Note: ESC should not be used to delete program
lines, since this erases from the screen only, and not
from the program in memory.

Delete a group of program lines

Use the DELETE command to delete a group of
program lines. The syntax of DELETE is:

where

DELETE irmenum1]['[linenum2]]

linenum 1 is the first line to be erased.

Iinenum2 is the last line to be erased.

If either linenum 1 or Hnenum2 does not exist, an
Illegal function call error occurs.

A period (.) can be used instead of the line number
to indicate the current line.

GW-BASIC always returns to command level after
a DELETE is executed.

Examples:

DELETE 80
DELETE 80-120

DELETE -80

DELETE 80-

Deletes line 80.
Deletes lines 80 through 120,
inclusive.
Deletes all lines up to and
including line 80.
Deletes all lines from line 80
through the end of the program.

REFERENCE

EDITING

Modify program line displayed on screen

Move the cursor to the appropriate position (by the
cursor movement keys); modify the line using any
of the techniques described previously to change,
delete or insert characters to the line. Press the
Return key to pass the modified line to GW-BASIC.

Modify program line not displayed on screen

Use the EDIT command to display the line, or the
LIST command to display a group of lines including
the line you want to modify, move the cursor to the
appropriate position, modify the line and press the
Return key.

Note: You can edit any line as long as it is visible
on the screen. Once a direct line has been sent to the
system pressing Return, there is no way to edit it.
This is not the case with program lines, as they may
always be recalled for editing to the screen.

If you are going to use the EDIT command, here is a
description of that command. The syntax is:

EDIT {linenum \ ,}

where

linenum is a program line number. If no
such line exists, an Undefined line number
error message is displayed.

Alternatively a period (.) can be used instead
of a line number to specify the current line.

When you enter an EDIT command, GW-BASIC
displays the specified line and positions the cursor
under the first di^t of the line number. The line
may then be modified by using the special editor
keys.

5^2130" REFERENCE

13. ERROR HANDLING

This chapter describes the following

ERDEV and ERDEV$ functions

ERR and ERL functions

ERROR statement

ON ERROR GOTO statement

RESUME statement

REFERENCE 5^

ERROR HANDLING

ERDEV and ERDEV$ functions

ERDEV is an integer function which contains the
error code returned by the last device to declare an
error.

ERDEV$ is a string function which contains the
name of the device driver which generated the
error.

Syntax:

{ERDEV I ERDEV$}

ERDEV is set by the Interrupt X'24' handler, when
an error within MS-DOS is detected. ERDEV will
contain the INT 24 error code in the lower 8 bits,
and the upper 8 bits will contain the "Word
attribute bits" (bl5-bl3) from the Device header
block.

If the error was on a character device, ERDEV$ will
contain the 8-byte character device name. If the
error was not on a character device, ERDEV$ will
contain the two character block drive name (A:, B:,
C:, etc.).

For the sake of compatibility between different
releases, it is advisable to perform error checking
by using ERDEV rather than ERDEV$.

Example:

If a user installed a device driver "MYLPT2"
caused a Printer out of paper error via INT 24, and
the driver's error number for that problem was 9,
ERDEV will contain the error number 9 in the lower
8 bits and the device header word attributes in the
upper 8 bits, and ERDEV$ will contain "MYLPT2".

REFERENCE

ERROR HANDLING

ERR and ERL functions

The ERR function returns the error code and the
ERL function returns the number of the line which
contains the error.

Syntax:

{ERR I ERL}

When an error handling routine is entered, the
function ERR contains the error code and the
function ERL contains the line number of the line in
which the error was detected.

The ERR and ERL functions are usually used in
IF...THEN statements to direct program flow in the
error handling routine.

If the statement that caused the error was a direct
mode statement, ERL will contain 65535.

If the line number is not on the right side of the
relational operator, it cannot be renumbered with
RENUM.

Because ERL and ERR are reserved functions,
neither may appear to the left of the equal sign in a
LET (assignment) statement.

GW-BASIC error codes are listed in Appendix C.

To test whether an error occurred in a direct
statement, use IF 65535 = ERL THEN ... Otherwise,
use

IF ERR = error-code THEN ...

IF ERL = linenum THEN ...

See example on the next page.

REFERENCE

ERROR HANDLING

Example:

LIST
10REM RECTANGLE2
20 ON ERROR GOTO 70
30 INPUT "Length and Width";L,W
40 IF (L<0) OR (W<0) THEN ERROR 200
50 PRINT "AREA=";L*W;" L=";L" W = ";W
60 GOTO 30

70 IF (ERR = 200) AND (ERL = 40) THEN PRINT "L or
W<0":RESUME30

80 ON ERROR GOTO 0
90 END
Ok
RUN
Length and Width? -2,5
LorW<0
Length and Width? 2,5
Area =10L = 2W = 5
Lenth and Width? Ac
Break in 30
Ok

If you enter a negative value for L or W, the error
handling routine is activated and the system
displays:

LorW<0

Execution is resumed at statement 30 (see RESUME
statement in this section). Note the use of ERR and
ERL functions in the error handling routine.

REFERENCE

ERROR HANDLING

ERROR statement

Simulates the occurrence of a GW-BASIC error, or
generates a user-defined error.

Syntax;

ERROR n

where

n is an integer expression representing an
error code. It must be greater than 0 and
less than or equal to 255. If it is not an
integer, it is rounded to the nearest integer.

ERROR can be used as a statement in a program
line or as a command in direct mode.

If the value of n equals an error code already in use
by GW-BASIC (see Appendix C), the ERROR is
simulated, and the corresponding error message
will be displayed. For example:

LIST
10S=10:T = S
20 ERROR 5 + T
40 END
Ok
RUN
String too long in line 30
Ok

Or, in direct mode:

ERROR 15
String too long
Ok

REFERENCE

ERROR HANDLING

If the value of n is greater than any error code used
by GW-BASIC (see Appendix O, the ERROR
statement will generate a user-defined error. This
user-defined error code may then be handled in the
error trapping routine (see the ON ERROR
statement in this section).

To define your own error, use a value that is
greater than any used by GW-BASlC error codes
(see Appendix O. It is preferable to use the highest
available values, in order that compatibility be
maintained if more error codes are added to GW-
BASIC.

Example:

10 ON ERROR GOTO 500
20 INPUT "WHAT IS YOUR BET";B
30 IF B > 5000 THEN ERROR 210
40 PRINT "GOOD LUCK"
50 END

500 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS
$5000"
510 IF ERL = 30 THEN RESUME 20
RUN
WHAT IS YOUR BET? 6000

HOUSE LIMIT IS $5000
WHAT IS YOUR BET? 4500

GOOD LUCK
Ok

In the above example, the error 210 is caused by
6000 being entered as the bet. When the error
occurs, the system jumps to line 500 as instructed
by line 10 that states when an error occurs GOTO
500 and display the message "HOUSE LIMIT IS
$5000". Then, in line 510, system encounters the
RESUME 20 which instructs the system to return to
line 20 and continue.

If an ERROR statement specifies a code for which no
error message has been defined, GW-BASIC
responds with the message:

Unprintable error.

5:205- REFERENCe

ERROR HANDLING

ON ERROR GOTO statement

Enables error trapping and specifies the first line
number of a subroutine to be executed if an error
occurs.

Syntax:

ON ERROR GOTO linenum

where

linenum is the first line number of the error
trapping subroutine.

To enable error trapping, an ON ERROR GOTO
linenum statement must be executed.

To disable error trapping, an ON ERROR GOTO 0
statement must be executed. Subsequent errors
will display the associated error message and halt
execution.

If error trapping is enabled and a GW-BASIC error
(or a user-defined error) is found, the ON ERROR
GOTO linenum will be executed and the
corresponding routine activated. The ERL and ERR
functions are usually used in IF...GOTO...ELSE or
IF...THEN...ELSE statements to direct program flow
within an error trapping routine.

It is recommended that the error trapping routine
execute an ON ERROR GOTO 0 if an error is found
for which there is no recovery action. In this case,
the standard error message will be displayed and
execution will stop. The RESUME statement will
resume execution after the error handling routine
has been entered {see the RESUME statement in this
chapter).

REFERENCE ■5:2U7

ERROR HANDLING

If a GW-BASIC error (or a user-defined error) is
found during the execution of an error trapping
routine, the associated error message is displayed
and execution terminates. Once an error trap
takes place, all trapping is automatically disabled.

Example:

10 ON ERROR GOTO 1000
20A = 20:B = 30
30 FORI = 1 TO20:PRINT;
40 PRINT A*B
50 END

1000 PRINT "Error number = ";ERR
1010 PRINT "Error line number = ";ERL
1100 RESUME NEXT
RUN
Error number = 26
Error line number = 30
600

Ok

In this example, when the error occurs, the system
goes to line 1000 and displays the error number
and line number that caused the error. Then, the
RESUME NEXT statement returns the system to the
program line immediately following the one which
caused the error.

F20S" REFERENCE

ERROR HANDLING

RESUME statement

Continues program execution after an error
trapping routine has been performed.

Syntax:

RESUME [0 I NEXT | linenum]

where

RESUME or RESUME 0 execution resumes at

the statement which caused the error.

RESUME NEXT execution resumes at the
statement immediately following the one
which caused the error.

RESUME linenum execution resumes at the
specified line.

Any one of the four formats shown above may be
used, depending upon where execution is to
resume.

A RESUME statement that is not in an error
handling routine causes a RESUME without error
message to be displayed.

Example:

10 ON ERROR GOTO 900

900 IF (ERR = 230) AND (ERL = 90) THEN PRINT "TRY
AGAIN": RESUME 80

REFERENCE "5:209

ERROR HANDLING

Notes:

!rTn5 REFERERCE

14. EVENT TRAPPING

Event trapping allows a program to transfer
control to a specific program line when a certain
event occurs. Control is transferred as if a GOSUB
statement had been executed to the trap routine
starting at the specified line number. The trap
routine, after servicing the event, executes a
RETURN statement that causes the program to
resume execution at the place where it was when
the event trap occurred.

The events that can be trapped are receipt of
character from a communication port (ON COM(n)
GOSUB), detection of certain keystrokes (ON
KEY(n) GOSUB), time passage (ON TIMER(n)
GOSUB), or emptying of the background music
queue (ON PLAY(n) GOSUB).

Event trapping is controlled by the following
statements:

Syntax 1 (to turn on trapping):

{COM(n) I KEY(n) | TIMER | PLAY} ON

Syntax 2 (to turn off trapping):

{COM(n) I KEY(n) | TIMER | PLAY} OFF

Syntax 3 (to temporarily turn off trapping):

{COM(n) I KEY(n) | TIMER | PLAY} STOP

REFERENCE TTn

EVENT TRAPPING

COM(n) where n is the number (1 through 4) of
the communications channel.

Typically, the COM trap routine will
read an entire message from the
communications port before returning. '
It is not recommended using the COM ^
trap for single character messages
because at high baud rates the
overhead of trapping and reading for
each character may allow the interrupt
buffer for communications to overflow.

KEY(n) where n is a trappable key number.
Trappable keys are numbered 1- 20.

KEY(n) ON is not the same statement as
KEY ON. KEY(n) ON sets an event trap
for the specified key. KEY ON displays
the values of all the function keys on
the 25th line of the screen.

When GW-BASIC is in direct mode,
function keys maintain their standard
meanings.

When a key is trapped, that occurrence
of the key is destroyed. Therefore, you
cannot subsequently use the INPUT or
IN KEY statements to find out which key
caused the trap. So if you wish to
assign different functions to particular
keys, you must set up a different
subroutine for each key, rather than
assigning the various functions within
a single subroutine.

TIMER The ON TIMER(n) GOSUB statement
(where n is a numeric expression
representing a number of seconds since
the previous midnight) can be used to
perform background tasks at defined
intervals.

PLAY The ON PLAY(n) GOSUB statement (n
is a number of notes left in the music
buffer) is used to retrieve more notes
from the background music queue, to
permit continuous background music
during program execution.

REFERENCE

EVENT TRAPPING

The ON GOSUB statement

The ON GOSUB statement sets up a line number
for the specified event trap.

Syntax:

ON { COM(n) 1 KEY(n) | TIMER(n)
PLAY(n) } GOSUB//nenam

A linenum of zero disables trapping for that event.

When an event is ON and if a non-zero line number
has been specified in the ON GOSUB statement,
every time GW-BASIC starts a new statement it
will check to see if the specified event has occurred
(e.g., a communications character has been
received). When an event is OFF, no trapping takes
place, and the event is not remembered even if it
takes place.

When an event is STOPped, no trapping takes
place, but the occurrence of that event is
remembered so that an immediate trap will take
place when the associated event ON statement is
executed.

When a trap is made for a particular event, the
trap automatically causes a STOP on that event, so
recursive traps can never occur. A return from the
trap routine automatically executes an ON
statement unless an explicit OFF has been
performed inside the trap routine.

Note that once an error trap takes place, all
trapping is automatically disabled. In addition,
event trapping will never occur when GW-BASIC
is not executing a program.

REFERENCE

EVENT TRAPPING

The RETURN statement

When an event trap is in effect, a GOSUB
statement will be executed as soon as the specified
event occurs. For example, the statement:

ON KEY(IO) GOSUB 1000

specifies that the program go to line 1000 as soon
as function key F10 is pressed. If a simple RETURN
statement is executed at the end of this subroutine,
program control will return to the statement
following the one where the trap occurred. When
the RETURN statement is executed, its
corresponding GOSUB return address is cancelled.

GW-BASIC includes the RETURN linenum
enhancement, which lets processing resume at a
definable line. Normally, the pro^am returns to
the statement immediately following the GOSUB
statement when the RETURN statement is
encountered. However, RETURN linenum enables
you to specify another line. If not used with care,
however, this capability may cause problems.
Assume, for example, that your program contains:

10 ON KEY(IO) GOSUB 1000
20 FOR I = 1 TO lOrPRINT l:NEXT I
30 REM NEXT PROGRAM LINE
200 REM PROGRAM RESUMES HERE
1000 REM FIRST LINE OF SUBROUTINE

1050 RETURN 200

If the function key F10 is pressed while the
FOR...NEXT loop is executing, the subroutine will
be performed, but program control will return to
line 200 instead of completing the FOR... NEXT loop.
The original GOSUB entry will be cancelled by the
RETURN statement, and any other GOSUB, WHILE,
or FOR, that was active at the time of the trap will _
remain active. The current FOR context will also
remain active, and a FOR without NEXT error may
result.

REFERENCE

15. GRAPHICS AND

GW-BASIC provides, under MS-DOS, a complete
range of graphic features. The design of different
shapes, using a range of colors holds an exhaustive
amount of possibilities. The screen can be
subdivided into sections, so that seve;ral different
areas can be viewed at the same time.

This chapter covers the following

Select screen attributes and change mode
Text mode
Graphics modes
Screen coordinates
Viewport
World coordinates
Drawing and coloring lines, rectangles,
objects, circles, arcs, ellipses
Line clipping
CIRCLE statement
COLOR statement
DRAW statement
GET (graphics) statement
LINE statement
LOCATE (graphics) statement
PAINT statement
PMAP function
POINT function
PRESET statement
PSET statement
PUT (graphics) statement
SCREEN statement
VIEW statement
WINDOW statement

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Select screen attributes and change mode

The SCREEN statement (see the SCREEN statement
in this chapter) allows you through its first
parameter mode to switch between text and
graphics modes.

There are three different graphics modes you can
select with the SCREEN statement:

Medium Resolution Mode (by entering SCREEN 1)

High Resolution Mode (by entering SCREEN 2)

Super Resolution Mode (by entering SCREEN 3)

They differ only in the number and size of the
points displayed and in the number of colors
allowed.

The SCREEN statement also allows you through the
burst parameter to enable color in Text or Medium
Resolution Mode (using a color TV set), and to
select the active and display page in Text Mode
through the apage and vpage parameters. For a
standard monitor, the burst parameter has no
meaning.

The SCREEN statement must precede any I/O
statements to the screen, as it selects the "screen
attributes" to be used by subsequent statements.
The system assumes SCREEN 0,0,0,0 by default if
no screen attributes are specified. This selects 80
columns Text Mode, B/W, and only one display
page.

You can also use more than one SCREEN statement
to define different screen attributes for different
sections of your program.

You can also change from one graphics mode to
another by the WIDTH statement. The WIDTH
statement allows you to set the screen width (in
Text Mode), to select a "text window", or change
mode in one of the graphics modes.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Text mode (SCREEN 0)

In Text Mode you can display text, i.e., letters,
numbers, and all special characters of the GW-
BASIC character set. You can set the character
foreground and background colors using the
COLOR (Text) statement. This statement also
allows you to create blinking, reverse image,
invisible, highlighted, and underscore characters.

Characters are displayed in horizontal lines from
top (line 1) to bottom (line 25). Each line has 80
columns, unless you specify 40 columns by the
WIDTH statement.

The LOCATE statement positions the cursor on the
active screen. The cursor column and line
coordinates are returned by the POS(O) and CSRLIN
functions.

Characters are usually displayed, using the PRINT
or PRINT USING line 1 to 24. When an attempt is
made to pass the cursor to line 25, lines 1 to 24 are
moved one line up the screen.

Line 25 will usually display the function key
values (see KEY statement in Chapter 19), To move
the cursor to line 25 and display characters, use
KEY OFF, then LOCATE and PRINT statements (see
the LOCATE (Text) statement in Chapter 23 for
details).

Multiple Display Page

Multiple display pages are allowed in Text Mode.
Every statement that reads or writes from the
screen is actually reading/writing from or to the
active page. The visual page is the page that is
shown on the screen, and may be different from the
active page. This feature allows you to display a
page, while writing another. The active and visual
pages may be selected by the SCREEN statement
(see the SCREEN statement in this chapter).

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Statements. Commands and Functions

The statements, commands and functions
available in Text Mode to display text are:

Statements/
Commands Functions

CIS CSRLIN

COLOR (Text) POS
LOCATE (Text) SCREEN
PRINT SPC
PRINT USING TAB
SCREEN
VIEW PRINT

WIDTH
WRITE

(See Chapter 23 for descriptions of above.)

In Text Mode, you can select the character
foreground and background colors, and make /<^<\
characters blink. '

If color hardware is installed, 16 different colors
are available.

In a monochrome system, you can only use two
colors (black and white), but you can also use
shades of ̂ ay, underline characters, or display
high-intensity characters. (See the COLOR (Text)
statement in Chapter 23 for details.)

5^218" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Graphics Modes

In each of the three graphics modes, you can still
display text but you can also draw complex
pictures.

To display text, you can use all the statements,
commands and functions available in Text Mode,
with the exception of the COLOR (Text) and
LOCATE (Text) statements. You have to use the
COLOR ((graphics) and LOCATE (Graphics)
statements instead.

Note also that you can define a "text window",
using the WIDTH or the VIEW PRINT statement.
The WIDTH statement allows you to define a
"vertical" text window by specifying the number of
columns. The VIEW PRINT statement allows you to
define a "horizontal" text window by specifyii^^ the
top and bottom tines.

All points of the screen are addressable in medium,
high or super resolution. A point on the screen is
call a "pixel" (a contraction of "picture element"),
and a tine of pixels is called a "scanline".

The statements, fimctions and commands you can
use in Graphics Mode to display pictures are:

Statements/Commands

CIRCLE

COLOR (Medium Resolution Mode)
COLOR (High Resolution Mode)
COLOR (Super Resolution Mode)
DRAW

GET (Graphics)
LINE

LOCATE (Graphics)
PAINT
PRESET

PSET
PUT (Graphics)
SCREEN
VIEW
WINDOW

Functions

PMAP
POINT

REFERENCE T7T9

GRAPHICS AND SCREEN ATTRIBUTES

Medium resolution mode (SCREEN 1)

In this mode, there are 320 pixels on the horizontal
axis and 200 pixels on the vertical axis. These are
numbered from left to right and from top to bottom;
thus the upper left corner pixel is (0,0) and the
lower right corner pixel is (319,199)

You can display four colors at a time if a color
monitor is used, otherwise the four colors will
appear as shades of gray.

Drawing Pictures

When you draw pictures on the screen using the
graphics statements (PSET, PRESET, LINE, CIRCLE,
PAINT or DRAW), you can specify a color number of
0,1,2, or 3. This selects the color from the current
"palette" as defined by the COLOR statement.

If you do not specify a color number, the default is
the graphics foreground Sjpecified by the COLOR
statement, or 3 (if no graphics foreground is given).

The COLOR (Medium Resolution) statement allows
you to specify both the color for color number 0 and
the "palette" for the three remaining color
numbers (1,2, and 3).

Palette
0
1

Color 1
Green
Cyan

Color 2
Ria
Magenta

Color 3
Yellow
White

If color is disabled, the use of memory is identical.
The modes differ only in that the two bits of a pixel
are interpreted diiferently by the hardware.
Medium resolution B/W displays 4 shades of gray.

Displaying Characters

The size of the characters- is the same as in 40-
column Text Mode. The character foreground color
is set by the tforegound parameter in the COLOR
statement (that defaults to color number 3). The
character background is set by the background
parameter in the COLOR statement (that defaults
to color number 0, i.e., black). If color is disabled,
the character foreground will be 1 (white) and the
character background 0 (black).

5^220" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

High resolution mode (SCREEN 2)

In this mode, there are 640 pixels on the horizontal
axis and 200 pixels on the vertical axis. These are
numbered from left to right and top to bottom, thus
the upper left pixel is (0,0) and the lower right is
(639,199).

There are only two colors: black (color number 0)
and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number 0,
1,2, or 3.

A color number of 0 indicates black and a color
number of 1 white. A color number of 2 is treated
as 0, and 3 is treated as 1.

If you do not specify a color number, the default is
the graphics foreground specified by the COLOR
statement, or 1 if no graphics foreground is given.

The COLOR statement allows you to specify the
graphics foreground and background colors and,
optionally, an XOR operation between the pixels
on the screen and the pixels of your graphics
picture or text.

Displaying Characters

The size of the characters is the same as in 80-
column Text Mode.

The character foreground color is 1 (white) and the
character background color is 0 (black).

REFERENCE ■5:221

GRAPHICS AND SCREEN ATTRIBUTES

Super resolution mode (SCREEN 3)

In this mode, there are 640 pixels on the horizontal
axis and 400 pixels on the vertical axis. These are
numbered from left to right and top to bottom, thus
the upper left pixel is (0,0) and the lower right is
(639,399).

There are only two colors: black (color number 0)
and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number 0,
1,2, or 3.

A color number of 0 indicates black and a color
number of 1 white. A color number of 2 is treated
as 0, and 3 is treated as 1.

If you do not Sjpecify a color number, the default is
the graphics foreground specified by the COLOR
statement, or 1 if no graphics foreground is given.

The COLOR (Super Resolution) statement allows
you to specify the graphics foregroimd and
background colors and, optionally, an OR
operation between the pixels on the screen and the
pixels of your graphics picture or text. The COLOR
statement also allows you to specify '^inverse
video", when you display characters.

Displaying Characters

The size of the characters is the same as in 80-
column Text Mode.

The character foreground color is 1 (white) and the
character background color is 0 (black), unless you
specify "inverse video" by the COLOR statement.

3:32r REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Screen coordinates

Graphics images are positioned on the screen in
accordance with screen coordinates. These
coordinates comprise two parameters generally
referred to as x and y, where x defines the
horizontal screen position and y defines the
vertical screen position. Screen coordinates may
be of two types:

absolute coordinates

relative coordinates

Whereas absolute coordinates refer to the actual
position of a pixel on the screen, relative
coordinates indicate the position of a pixel relative
to the coordinates of the last pixel referenced. The
X and y relative coordinates of the last pixel
referenced (known as the "current point").

The following example illustrates the use of both
types of coordinates:

10 SCREEN 1
20 PSET (100,50)
30 PSET STEP (10,-5)

'absolute coordinates
'relative coordinates

This program example illuminates two pixels on
the screen. The first at coordinates (100,50) and
the second at actual coordinates (110,45).

REFERENCE ■3:223

GRAPHICS AND SCREEN ATTRIBUTES

Viewport

The VIEW statement allows the definition of
subsets of the viewing surface. These are called
"viewports". Onto these the contents of a window
are mapped. Initially RUN or VIEW, with no
arguments, define the whole screen as a viewport.

World coordinates

The WINDOW statement allows you to draw lines,
graphs, or objects in space not bounded by the
physical limits of the screen. This is done by using
programmer-defined coordinates called "world
coordinates".

A world coordinate is any valid single precision
floating point number pair. GW-BASIC then
converts world coordinate pairs into the
appropriate physical coordinate pairs for
subsequent display within screen space. To make
this transformation from world space to the
physical space of the viewing surface (screen), you
must know what portion of the unbounded
(floating point) world coordinate space contains the
information you want to be displayed.

You can also increase or decrease the size of the
image to be displayed and clip part of the image by
changing the logical dimensions of the current
viewport, via the WINDOW statement.

T7W REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Notes:

REFERENCE 3^225

GRAPHICS AND SCREEN ATTRIBUTES

Displaying points

The most elementary graphics function is that of
illuminating the position of a single point (or pixel)
in a specified color. This is achieved using the PSET
and PRESET statements. The POINT function
allows you to know the color number of a specified
pixel.

Drawing and coloring lines, rectangles,
objects, circles, arcs, ellipses

The LINE statement permits the drawing of lines or
rectangles. The DRAW statement, governed by '
"movement commands" such as up, down, left, and
right, lets you draw any object. Circles, arcs and
ellipses can be drawn using the CIRCLE statement,
and the PAINT statement allows any object to be
filled with color(s).

Line clipping

The graphics statements CIRCLE, LINE, PAINT,
POINT, PSET, PRESET, and WINDOW use "line
clipping". This simply means that lines which
cross the screen or viewport are "clipped" at the
boundaries of the viewing area. Only the points
plotted within the screen or viewport are visible.

5^225" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

CIRCLE statement

Draws a circle (or an ellipse) with the specified
center and radius.

Syntax:

CIRCLE [STEP](x,y), radius [,color lstart,end
laspect]]]

where

x,y ar6 numeric expressions, specifying the
coordinates of the center of the circle (or
ellipse). They may be given in absolute form,
or in relative form if STEP is included.

radius is a numeric expression returning a
positive integer value. It is the radius of the
circle, or the major axis or the ellipse. It is
measured in pixels in the horizontal
direction if aspect < 1 and in vertical
direction if aspect > 1.

color is an integer expression in the range 0
to 3. It is the color number of the circum
ference (or ellipse). See the COLOR graphics
statement (current screen mode) for details.

start,end are numeric expressions specifying
angles in radians. The range is from -2*PI
to 2*PI, where PI = 3.141593. They specify
where the drawing of the circle (or ellipse)
will begin and end.

aspect is a numeric expression returning a
positive value. Due to the non-uniform
distribution of the pixels on the screen, you
must specify a value of aspect to draw a true
circle with different monitors. The default
value of aspect is 5/6 in medium and super
resolution and 5/12 in high resolution. This
value produces a circle with the standard
monitor.

REFERENCE ■5:527

GRAPHICS AND SCREEN ATTRIBUTES

Drawing Circles and Ellipses

The CIRCLE statement draws circles if you do not
specify the aspect parameter, and ellipses if you
specify a value of aspect different from the default
value (5/6 in medium and super resolution, and f ^
5/12 in high resolution).

The aspect may be thought of as a fraction, with a
separate numerator and denominator. The
numerator tells GW-BASIC how many rows the
CIRCLE statement should consider equivalent to the
number of columns specified by the denominator.

If aspect is less than one, then radius is measured
in pixels in the horizontal direction, i.e., it is the x-
radius. In this case, GW-BASIC draws ellipses
with the same width, and varies the height.

If aspect is greater than one, the y-radius is given,
and GW-BASIC draws ellipses with the same
height and varies the width. For example:

10 SCREEN 1

1 GO CIRCLE (1 GO, 15G),5G„„5/18

will draw a horizontal ellipse with an x-radius of
50 pixels.

Drawing Arcs

The CIRCLE statement can simply draw part of a
circle (or ellipse), i.e., an arc. To draw an arc, you
must enter the start and end parameters. They
specify the first and the second arc endpoint in
radians.

The angles are positioned in the standard
mathematical way, with 0 to the right and going
counterclockwise. For example, the following
statement specifies just a quarter of a circle:

10 Cl RCLE (1 GO, 150),50,1,0,3.141593/2

The angles must be measured in radians. If you
have the angles in degrees, you must convert them
to radians before executing the CIRCLE statement.
To convert from degrees to radians, multiple by
0.0174532.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Drawing Rays

The CIRCLE statement can draw a ray from the
center of the arc to either arc endpoint. A negative
endpoint generates a ray to that endpoint. The
endpoint -0 is not treated as a negative endpoint.
To circumvent this limitation, use a small negative
number (e.g., -0.001 instead of -0). When both
endpoints are negative, both rays are drawn. The
minus sign does not affect the arc itself, i.e., the
angles will be treated as if they were positive.
Note that this is different from adding 2*PI (where
PI is 3.141593). The start angle may be greater or
less than the end angle. For example:

10 SCREEN 1

100 Clf^CLE (100,150),50,1 ,-0.001 ,-3.141593/2

will draw a quarter of a circle delimited by two
rays.

Last Point Referenced

The last point referenced after a circle (or ellipse)
has been drawn is the center of the circle (or
ellipse).

Clipping

Points that are off the screen or the graphics
viewport are not drawn by the CIRCLE statement.

STEP option

Coordinates can be shown as absolutes, or the STEP
option can be used to reference a point relative to
the most recent point used.

For example, if the most recent point referenced
was 100,50, then: either

CIRCLE (200,200),50

or

CIRCLE STEP(100,150),50

will draw a circle at 100,200 with radius 50. The
first example uses absolute notation; the second
uses relative notation.

"5^229

GRAPHICS AND SCREEN ATTRIBUTES

Example:

The following example draws three intersecting
circles and colors the area of intersection.

5 SCREEN 1

10 COLOR 0,0.3,0
20 CIS
30 CIRCLE (100,120),90
40 CIRCLE (150,130), 120
50 CIRCLE (250,120), 100
60 PAINT (180,120)

5-230 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

COLOR statement (medium resolution mode)

Defines the palette background and foreground
colors. In addition, the default graphics foreground
and background colors, and the text foreground
color can be defined.

Syntax:

COLOR [backgrnd]l [palette][, [gforegrnd][
, [gbackgrncfil tforegrnd]]]

where

backgrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 31. Values greater than 15 are
taken modulo 15. It selects an actual color
for the character background. This is also
the actual color for color number 0 that may
be specified in a graphics statement (palette
background color). This parameter also
specifies the foreground intensity (the
intensity of pixels with values 1, 2, or 3). If
the parameter is >15, high intensity is
selected for foreground colors. It defaults to
0 (black) if unspecified.

palette is a numeric expression rounded to
the nearest integer. It must be in the range
0 through 255. This selects one of two
palettes for the color numbers 1, 2, and 3
that may be specified in a graphics
statement.

Palette Color 1 Color 2

0

1

Green
Cyan

Red
Magenta

Color 3

Yellow

White

Palette 0 is selected, when palette is an even
number, whereas palette 1 is selected, if
palette is an odd number.

REFERENCE 3:2TI

GRAPHICS AND SCREEN ATTRIBUTES

gforegrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 3. This specifies the graphics
foreground which is the default color
number when no color parameter is specified
in a graphics statement. If gforegrnd is
omitted, 3 is assumed. The graphics
foreground is always set to the default value
(3) when the SCREEN statement selects new
screen mode 1.

Any value ̂ eater than 3 will cause the bits
for each pixel to be XOR's with screen
memory.

gbackgrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 3. This specifies the graphics
background; i.e., the color used when a
graphics viewport is cleared with CIS 1, or
with just CIS (see the description of the CLS
statement in Chapter 23). The default value
is 0, which is always selected when a new
screen mode is selected. Note that the CLS 1
statement will only clear a viewport if it has
been explicitly defined with a VIEW
statement.

tforegrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 7. This is the bit pattern used for
the foreground of characters written on the
screen. It defaults to 3. Any value greater
than 3 will cause the character to be XOR'd
with the screen bitmap.

When you enter a CIRCLE, DRAW, LINE, PAINT,
PRESET, or PSET statement in your program, you
can specify a color number of 0, 1, 2, or 3. This
parameter selects the color from the current
palette as defined by the COLOR statement.

If you do not specify a color number, the default is
the graphics fore^ound (i.e., the value of
gforegrnd, or 3 if gforegrnd has not been
specified).

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

When you display text, the character foreground
will be set by tforegrnd that defaults to color
number 3, and the character background will be
set by backgrnd that defaults to 0, i.e., black.

Any parameter may be omitted in the COLOR
statement. Omitted parameters assume the old
value.

Upon initialization the default values are:

backgrnd = 0
palette = 1
gforegrnd = 3
gbackgrnd = 0
tforegrnd = 3

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 0,1,3,0,3

The use of memory for color and monochrome in
medium resolution mode is identical. The modes
differ only in that the two bits of a pixel are
interpreted differently by the hardware: B/W
medium resolution displays four shades of gray.

Examples:

10 SCREEN 1,0
20 COLOR 10,1,2,0

Sets the palette background to light green, selects
palette 1 (cyan, magenta, white), sets the graphics
foreground to magenta, and graphics background
to black.

100 COLOR,0

The background stays light green and palette 0 is
selected.

REFERENCE ■5:233

GRAPHICS AND SCREEN ATTRIBUTES

COLOR statement (high resolution mode)

Defines the (default) graphics foreground, the
graphics background and the text foreground
colors.

Syntax:

COLOR [gforegrnd\l.
tforegrndW

[gbackgrnd\[,

where

gforegrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 3. This specifies the graphics
foreground which is the default color
number for ^aphics statements. If
gforegrnd is omitted, 1 (white) is assumed.

Values of 0 (black) or 1 (white) represent
actual colors; larger values specify an XOR
attribute.

gbackgmd is a numeric expression rounded
to the nearest integer, whose value may be 0
or 1. This specifies the background color
used for clearing graphics viewports. This
defaults to 0 (black).

tforegmd is a numeric expression, rounded
to the nearest integer. A non-zero value of
this specifies that characters are XOR's with
the screen bitmap. Inverse video for text
display is not implemented in this mode.

When you enter a CIRCLE. DRAW, LINE, PAINT,
PRESET, or PSET statement in your program, you
can specify a color number of 0,1, 2, or 3. A color
numlmr of 0 indicates black and a color number of 1
white. A color number of 2 will be treated as 0, and
a color number of 3 will be treated as 1.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

If you do not specify a color number, the default is
the graphics foreground (i.e., the value of
gforegrndor 1 if gforegrnd has not been specified).

When you display text, the character foreground
will be 1 (white) and the background 0 (black).

You can also specify an XOR operation between
the pixels on the screen and the pixels of your
graphics picture or your text, by use of the COLOR
statement.

Any parameter in the COLOR statement may be
omitted. Omitted parameters assume the old
values. Upon initialization default values are:

gforegrnd = 1 (white)
gbackgrnd = 0 (black)
tforegmd = 0 (no XOR attribute for text)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 1,0,0

Example:

10 SCREEN 2
20 COLOR 0,1,0

This selects a black graphics foreground on a white
background and no XOR attribute for text.

REFERENCE ■5:235

GRAPHICS AND SCREEN ATTRIBUTES

COLOR statement (super resolution mode)

Defines the (default) graphics foreground, the
graphics background and the text foreground
colors.

Syntax:

COLOR lgforegrnd][, [gbackgrncl\[,
tforegrnd]]

where

gforegrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 3. This specifies the graphics
foreground which is the default color
number for graphics statements. If
gforegrnd is omitted, 1 (white) is assumed.

Values of 0 (black) or 1 (white) represent
actual colors; larger values specify an XOR
attribute.

gbackgrnd is a numeric expression rounded
to the nearest integer, whose value may be 0
or 1. This specifies the background color
used for clearing graphics viewports. This
defaults to 0 (black).

tforegrnd is a numeric expression, rounded
to the nearest integer. A value of 1 will
result in "normal video"—characters
written with white 1 pixels against a
background of black 0 pixels.

A value of 0 will result in "inverse video"—
characters written with black 1 pixels
against a background of white 0 pixels.

Larger values will cause the characters to be
XOR'd with the screen bitmap.

REFERENCE5-236

GRAPHICS AND SCREEN ATTRIBUTES

When you enter a CIRCLE, DRAW, LINE, PAINT,
PRESET, or PSET statement in your program, you
can specify a color number of 0, I, 2, or 3. A color
number of 0 indicates black and a color number of 1
white. A color number of 2 will be treated as 0, and
a color number of 3 will be treated as 1.

If you do not specify a color number, the default is
the graphics foreground (i.e., the value of
gforegrndor 1 if gforegrnd has not been specified).

When you display text, the character foreground
will be 1 (white) and the character background 0
(black), unless you specify the "inverse video" by
the COLOR statement (with a 1 value of tforegrncO.

You can also specify an XOR operation between
the pixels on the screen and the pixels of your
graphics picture or your text, by use of the COLOR
statement.

Any parameter in the COLOR statement may be
omitted. Omitted parameters assume the old
values. Upon initialization default values are;

gforegrnd = 1 (white)
gbackgrnd = 0 (black)
tforegrnd = 0 (normal video, no XOR)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 1,0,1

Example:

10 SCREEN 3
20 COLOR 0,1,0

This selects a black graphics foreground on a white
background, the inverse video, and no XOR.

REFERENCE 3:537

GRAPHICS AND SCREEN ATTRIBUTES

DRAW statement

Draws a picture as specified by a sequence of single
character Graphics Macro Language commands.

Syntax:

DRAW stringexp

where

stringexp is a string expression defining the
sequence of Graphics Macro Language
commands that will draw the object.

The DRAW statement combines most of the
capabilities of the other j^aphic statements into an
easy-to-use object definition language called
"Graphics Macro Language". A GML command is
a single character (e.g., U,D,L,R,E,F,G,H,M,B,N,A,C,
S,X,P or a pair of characters (TA) with the string
stringexp, optionally followed by one or more
arguments (e.g., n,m,x,y).

In all GML commands, numeric arguments can be
constants like "327" or —numvar, where numvar ia
the name of a numeric variable. The semicolon is
necessary if you enter a variable this way or if you
use the X command; otherwise, you can omit the
semicolon between commands.

GML Movement Commands

Each of the following movement commands begin
movement from the current graphics position.
This is usually the coordinate of the last graphics
point plotted with another GML command, LINE, or
PSET. The current position defaults to the center of
the screen when a program is RUN.

3^235" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Command

U[n]

D[n]

L[n]

R[n]

E[n]

F[n]

G[n]

H[nl

Action

Move up. The number of points
moved is n * scale factor (set by
the S command below). If n is
omitted, 1 is supplied.

Move down. The number of points
moved is n * scale factor (set by
the S command below). If n is
omitted, 1 is supplied.

Move left. The number of points
moved is n * scale factor (set by
the S command below). If n is
omitted, 1 is supplied.

Move right. The number of points
moved is n * scale factor (set by
the S command below). If n is
omitted, 1 is supplied.

Move diagonally up and right.
The number of points moved is n *
scale factor (set by the S command
below). If n is omitted, 1 is
supplied.

Move diagonally down and right.
The number of points moved is n *
scale factor (set by the S command
below). If n is omitted, 1 is
supplied.

Move diagonally down and left.
The number of points moved is n *
scale factor (set by the S command
below). If n is omitted, 1 is
supplied.

Move diagonally up and left. The
number of points moved is n *
scale factor (set by the S command
below). If n is omitted, 1 is
supplied.

REFERENCE "T239

GRAPHICS AND SCREEN ATTRIBUTES

GML Movement Commands - cont'd

Command

M x,y

N

Action

Move absolute or relative. If x is
preceded by a plus (+) or minus
(-), X and y are added to the
current graphics position, and
connected with the current
position by a line (move relative).
Otherwise, a line is drawn to
point x,y from the current position
(move absolute).

Move without plotting any points.
B may precede any of the above
mentioned movement commands.

Move but return to original
position when finished. N may
precede any of the above
mentioned movement commands.

More GML Commands

Command

An

TAn

Action

Set angle n. n may range from 0
to 3, where 0 is 0 degrees, 1 is 90,
2 is 180 and 3 is 270. Figures
rotated 90 or 270 degrees are
scaled so that they will appear
the same size as with 0 or 180
degrees on a standard monitor.

Rotate angle n. n is equivalent
to degrees in the range -360 to
360. If n is positive, rotation is
counterclockwise. If n is
negative, rotation is clockwise.
If n is outside the specified
range, an Illegal function call
error occurs.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

More GML Commands - contM

Command

Cn

Sk

X stringexp

Pn, m

Action

Set color n (from 0 to 3 in
medium resolution, and 0 or 1 in
high or super resolution).

Set scale factor, k may range
from 1 to 255. The scale factor is
defined as k/4. The scale factor,
multipled by the distances given
with U,D,L,R,E,F,G,H or relative
M commands gives the actual
distance travelled (in pixels). If
the S command is omitted, a
scale factor of 1 (i.e., k = 4) is
assumed.

Execute substring. This power
ful command allows you to
execute a second substring from
a string much like GOSUB in
BASIC. You can have one string
execute another, which executes
a third and so on. Spaces are
ignored in stringexp.

n is the color chosen to paint the
interior of the closed figure and
m is the border color. You must
specify both parameters or an
error will occur. Both
parameters can range from 0 to 3
in medium resolution and from 0
to 1 in high or super resolution
mode.

REFERENCE "3^

GRAPHICS AND SCREEN ATTRIBUTES

Examples:

To draw a square:

10 SCREEN 1 ^
20A = 40 ^
30DRAW"U=A; R = A; D = A; L = A;"

To draw a box:

10 U$ = "U30;": D$="D30;": L$="L40;":
R$ = "R40;"
20 BOX$ = U$ + R$ + D$ + L$
30 DRAW"XBOX$;"
40 rem DRAW "XU$;XR$;XD$;XL$;" would have
drawn the same box

To draw a box and color the interior:

10 DRAW "U50RS0D50L50" 'Draw a box
20DRAW"BE10" 'Move up and right into box
30 DRAW "P1,3'' 'Paint interior

To draw some spokes:

10FORD = 0TO360
20 DRAW"TA = D;NU50''
30 NEXT D

5-242 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

GET (graphics) statement

Reads graphic images from the screen.

Syntax:

GET [STEP] (xlyl) - [STEP] (x2,y2), array

where

(x1,y1)'(x2,y2) define a rectangular area on
the display screen. xl,yl are the upper left
and x2,y2 the lower right coordinates. They
may be given in absolute or relative form (if
the STEP option is used).

array is the name assigned to the array that
will hold the image, bounded by the
specified rectangle.

Characteristics

The GET statement should be used in conjunction
with the PUT statement. The GET statement
transfers the screen image bounded by the
rectangle described by the specified points into the
array.

The GET and PUT statements are used to transfer
graphic images to and from the screen. GET and
PUT permit animation and high-speed object
motion, {see the PUT (graphics) statement in this
chapter).

The array must be numeric, but may be any
precision. It must be dimensioned large enough to
hold the entire image. Unless the array is type
integer, the contents of the array after a GET will
be meaningless when interpreted directly (see the
next page).

REFERENCE 3:233

GRAPHICS AND SCREEN ATTRIBUTES

Array Dimensions

The storage format in the array is as follows:

2 bytes giving x dimension in BITS
2 bytes giving y dimension in BITS
the array data itself

The data for each row of pixels is left-justified on a
byte boundary, so if there are less than a multiple
of 8 bits stored, the rest of the byte will be filled out
with zeros. The required array size in bytes is:

4 + INT((x * bitsperpixel + 7)/8)*y

where bitsperpixel is 2 in medium resolution, and 1
in high and super resolution.

The bytes per element of an array are:

2 for integer
4 for single precision
8 for double precision

For example, you want to GET a 10 by 12 image
into an integer array, in medium resolution mode.
The number of bytes required is 4 +
INT((10*2 + 7)/8)*12 or 40 bytes. So, you would
need an integer array with at least 20 elements.

It is possible to examine the x and y dimensions
and even the data itself if an integer array is used.
The X dimension is in element 0 of the array, and
the y dimension is found in element 1. It must be
remembered, however, that integers are stored low
byte first, then high byte, but the data is
transferred high byte first (leftmost) and then low
byte.

Example:

10 CIS : SCREEN 3: PSET(20,20)
20 X$ = "R20D20L20U20":DRAW X$
30 DIM BOX%(64): GET(20,20)-(40,40), BOX%
40 CIS : PUT(100J00),BOX%

5-244 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

LINE statement

Draws either a line or a rectangle, or a filled
rectangle.

Syntax:

LINE [[STEP! (xlyl)] - [STEP] (x2,y2)l [color]
mm. style]]

where

(x1,y1), (x2,y2) represent absolute coor
dinates, or relative coordinates if STEP is
included. If (x1,y1) is omitted, the last
referenced point is assumed.

color is the color number specifying the color
in which the line or rectangle will be drawn
(in the range 0 to 3). Refer to the COLOR
graphics statement for the current screen
mode for details.

B represents a rectangle.

F represents a rectangle to be filled (with
color).

style is an optional parameter that may be
defined by the user to produce varying line
"styles", i.e., varieties of dotted lines.

The following example draws a line from the last
goint referenced to the point specified (x2,y2).
ince no color is specified, the default color is the

foreground color.

LINE -(X2,Y2)

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

The examples below specify start and end points in
absolute coordinates.

LINE (10,10H319,199) 'draws a diagonal line
down the screen
LINE (10,100)-(319,100) 'draws a horizontal line
across the screen

You can specify the color in which the line is
drawn;

LINE (15,15H25,25),2 'draws a line in color 2

The 8 parameter is used to draw a rectangle (box)
in the foreground, where the points ix1,y1) and
(x2,y2) represent the opposite corners. In the
following example, no color number is specified:

LINE (10,10)-(100,100).,B 'draws a box in foregrnd

color may be included as follows:

LI NE (10,10)-(100.100),2,BF 'fi I led box color 2

The B parameter facilitates the drawing of
rectangles, which would otherwise require the
following lengthy programming format:

LINE(X1,Y1)-(X2,Y1)
LINE(X1,Y1)-(X1,Y2)
LINE(X2,Y1)-(X2,Y2)
LINE(X1,Y2)-(X2,Y2)

BF fills the interior of the rectangle with the
selected color.

Out-of-range coordinates are not visible on the
screen. This is called "line clipping".

5:235" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

If the relative form is used for the second
coordinate, it is relative to the first coordinate. For
example:

LINE(50,50)-STEP(15,-13)

draws a line from (50,50) to (65,37).

Line Styling

LINE supports the additional argument style, style
is a 16-bit integer mask used when putting down
pixels on the screen. This is called "Line Styling".

Each time LINE plots a point on the screen, it will
use the current circulating bit in style. If that bit is
0, no point is plotted. If the bit is a 1, then a point
is plotted. After each point, the next bit position in
style is selected.

Since a 0 bit in style does not clear out the old
contents, you may wish to draw a background line
before a styled line in order to force a known
background.

style is used for normal lines and boxes, but has no
anect on filled boxes. For example:

LINE (0,0)-(160,100),2„&HFF00

Draws a dashed line from the upper left hand
corner to the screen center, assuming a screen 320
pixels wide by 200 pixels high.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

LOCATE (graphics) statement

Moves the cursor to the specified position. LOCATE
may also turn the user cursor on and off and define
the shape and blinkrate of the cursor.

Syntax 1:

LOCATE [row]l [column]l [rate]l [start][,
stop]]]]

Syntax 2:

LOCATE [row][, lcolumn][, [rate][, line,
map]]]

where

The value of the fourth parameter
determines which of the above applies. See
below.

row is the screen line number. A numeric
expression returning an unsigned integer in
the range 1 to 25.

column is the screen column number. A
numeric expression returning an unsigned
integer in the range 1 to 40 or 1 to 80,
depending upon screen width.

rate is an integer expression in the range 0
to 10, which determines the state of the user
cursor. {For definition of ''user cursor", see
the paragraphs after the syntax definitions.)

0 Turn the user cursor off (cursor will
not appear except during INPUT
statements and in direct mode).

1 Turn the user cursor on. It will not
blink.

2-10 Blink the user cursor with a period of
rate units of 1/18.75 seconds.

5^235" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

start is the cursor starting scanline. It must
be an integer expression in the range 0 to 15
or 32 to 47. If start is in the range 0 to 15,
the shapes of both the user and the overwrite
cursor will be programmed. If start is in the
range 32 to 47, only the user cursor shape
will be programmed. If start is in the range
32 to 47, it is taken modulo 16.

stop is the cursor stop scanline. It must be a
numeric expression in the range 0 to 15.

line If the value of line is between 50 and
50 + M, byte number line - 50 of the cursor
bitmap for the overwrite cursor is set to
map. If the value is between 100 and
100+ M, then byte number line 100 of the
cursor bitmap for the user cursor is set to
map. The value of M is 15 for medium
resolution mode, 7 for high resolution mode,
and 15 for super resolution mode.

map If line and map are specified, this value
replaces the bitmap for scanline line of the
cursor specified by rate. The cursor bitmap
is a byte array which is XOR'd with the
screen to display the cursor. For medium
resolution mode, each scanline of the cursor
is represented by 2 bytes; the low-order byte
of each scanline is the left one on the screen.
For other modes, there is one byte per
scanline. The size of the array is the number
of scanlines per row of text times the
number of bytes per cursor scanline: this is
8 for high resolution mode and 16 for other
modes. Cursor bitmaps are kept separately
for screen modes 1, 2 and 3. The cursor state
for each mode is restored if another screen
mode is selected, and the original mode is
reselected. Likewise, separate bitmaps are
kept for the insert, overwrite and user
cursors.

REFERENCE 3:239

GRAPHICS AND SCREEN ATTRIBUTES

GW-BASIC includes a blinking cursor for graphics
mode. The maximum height of this cursor is 8 in
modes 1 and 2, and 16 in mode 3. Cursor scanlines
are numbered starting with 0 for the top scanline.

There are three different cursors in graphics mode
as well as in text mode {see the LOCATE (text)
statement in Chapter 23).

The insert mode cursor will always be a rapidly-
blinking small triangle at the lower left of the
character cell.

The overwrite mode cursor is initially an
underline, which blinks somewhat more slowly.

The user cursor is initially disabled, but its shape
array is loaded with OFFH bytes, so that it can
easily be made to be any underline or block shape.

The user and overwrite cursors will be
programmable in shape. The blinkrate of the user
cursor is programmable, but the blinkrates of the
overwrite and insert cursors are fixed.

LOCATE„0 will disable only the user cursor. Also,
execution of any graphics statement (LINE, PSET,
etc.) will disable the user cursor so that the cursor
will be removed from screen memory while the
graphics statement is executed. In this case, the
user cursor must be explicitly turned on if it is used
later on.

The overwrite cursor will always appear whenever
an INPUT statement is being executed, or when
GW-BASIC is in direct mode. At any other time,
only the user cursor may appear.

See examples on next page.

1EFERERCE

GRAPHICS AND SCREEN ATTRIBUTES

Examples:

10 LOCATE 5,1,4.5.7

Moves to line 5, column 1, turns the overwrite
cursor on with a blinkrate of 4/18.75 seconds and
sets the height of the cursor to 3. The cursor
scanlines are initialized to OFFH, so 3 scanlines
will appear unless the user has changed the
bitmap).

ICQ LOCATE ,„51,&H82
110 LOCATE ,„103,&H01

These statements set bytes in the bitmaps for the
overwrite and user cursor, respectively. Statement
100 sets byte 1 of the overwrite cursor to Hex 82;
statement 110 sets byte 3 of the user cursor to Hex
01.

SO FOR X = 0 TO 7
60 LOCATE ,„50 + X,0
70 NEXT X

This example clears the bitmap for the overwrite
cursor for screen mode 2 (use FOR X = 0 TO 15 for
modes 1 and 3). This is the only way of completely
disabling the overwrite cursor for graphics modes.

REFERENCE "Tin

GRAPHICS AND SCREEN ATTRIBUTES

PAINT statement

Fills a graphics area with a color or a pattern
specified.

Syntax:

PAINT [STEP] (x,y) [, lpaint]l [borcler]l
backgrnd]]]

where

x,y are the coordinates, either absolute or
relative, of a point where painting is to
begin. Painting should always start on a
non-border point. If painting starts within
the border, the bordered figure is painted. If
painting starts outside the bordered figure,
the background is painted.

paint is a numeric or string expression. If it
is a numeric expression in the range 0 to 3, it
represents the color number to be used for
painting {see the COLOR (graphics)
statement for the current screen mode, for
details). If it is a string expression, PAINT
will execute "tiling". Tiling is described in
detail later on in this chapter. If paint is
omitted, the default foreground color is used
for painting.

border is an integer expression in the range
0 to 3. It identifies the border color of the
figure to be filled. When the border color is
encountered, painting of the current line
will stop. If border is omitted, the paint
value will be used.

backgrnd is a string expression returning
one character, used in "paint tiling".

^552" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Characteristics

The PAINT statement will fill in an arbitrary
figure, with edges of border color with the specified
paint color. The paint color will default to the
graphics foreground color if not given, and the
border color defaults to the paint color.

For example, in the medium resolution, you can fill
in a circle of color 1 with color 2. Visually, this
could mean a red ball with a green border (if
palette 0 has been selected).

Since there are only two colors in high resolution
and super resolution modes, this means "whiting
out" an area until white is encountered, or
"blacking out" an area until black is encountered.

PAINT must start on a non-border point; otherwise,
PAINT will have no effect.

If the specified point already has the color
boundary, PAINT will have no effect.

PAINTing is complete when a line is painted
without changing the color of any pixel; i.e., the
entire line is equal to the paint color.

PAINT can fill any figure, but PAINTing complex
figures may result in an Out of memory error. If
this happens, the CLEAR statement may be given to
increase the amount of stack space available.

The PAINT statement permits coordinates outside
the screen or viewport.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Tiling

Tiling is the design of a PAINT pattern that is 8 bits
wide and up to 64 bytes long. Each byte in the Tile-
String masks 8 bits along the x-axis when putting
down points. ^ ^

Use the syntax:

PAINT (x,y), CMR$(n)[+ CHR$(n)]...

where n is a number between 0 and 255, or
between &H00 and &HFF in hexadecimal. It will
be represented in binary across the x-axis of the
"tile". Each CHR$(n) up to 64 will generate an
image not of the assigned character, but of the bit
arrangement of the code for that character. For
example, the decimal number 85 is binary
"01010101"; the graphic image line on a black and
white screen generated by UHR$(85) is an eight
pixel line, with even numbered points turned
white, and odd ones black. That is, each bit
containing a "1" will set the associated pixel on and
each bit filled with a "0" will set the associated bit
off, on a black and white system. The ASCII
character CHR$(85), which is "U", is not displayed
in this case.

The structure of the tile string (which is replicated
uniformly over the entire screen) will then be:

x,y
0,0
0,1
0,2

0,63

X increases ->

bit of tile byte
8 7 6 5 4 3 2 1
x x x x x x x x Tile byte 1
x x x x x x x x Tile byte 2
x x x x x x x x Tile byte 3

x x x x x x x x Tile byte 64
(maximum
allowed)

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Each byte of the tile string is rotated as required to
align along the y-axis such that:

type-byte-mask - y MOO tile-length

In hi^h and super resolution modes, the screen can
be painted with Vs by the following statement.

PAINT (320,100), CHR$(129) + CHR$(66) +
CHR$(36) + CHR$(24) + CHR$(24) + CHR$(36) +
CHR$(66) -I- CHR$(129)

or, using hexadecimal numbers for the arguments
ofCHR$:

PAINT (320,100), CHR$(&H81) + CHR$(&H42) +
CHR$(&H24) + CHR$(&H18) + CHR$(&H18) +
CHR$(&H24) -I- CHR$(&H42) * CHR$(&H81)

This pattern appears on the screen as:

X increases

0,0 1 0 0 0 0 0 0 1

0,1 0 1 0 0 0 0 1 0
0,2 0 0 1 0 0 1 0 0

0,3 0 0 0 1 1 0 0 0
0,4 0 0 0 1 1 0 0 0
0,5 0 0 1 0 0 1 0 0
0,6 0 1 0 0 0 0 1 0
0,7 1 0 0 0 0 0 0 1

CHR$(&H42)Tilebyte2
CHR$(&H24)Tilebyte3
CHR$(&H18)Tilebyte4
CHR$(&H18)Tilebyte5
CHR$(&H24)Tilebyte6
CHR$(&H42) Tile byte 7

1 CHR$(&H81)Tilebyte8

Since there are 2 bits per pixel in medium
resolution mode, each byte of the tile pattern only
describes 4 pixels. In this case, every 2 bits of the
tile byte describes 1 of the 4 possible colors
associated with each of the 4 pixels to be put down.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

If backgrnd color is omitted, the default value is
CHR$(0). When supplied, backgrnd specifies the
"background tile" pattern or color byte to skip
when checking for boundary termination.

It may occasionally be necessary to tile paint over
an area that is the same color as two consecutive
lines in the tile pattern. Normally, paint quits
when it encounters two consecutive lines of the
same color as the point being set (the point is
surrounded). It would not be possible to draw
alternating blue and red lines on a red background
without this parameter. Paint would stop as soon
as the first red pixel was drawn. Specifying red
[CHR$(&HAA)] as the backgrnd color, allows the
red line to be drawn on the red background.

You cannot specify more than two consecutive
bytes in the tile string that match the background
color. Specifying more than two will result in an
Illegal function call error.

Example:

10 SCREEN 1
20 COLOR 0,0,1,0
30 CIS
40 CIRCLE (256,128), 130,2
50 PAINT (256,128), 1,2
60 LINE (251,123)-STEP (10,10),0,BF

Statement 10 selects medium resolution mode.
Statement 20 selects black for color number 0,
palette 0 (green, red, yellow), green as graphics
foreground, black as graphics background.
Statement 30 clears the screen with the
background color (in this case black). Statement
40 draws a red circumference with a radius of 130
which center is (256,128). Statement 50 paints the
circle green. Statement 60 draws a black filled in
box in the middle of the circle.

REPERENCe

GRAPHICS AND SCREEN ATTRIBUTES

PMAP function

Converts physical coordinates to world coordinates
or vice versa.

Syntax:

PMAP{coordinate, n)

where

coordinate is a numeric expression
specifying either the x coordinate or the y
coordinate of the point to be mapped
according to the value of n.

n is an integer number in the range 0 to 3:

0 assumes the coordinate value to be the
world X coordinate, and maps it to the
physical x coordinate.

1 assumes the coordinate value to be the
world y coordinate, and maps it to the
physical y coordinate.

2 assumes the coordinate value to be the
physical x coordinate, and maps it to the
world X coordinate.

3 assumes the coordinate value to be the
physical y coordinate, and maps it to the
world y coordinate.

The four PMAP functions allow you to find
equivalent point locations between the world
coordinates created with the WINDOW statement
and the physical coordinate system of the screen or
viewport as defined by the VIEW statement.

See examples on next page.

REFERENCE 3:757

GRAPHICS AND SCREEN ATTRIBUTES

Examples:

If a user had defined a WINDOW SCREEN (80,100) -
(200,200) then the upper left coordinate of the
window would be (80,100) and the lower right
would be (200,200). The physical or screen
coordinates may be (0,0) in the upper left hand
corner and (639,199) in the lower right. Then:

X = PMAP(80,0)

would return the physical x coordinate of the world
X coordinate 80:

0

The PMAP function in the statement:

Y = PMAP(200,1)

would return the physical y coordinate of the world
y coordinate 200:

199

The PMAP function in the statement:

X = PMAP(619,2)

would return the world x coordinate that
corresponds to the physical x coordinate 619:

199

The PMAP function in the statement:

Y = PMAP(100,3)

would return the world y coordinate that
corresponds to the physical y coordinate 100:

140

5-258 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

POINT function

Returns the color number of a pixel on the screen,
if two arguments (x,y) are given, or the current
graphics coordinate if one argument (n) is given.

Syntax 1:

POINT(x,y)

Syntax 2:

POINT(n)

where

(x,y) are the absolute coordinates of the
selected pixel. If the point is out of range,
the value -1 is returned.

n may have the values 0,1,2, or 3 as follows:

0 returns the current physical x coordinate.

1 returns the current physical y coordinate.

2 returns the current world x coordinate if a
WINDOW statement has been used;
otherwise, returns the same value as the
POINT(O) function.

3 returns the current world y coordinate if
WINDOW is active; otherwise, returns the
same value as the POINT(1) function.

REFERENCE 3:259

GRAPHICS AND SCREEN ATTRIBUTES

Syntax 1:

v1 = POINT(x,y)

returns the color number of the specified pixel into x**.
the integer variable vf. f ^

Syntax 2:

v2 = POINT(n)

returns the specified coordinate of the current
point into the single (or double) precision variable
v2.

Examples:

10 SCREEN 0.0
20 FOR K = 0 TO 3
30 PSET(10,10),K
40 IF POINT(10,10) OK THEN PRINT "Broken
Basic!"
50 NEXT

10 SCREEN 2
20 IF POINTd.l) < > 0 THEN PRESET (1,1) ELSE PSET
(1,1)
30 'Invert current state of POINT(l,l)
40 PSET(I,I),1-P0INT(M)
50 'Another way to invert a point, if the system is
B/W

10 SCREEN 1

20 LETC = 3
30PSET(10,10),C
40 IF POINT(10,10) = C THEN PRINT "This point is
color";C

5-260 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

PRESET statement

Draws a point at the specified position on the
screen.

Syntax:

PRESET [STEP] (x,y) [, color]

where

x,y are the coordinates of the point to be
drawn. They may be in absolute or relative
form (if the STEP option is included).

color is the color number to be used, in the
range 0 to 3. (See the COLOR (graphics)
statement for the current screen mode, for
details). If no color parameter is given, the
graphics background color is selected. If
color is included, PRESET is identical to PSET.

If an out of range coordinate is given to PSET or
PRESET, no action is taken nor is an error given. If
a color greater than 3 is given, this will result in an
Illegal function call.

Example:

PRESET(x,y)

is identical to:

PSET(x,y),0

assuming that the graphics background color is 0
(black). See the COLOR (graphics) statement for the
current mode.

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

PSET statement

Illuminates a pixel at a specified position on the
screen.

Syntax:

PSET [STEP] (x,y) [, color]

where

x,y are the coordinates of the pixel to be
drawn. You may specify them either in
absolute or relative form. If relative, the
STEP option must be present.

color is the color number chosen for the
point displayed. This parameter is optional;
by default the graphics foreground color is
taken. (See the COLOR (graphics) statement
for the current screen mode, for details.)

Coordinates can be specified in one of two forms:

PSET STEP (x-offsety-offset) or
PSET {absolute-x^absolute-y)

The first form is a point relative to the most recent
point referenced. The second form is more common
and directly refers to a point without regard to the
last point referenced.

Examples are:

PSET(10,10)
PSET STEP (10,0)
PSET (0,0)

absolute form
offset 10 in x and 0 in y
origin

5:25r REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Note that when GW-BASIC scans coordinate
values it will allow them to be beyond the edge of
the screen. If an out of range coordinate is given,
no action is taken and no error occurs.

PSET allows the color argument to be omitted and
it is defaulted to the graphics foreground.

Examples:

This example draws a diagonal line to (100,100):

10 FOR I = 0TO100
20 PSET (1,1)
30 NEXT

This example clears out the line by setting each
pixel to 0:

40 FOR I = 100 TOO STEP-1
50 PSET(l,l),0
60 NEXT

REFERENCE 3:353

GRAPHICS AND SCREEN ATTRIBUTES

PUT (graphics) statement

Transfers the graphics image stored in an array to
the screen.

Syntax:

PUT(x,y), arrayi action-verb]

where

x,y represent the top left corner of the
rectangle to be displayed.

array is the name of an array containing the
image to be displayed. The type of the array
must be numeric.

action-verb is one of: PSET, PRESET, AND,
OR, XOR. The default action-verb is XOR.

The PUT and GET statements are used to transfer
graphics images to and from the screen. PUT and
GET make possible animation and high-speed
object motion in graphics mode.

The array is used simply as a place to hold the
image and can be of any type except string. It must
be given dimensions large enough to hold the
entire image.

The PUT statement transfers the image stored in
the array onto the screen. The specified point is
the coordinate of the top left corner of the image.

The action-verb Parameter

The action-verb specifies the interaction between
the stored image and the one already on the screen.

5:25^ ftEPCftENCE

GRAPHICS AND SCREEN ATTRIBUTES

PSET transfers the data point-by-point onto the
screen. Each point has the exact color it had when
it was taken from the screen with a GET.

PRESET is the same as PSET except that a negative
image is produced.

AND is used when the image is to be transferred
over an existing image on the screen. The resulting
image is the product of the logical AND expression;
points that had the same color in both the existing
image and the PUT image will remain the same
color, points that do not have the same color in both
the existing image and the PUT image, will not.vw -'D-' ——— ~ O » ——

anOR is used to superimpose the image onto
existing image.

XOR is a special mode often used for animation. It
causes the points on the screen to be INVERTED
where a point exists in the array image. This
behaviour is exactly like that of the cursor. When
an image is PUT against a complex background
TWICE, the backgound is restored unchanged.
This allows you to move an object around the
screen without erasing the background.

In medium resolution AND, OR and XOR have the
following effects on color:

AND screen OR screen XOR screen

a

r

r

a

y

V

a

I

u

e

0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Animation

One of the most useful things that can be done with
GET and PUT is animation.

Animation can be performed as outlined below:

1. PUT the object(s) on the screen with the XOR
option.

2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen with the XOR
option a second time at the old location(s) to
remove the old image(s).

4. Go to step 1, but this time PUT the object(s)
at the new location.

Movement done this way will leave the
back^ound unchanged. Flicker can be cut down
by minimizing the time between steps 4 and 1, and
by making sure that there is enough time delay
between 1 and 3. If more than one object is being
animated, every object should be processed at once,
one step at a time.

If it is not important to preserve the background,
animation can be performed using the PSET action-
verb, The idea is to leave a border around the
image when it is first received as large or larger
than the maximum distance the object will move.
Thus, when an object is moved, this border will
effectively erase any points left by the previous
PUT. This method may be somewhat faster than
the method using XOR described above, since onlv
one PUT is required to move an object (although
you must PUT a larger image).

Possible Errors

An Illegal function call error occurs, if the image to
be transferred is too large to fit on the screen.

5:255" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

SCREEN statement

Sets the specifications for the display screen.

Syntax:

SCREEN [mode][, [burst][, [apage][, vpage]]]

where

mode is a numeric expression resulting in
an integer value in the range 0 to 255. It
defines either Text Mode (0), Medium
Resolution Graphics Mode (1), High
Resolution Graphics Mode (2), or Super
Resolution Graphics Mode (3 to 255).

burst is a numeric expression resulting in an
integer value of 0 or 1. It enables color on a
color TV set. In Text Mode, a 0 value
disables color, and a 1 value enables color.
In Medium Resolution Graphics Mode, a 0
value enables color, and a 1 value disables
color. Both in High Resolution and Super
Resolution Graphics Modes, the burst value
is ignored, as these two modes only support
monochrome.

For a standard monitor, this parameter has
no meaning.

apage (Text Mode only) is an integer
expression in the range 0 to 7 for width 40,
or 0 to 3 for width 80. It selects the active
page, i.e., the page to be written to by output
statements to the screen. If omitted, the
active page defaults to 0.

vpage (Text Mode only) is an integer
expression in the range 0 to 7 for width 40,
or 0 to 3 for width 80. It selects the visual
page, i.e., the page to be displayed on the
screen which may be different from' the
active page. If you omit this parameter, the
visual page will default to the active page.

REFERENCE ■3:257

GRAPHICS AND SCREEN ATTRIBUTES

Mode and Burst Parameters

In the following table, the first two columns are the
mode and burst parameters of a SCREEN
statement.

The burst parameter enables color on color TV sets.
For systems with standard monitors, this
parameter has no real meaning. For example, a
burst value of 0 or 1 in medium resolution mode
will have the same effect if a color monitor is used;
likewise, it will have the same effect if a
monochrome monitor is used (in this case the four
colors will appear as shades of gray).

mode burst Description

0 0 80 column x 25 row

BA/V Text Mode

0 1 80 column x 25 row

Color Text Mode

1 0 320 hor. pixels x 200 vert, pixels
Color Medium Resolution
Graphics Mode
(40 column x 25 row)

1 1 320 hor. pixels x 200 vert, pixels
B/W Medium Resolution
Graphics Mode
(40 column x 25 row)

2 X (ignored) 640 hor. pixels x 200 vert, pixels
B/W High Resolution Graphics
Mode
(80 column, x 25 row)

3-255 X (ignored) 640 hor. pixels x 400 vert, pixels
B/W Super Resolution Graphics
Mode
(80 column x 25 row)

5:255~ "REFERETJCE

GRAPHICS AND SCREEN ATTRIBUTES

Default Values

If you do not enter a SCREEN statement, the system
assumes the following default values:

mode = 0 (Text Mode)
burst — 0 (BAV)
apage = 0 (active page 0)
vpage = 0 (visual page 0)

It would be the same, if you entered:

SCREEN 0,0,0,0

The SCREEN statement must precede any I/O
statement to the screen, but you can use more than
one SCREEN statement to define different screen
attributes for different sections of your program.

apage and vpage Parameters

If Text Mode is selected, you can specify two more
parameters (apage and vpage) to select the active
and visual page. There are eight display pages
(numbered 0 to 7) in 40-column Text Mode, and
four display pages (numbered 0 to 3) in 80-column
Text Mode. Only one display page is available in
any of the three graphics modes.

Only one cursor is shared between the pages, thus,
if you select a new active page, you must save the
cursor position (by POS(O) and CSRLIN) before
changing to the new page. If you return to the
original active page, you must restore the cursor
position by the LOCATE (Text) statement. If you
use the SCREEN statement only to change the
pages, you can omit the first two parameters
{mode and burst).

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Screen Width

At initialization the width is 80 columns, thus you
should use the WIDTH statement to select a 40-
column screen. If you select the medium resolution
mode by the SCREEN statement, this also causes
the number of columns to be 40 without using the
WIDTH statement.

While in Text Mode, the WIDTH statement may be
used to select between the 40-column mode and the
80-column mode. Likewise, the WIDTH statement
may be used to select between modes 1 and 2
(medium or high resolution mode).

Selecting Text Mode (mode=0) after selection of
one of the graphics modes will select either a 40-
column screen or an 80-column screen, depending
on the width used in the graphics mode. For
example:

SCREEN 1 'set screen to medium res. mode
(WIDTH = 40)
SCREEN 0 'changes screen to 40x25 Text Mode

See the WIDTH statement in this chapter.

Remarks

If all parameters are valid, the new screen mode is
savea, the screen is erased, the foreground and the
background colors are set to their default values.

If all parameters are identical to the preceding
ones, nothing is altered.

If you omit a parameter, it assumes the preceding
value except for the visual page that defaults to the
active page.

FITD" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

Examples:

10 SCREEN 0,1,0,0

20 SCREEN,, 1,2

30 SCREEN 2

40 SCREEN 1,1

50 SCREEN ,0

'select text mode with color,
'active and visual page to 0.

'mode and color burst
unchanged,
'use active page 1,
'visual page 2.

'switch to high res. graphics
mode.

'switch to medium res. color
graphics.

'medium res. graphics, color
off.

Possible Errors

If you enter a value outside the specified ranges, an
Illegal function call error is returned.

REFERENCE Tm

GRAPHICS AND SCREEN ATTRIBUTES

VIEW statement

Defines screen limits for graphics activity.

Syntax:

VIEW [[SCREEN] [(vx1,vylHvx2-vy2)L [color]
[, border]]]]

where

(vx1,vy1)(vx2,vy2) represent the x and y
coordinates within the physical boundary of
the screen that graphics will map into.
ivx1,vy1) are the upper left and (vx2,xy2) are
the lower right coordinates to the viewport
defined.

co/or permits the viewport to be filled with a
specified color. If color is omitted, then the
viewport is not filled-in.

border permits the drawing of a border-line
surrounding the viewport if the necessary
space for a border is available. If border is
omittted, no border-line is drawn.

Characteristics

VIEW defines a "Physical Viewport" limit from
vx1,vy1 (upper left x,y coordinates) to vx2,vy2
(lower right x,y coordinates). The x and y
coordinates must be within the physical bounds of
the screen. The physical viewport defines the
rectangle within the screen into which graphics
may be mapped (see also the WINDOW statement).

Initially, RUN, SCREEN, and VIEW with no
arguments define the entire screen as the
viewport.

5:572" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

SCREEN Option

The SCREEN option dictates that the x and y
coordinates are absolute to the screen, not relative
to the border of the physical viewport, and only
graphics within the viewport will be plotted.

For the form:

\/IEW(vx7,xyJ)-(vx2,xy2)

all points plotted are relative to the viewport. That
is, vxl and vyi are added to the x and y coordinates
before putting down the point on the screen.

If

VIEW(10,10H200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually be at the
physical screen location 10,10.

For the form:

VIEW SCREEN {vxlvy1Hvx2,vy2)

all coordinates are absolute and may be inside or
outside of the screen limits, but only those within
the VIEW limits will be plotted.

If

VIEW SCREEN (10,10)-(200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually not appear
because 0,0 is outside of the viev^rt.
PSET(10,10),3 is within the viewport, and places
the point in the upper left hand corner of the
viewport.

REFERENCE "3^

GRAPHICS AND SCREEN ATTRIBUTES

Multiple Viewports

Each time a VIEW statement is executed, a
viewport is defined; this is the "current" viewport.
Thus, to change the "current" or "active" viewport,
you have to execute another VIEW statement. ' ^

A number of VIEW statements may be executed, if
the newly described viewport is not wholly within
the previous viewport, the screen can be
reinitialized with the VIEW statement. Then the
new viewport may be stated.

Examples:

This example opens three viewports, each smaller
than the previous one. In each case, a line that is
defined to go beyond the borders is programmed,
but appears only within the viewport border.

260 CLSrSCREEN 1
280 VIEW 'Make the viewport the entire screen.
300 VIE W(10,10H300,180),, 1
320 CIS

330 LINE(0,0)-(310,190),1
360 LOCATE 1,11 :PRINT "A big viewport"
380 VIEW SCREEN (50,50)-(2S0,150),, 1
400 CLS 'clears only viewport
420 LINE(300,0)-(0,199),1
440 LOCATE 9,9:PRINT "A medim viewport"
460 VIEW SCREEN (80,80)-(200,125)„1
480 CLS
500 CIRCLE(1S0,100),20,1
520 LOCATE 11,9:PRINT ""A small viewport"

5^573" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

This example defines two viewports, plots two
pixels, both in relative and absolute coordinates,
and draws two circles within each viewport. Note
that one of the circles is clipped within each
viewport. The WINDOW statement changes the
coordinate system and causes the "zooming" effect.
See the WINDOW statement in this chapter.

10CLS:SCREEN3

20 VIEW(30,30)-(300,300)„3
30 PSET(30,30),3 'relativecoordinates
40 CIRCLEd 35,135),8:CIRCLE(135,0),20
50 VIEWSCREEN(340,30H610,300)„3
60 PSET(370,60),3 'absolute coordinates
65 rem zooming for new range values
70 WINDOW SCREEN(40,30H320,300)
80 CIRCLE(270.200),8:CIRCLE(300,250),35

This example defines a viewport in the top left
hand corner of the screen, draws one large
rectangle, which is overlapped by a small rectangle
within the viewport.

10CLS:SCREEN2
20VIEW(1,1H100,100)„3
30 LINE(50,50H80,80).3,BF
35 Wl N DOW 5CREE N(1,1)-(200,200)
40 LI N E(150,150)-(180,180).3, B F

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

WIDTH statement

Sets the line width in characters. GW-BASIC adds
a carriage return after outputting the specified
number of characters.

Syntax:

WIDTH s/ze or WIDTH "SCRN:",s/ze

where

size is an integer expression in the range 0 to
255. It specifies the new width.

Sets the screen width (in Text Mode), selects a text
window or changes mode (in Graphics mode).
Changing the screen or text window width, or the
mode, causes the screen to be cleared. '

In Text Mode, size may only have the values 40 or
80, selecting either a 40-column or an 80-column
screen.

In Graphics Mode you can either change mode or
select a text window to the left of the screen of
width less than or equal to 40 (Medium Resolution
Mode) or less than or equal to 80 (High or Super
Resolution Mode).

The width of the function key display will
correspond to the selected width. If the number of
columns displayed is less than 80 columns, a CTRL
T may be entered to scroll the function key display
horizontally.

The table on the next page summarizes all possible
cases.

5^275" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

IF mode is... AND s/ze is... THEN you...

0 (text)
40 select a 40-column screen

80 select an 80-column screen

1

(medium-res)

80 place the system in high-
resolution (mode 2)

8< = size< = 40 create a text window of
width size

2

(high res)

40 place the system in
medium resolution (mode
1) with burst in whatever
state the system was when
a text or medium resolu
tion mode was last used

8< = size< = 39
or

41< = size< = 80

create a text window of
width size

size = 4 create a text window of
width 40

3-255

(super res)

8< = size< = 80 create a text window of
width size

8< = s/ze-80< = 80 create a text window of
width size

REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

When the WIDTH statement causes a change in the
screen mode, colors are set to their default values.

You should turn the function key display off when
changing the window width by a KEY OFF
statement; otherwise, if the width is decreased,
part of the old (wider) function key display may be
left on the screen.

If size is outside the specified ranges, an Illegal
function call error is returned. The previous value
is retained.

Examples:

SCREEN 1,0

WIDTH 80

WIDTH 40

SCREEN 0,1

WIDTH 80

set screen to medium res. color
graphics

change screen to high res.
graphics

changes screen back to medium
res.

changes screen to 40x25 text
color mode

changes screen to 80x25 text
color mode

5:578" REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

WINDOW statement

Defines the logical dimensions of the current
viewport.

Syntax:

WINDOW [[SCREEN] (wx1,wy1)''{\A/x2,wy2)]

where
{wx1,wy1)-{wx2,wy2) are the world
coordinates. {wx1,wy1) represent the lower-
left and {wx2,wy2) the upper-right coor
dinates of the screen border. The SCREEN
option inverts the y-axis of the world
coordinates, so that {wx1,wy1) represent the
upper-left and {wx2,wy2) the lower-right
coordinates of the screen border.

Characteristics

WINDOW allows you to draw lines, graphs, or
objects in the space not bounded by the physical
dimensions of the screen. This is done by using
arbitrary programmer-defined coordinates called
"world coordinates". When you have redefined the
screen, graphics can be drawn within a customized
mapping system.

GW-BASIC converts world coordinates into
physical coordinates for subsequent display within
the current viewport, as defined by the VIEW
statement. To make this transformation from
world space to the physical space of the viewing
surface (screen), you must know what portion of
the (floating point) world coordinate space contains
the information to be displayed.

This rectangular region in world coordinate space
is called a "window".

Initially, RUN, SCREEN, or WINDOW with no
arguments, disables "window" transformation.

REFERENCE 3:279

GRAPHICS AND SCREEN ATTRIBUTES

If you enter:

NEW

SCREEN 2

the screen will appear as:

0,0 320,0 639,0

^ yincreases

320,100

0,199 639,199 639,199

Now enter;

WIND0W(-1,-1H1,1)

the screen will appear as:

-1.1 0,1 1,1

i k yincreases

320,100

r y decreases

-1.-1 0,-1 1,-1

5-280 REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

-1.-1 0,-1 1,-1

i L y decreases

320,100

r yincreases

-1.1 0,1 1,1

If the variant:

WINDOW SCREEN (-1,-1)-(1,1)

is executed, then the screen appears as:

You can increase or decrease the size of the image
to be displayed and clip part of the image by
changing the logical dimensions of the current
viewport via the WINDOW statement.

Examples:

The following example illustrates two lines with
the same end point coordinates. The first is drawn
on the default screen, and the second is on a
redefined window.

200 LI N E(100,100)-(150,150), 1
220 LOCATE 2,20:PRINT "The line on the default
screen"
240 WINDOW SCREEN (100,100)-(200,200)
260 LINE (100,100)-(150,150),!
280 LOCATE 8,18
300 PRINT "& the same line on a redefined
window"

■3:551REFERENCE

GRAPHICS AND SCREEN ATTRIBUTES

The following example draws three concentric
circles with the center in the middle of the screen.
The WINDOW statement defines three different
coordinate systems with the same origin in the
middle of the screen and the same x-, y-axis
orientation. Note the zooming effect produced by
the WINDOW statement.

5 SCREEN 3;CLS
10 DATA -30,30, -20,20, -10,10
20 FOR I = 1 TO 3
30 READ X,Y
40 WINDOW SCREEN (X,X)-(Y,Y):GOSUB 100
50 CIRCLE (0,0), 1
55 NEXT

60 END
100 'Draw a Carthesian system of coordinates
110 LINE(X,0)-(Y,0)
120 LINE(0,X)-(0,Y)
130 RETURN

5^^ REFERENCE

16. GW-BASIC AND
CHILD PROCESSES

Through the use of the SHELL command, GW-
BASIC is able to use one of the most powerful
features of MS-DOS: the ability to create child
processes. SHELL enables you to run part of a GW-
BASIC program, temporarily exit to MS-DOS to
perform a specified function, and return to the GW-
BASIC Program at the statement after the SHELL
command to proceed with the rest of the program,

GW-BASIC will produce a child program when it
uses the SHELL command. It is not possible for GW-
BASIC to totally protect itself from its children.
When a SHELL command is executed, many things
may be going on. For example, files may be OPEN
and devices may be in use.

The following guidelines will help to prevent child
processes from harming the GW-BASIC
environment.

Hardware

In general, it is recommended that the state of all
hardware be preserved during a SHELL command.
The implementation interface provides a way for
performing this task. However, it may be
necessary to request that you refrain from using
certain devices within child processes which are
executed using the GW-BASIC SHELL command.
Specific areas of concern are as follows:

1. Screen Device - Child processes might
modify screen mode parameters. However,
useful information may be displayed by a
child process.

2. Interrupt Vectors - Save and restore
interrupt vectors the child intends to use.

REFERENCE ■5:253

GW-BASIC AND CHILD PROCESSES

3. Other hardware - Many devices are placed
in a specific state by GW-BASIC. Such
devices may include an Interrupt Controller,
Counter Timers, DMA Controller, I/O Latch,
and Uarts. These devices may be utilized by
the child process without the user being
aware of any limitations.

The File System

A child that alters any file open in the GW-BASIC
parent may have disastrous results.

If it is necessary to update such files, they should
be CLOSEd in the parent before doing a SHELL, then
re-OPENed upon return to the GW-BASIC parent.
(See '^Redirection of Standard Input and Output'*
under the GWBASIC command in Chapter 19.)

Memory Management

1. Before GW-BASIC "Shells" to COMMAxMD,
it will try to free any memory it is not using
with one exception: when GW-BASIC is run
with the /M: switch. In this case, GW-
BASIC must assume that you intended to
load something in the top of GW-BASIC's
Memory Block. This prevents GW-BASIC
from "compressing the workspace" before
doing the SHELL. For this reason, SHELL may
fail on an Out of memory error when using
the /M: switch.

The preferred method is to load machine
language subroutines before GW-BASIC is
run. This can be accomplished by placing
"Pocket Code" at the end of machine
language subroutines that allows them to
exit to MS-DOS and stay resident. See
example on next page.

5:253- REFERENCe

GW-BASIC AND CHILD PROCESSES

CSEG SEGMENT CODE

;machine language subroutine

START::

CSEG

RET

INT

ENDS
END

;Last instruction

27H ;Terminate, stay
resident

START

be sure to "load" these subroutines before
GW-BASIC by running them. The
AUTOEXEC.BAT file is very useful for this.

A child should never "terminate and stay
resident". Doing so may not leave GW-
BASIC enough room to expand it's
workspace to the original size. If GW-
BASIC cannot restore the workspace, all
files are closed, the error message SHELL
can't continue is displayed, and GW-BASIC
exits to MS-DOS.

There is no restriction in the machine
independent portion of GW-BASIC which
prohibits GW-BASIC from running as a
child of GW-BASIC. However, due to the
complications which arise from this
configuration, it may not be advisable to use
this capability.

REFERENCE ■3:255

GW-BASIC AND CHILD PROCESSES

SHELL command

Loads and executes another program (.EXE or
•COM. or .BAT).

Syntax:

SHELL [stringexp]

where

stringexp is a string expression containing
the name of a program to run and optionally
command arguments.

Characteristics

When the program finishes, control returns to the
GW-BASIC program at the statement following
the SHELL command. A program executed under
control of GW-BASIC is referred to as a "child
process".

Child processes (or "children") are executed by
SHELL loading and running a copy of COMMAND
with the /C switch. By using COMMAND this way,
command line parameters are passed to the child.
Standard Input and Output may be redirected, and
built-in commands such as DIR, PATH, and SORT
may be executed.

Rules

1. The program name in stringexp may have
any extension you want since COMMAND
has to worry about it. If no extension is
supplied, COMMAND will look for a .COM
file, then .EXE file, and finally, a .BAT file.
If COMMAND is not found, SHELL will issue
a File not found error. No error is generated
if COMMAND cannot find the file specked
in stringexp.

5-286 REFERENCE

GW-BASIC AND CHILD PROCESSES

2. Any text in stringexp separated from the
program name by at least one blank, will be
processed by COMMAND as program
parameters.

3. GW-BASIC remains in memory while the
child process is running. When the child
finishes, GW-BASIC continues.

4. SHELL with no Stringexp will give you a new
COMMAND shell. You may now do
anything that COMMAND allows. When
ready to return to GW-BASIC, enter the MS-
DOS command EXIT.

Examples:

Ok

SHELL (get a new COMMAND)
A>DIR (user enters DIR to see files)
A > EXIT (user enters EXIT to return to GW-

BASIC)
Ok

Write some data to be sorted, SHELL executes SORT
to sort it, then read the sorted data to write a
report.

900 OPEN "SORTIN.DAT" FOR OUTPUT AS #1

950 REM write data to be sorted

iboo CLOSE 1
1010 SHELL "SORT <SORTIN.DAT >SORTOUT.DAT"

1020 OPEN "SORTOUT.DAT" FOR INPUT AS #1
1030 REM Process the sorted data

10 SHELL "DIR I SORT >FILES"
20 OPEN "FILES" FOR INPUT AS #1

REFERENCE "5:2S7

GW-BASIC AND CHILD PROCESSES

Possible Errors

File not found
A file name (.EXE or .COM or.BAT) could
not be found.

Out of memory
There was not enough memory to run the
child.

Can't continue after SHELL
There is not enough memory for GW-BASIC
to continue. All files are closed and GW-
BASIC returns to MS-DOS. This may
happen when a child process "Terminates
and stays Resident".

Internal error
Either GW-BASIC or
functioning correctly.

MS-DOS is not

5:^ REFERENCE

17. INPUT DATA

This chapter describes the following

DATA, READ, RESTORE statements

IN KEYS function

INPUT statement

INPUTS function

LET statement

LINE INPUT statement

REFERENCE 3^259

INPUT DATA

DATA, READ, RESTORE statements

DATA statement

Creates an "internal" file, i.e., a sequence of data
belonging to the program. Each data item will
then be assigned to a program variable by a READ
statement.

Syntax:

DATA constantl constant],.

where

constant is a numeric or string constant.
Any numeric format (i.e., integer,
hexadecimal, octal, single or double
precision) is acceptable for numeric
constants. String constants in DATA
statements must be surrounded by double
quotation marks only if they contain
commas, colons, or significant leading or
trailing spaces. Otherwise, quotation marks
are not needed.

DATA statements are non-executable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas). Any number of
DATA statements may be used in a program.

A DATA statement in a program need not
correspond to a specific READ statement. This is
because before program execution, a data file (the
"internal file" as it is often called) is created. It
contains all the values of all the DATA statements
in the program in line number sequence. When the
program is executed, READ takes its values from
this file.

5-290 REFERENCE

INPUT DATA

The data-type of an entry in the data sequence
must correspond to the type of the variable to
which it is to be assigned; i.e., numeric variables
require numeric constants as data (conversion
from one numeric type to another is allowed, for
example, you may have a single precision floating
point constant associated with an integer variable)
and string variables require quoted or unquoted
strings as data.

A quoted string is required if the string contains
commas (e.g., "BIRMINGHAM,") or initial or final
blanks (e.g.," BIRMINGHAM").

DATA statements may be reread from the
beginning by use of the RESTORE statement.

See examples in the READ statement description
beginning on the next page.

REFERENCE "5:251

INPUT DATA

READ statement

Reads values from one or more DATA statements
and assigns them to variables. ('

Syntax:

READ variable^ variable]...

where

variable is a numeric or string variable. The
type of the variable must agree with the type
of the associated value in the DATA
sequence.

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis.

If the data type (numeric or string) of an entry in
the data sequence does not correspond to the type
of the associated variable, a Syntax error will
result. However, any numeric data type (integer,
single or double precision) may be assigned to any
numeric variable.

A single READ statement may access one or more
DATA statements (they will be accessed in order),
or several READ statements may access the same
DATA statement.

If the number of variables in the list of variables
exceeds the number of elements in the DATA
statement(s), an Out of DATA message is
displayed.

If the number of variables specified is fewer than
the number of elements in the DATA statement(s),
subsequent READ statements will begin reading
data at the first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

REFERENCE

INPUT DATA

To reread DATA statements from the start, use the
RESTORE statement.

Examples:

This program READs the values from the DATA
statements into the array A. After execution, the
value of A(l) is 3.08, A(2) is 5.19, and so on.

Ok
10FORI = 1 TO 5
20 READA(I)
30 PRINT "A("; I;") = ";A(I)
40 NEXT I
50 DATA 3.08,5.19
60 DATA 3.12,3.98,4.24
RUN
A(1) = 3.08
A(2) = 5.19
A(3) = 3.12
A(4) = 3.98
A(5) = 4.24
Ok

This program READs string and numeric data from
the DATA statement in line 30.

Ok
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
RUN
CITY

DENVER,
Ok

STATE

COLORADO
ZIP

80211

REFERENCE "5:293

INPUT DATA

RESTORE statement

Permits DATA statements to be reread either from
the beginning of the internal data file or from a
specified line.

Syntax;

RESTORE [linenum]

where

linenum must be the line number of a DATA
statement.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first
DATA statement in the program.

If linenum is specified, the next READ statement
accesses the first data item in the specified DATA
statement.

Example:

Ok
10READA,B,C
20 RESTORE
30 READ D.E,F
40 PRINT A;B;C;D;E;F
SO DATA 57, 68,79
RUN
57 68 79 57 68 79

Ok

REFERENCE

INPUT DATA

INKEY$ function

Returns either a one- or two-character string read
from the keyboard or a null string if no character is
pending at the keyboard.

Syntax:

INKEY$

INKEY$ returns one of the following values:

a null string if no character is read from the
keyboard

a one-character string in accordance with a
single character read from the keyboard

a two-character string if a key (or a key
combination) is entered, that cannot be
associated with a standard ASCII code. The
first character is hex zero (00); the second
indicates the extended code.

Although more than one character may be pending
in the keyboard buffer, a single character only will
be read. This value must then be assigned to a
variable before it is considered by the GW-BASIC
program.

No characters will be displayed. All characters are
passed to the program, except for the following
control characters:

PRT SC (prints the screen)

CTRL N U M LOCK (sets the system to pause)

CTRL BREAK (stops the program)

ALT CTRL DEL (resets the system)

Note that a carriage return is passed to the
program like any other character.

■5:255REFERENCE

INPUT DATA

Examples:

In this example, if the Return key is pressed before
the loop reaches the final value of 200, the message
Return key pressed is displayed on the screen and
execution ends. If the Return key is not pressed,
the pro^am executes 200 times, then the message
Return key not pressed is displayed at the end of
the program.

Ok
10FORX=1T0 200
20 PRINTX
30A$ = INKEY$
40iFLEN(A$) = 0THEN60
50 If ASC(A$)=13 then print "Return key
pressed":END
60 NEXT X

70 PRINT "Return key not pressed"
RUN
1

2
3
Return key pressed
Ok

The following example program will display in hexi he lollowing example proCTj
the value of the key pressed.

10S$ = INKEY$
20 IF LEN(S$) = OTHEN GOTO 10
30 IF LEN(S$) = 2 THEN GOTO 100
40 REM display 1-byte codes
SO PRINT HEX$(ASC(S$))
60 GOTO 10
100 REM display 2-byte codes - second byte in hex
(and decimal)
110 S1 $ = MI D$(S$, 1,1): 52$ = MI D$(S$,2,1)
120 PRINT HEX$(ASC(S1$)); " HEX$(ASC(S2$));
"(";ASC(S2$);")"
130 GOTO 10

To exit the above program, use CTRL BREAK.

REFERENCE

INPUT DATA

INPUT statement

Allows input from the keyboard during program
execution.

Syntax:

INPUT [;] [prompt;] variable [, variable],..

where

prompt is a string constant enclosed in
quotation marks which prompts you for the
values you have to enter from the keyboard.

variable is a numeric or string variable to
which is assigned the value entered from the
keyboard.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed to
indicate the program is waiting for data. For
example:

Ok
10INPUTX

20 PRINT X "SQUARED IS'
RUN
?5

5 SQUARED IS 25
Ok

X^2

(user types 5)

If prompt is included, the string is displayed before
the question mark. The required data is then
entered from the keyboard. A comma may be used
instead of a semicolon after the prompt string to
suppress the question mark. See example at top of
next page.

REFERENCE 3:597

INPUT DATA

Ok
10PI = 3.14

20 INPUT "What is your name";N$
30 INPUT "Enter the radius ",R
40A = PI*R^2
50 PRINT N$ ", the area of the circle is";A
RUN

What is your name? TOM
Enter the radius 7.4
TOM, the area of the circle is 171.9464
Ok

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to input
data does not display a carriage return/line feed
sequence. For example:

Ok
10INPUT;N
20 PRINT " MAPLE AVENUE"
RUN

71120 MAPLE AVENUE

(user types 1120 and presses Return key)
Ok

The data that is entered is assigned to the
variable(s) given in the variable list. The number
of data items supplied must be the same as the
number of variables in the list. Data items must be
separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is input
must agree with the type specified by the variable
name. Strings input to an INPUT statement need
not be surrounded by quotation marks.

Responding to INPUT with too many or too few
items, or with the wrong type of value (string
instead of numeric, etc.) causes the message ?Redo
from start to be displayed. No assignment of input
values is made until an acceptable response is
given.

You may use all the GW-BASIC screen editor
features (described in Chapter 12) in responding to
INPUT and LINE INPUT statements.

5:255" REFERENCE

INPUT DATA

INPUTS function

Returns a string of characters read from the
keyboard.

Syntax:

INPUT$(/engt/))

where

length is an integer expression specifying
the number of characters to be read from the
keyboard.

No characters will be displayed on the screen. All
characters including control chararters are passed
through except CTRL BREAK, which is used to
interrupt the execution of the INPUTS function.

Example:

Ok
lOPrint "Do you wish to continue? (Y or N)";
20X$ = INPUT$(1)
30 Print
40 If X$= "N" then print "This is the end":end
50 If X$= "Y" then print "Continuing" else 10
RUN

Do you wish to continue? (Y or N)
(user types an uppercase N)
This is the end
Ok

In this example, only one character can be input
from the keyboard. This character can be either an
uppercase N or an uppercase Y.

If the INPUTS statement had read XS = INPUTS(3),
then three characters could be entered.

REFERENCE 1^259

INPUT DATA

LET statement

Assigns a value to a variable.

Syntax:

[LET] variable = expression

where

variable is a numeric or string variable
which will receive the value of the
expression.

expression is evaluated and assigned to the
line variable on the left side of the equal
sign.

The word LET is optional. The equal sign is
sufficient when assigning an expression to a
variable name.

The type of the expression (numeric or string) must
match the type of the variable; if not, a Type
mismatch error occurs. However, in numeric
assignments the type of the expression (integer,
single precision or double precision) may be
different from the type of the destination variable.
In this case, GW-BASIC converts the expression
value to the type of the variable. Rounding or
overflow may occur in this conversion.

Example:

10LETA= 12

20 LET B= 12*2
30 C= 12/2
40SUM=A + B + C

Note that the word LET is optional (see statements
30 and 40 above).

5-300 REFERENCE

INPUT DATA

LINE INPUT statement

Inputs an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

Syntax:

LINE INPUT [;] [prompt;] stringvar

where

prompt is a string constant (enclosed in
double quotation marks) that is displayed on
the screen before input is accepted.

Stringvar is the name of a string variable to
which the line will be assigned.

A question mark is not displayed unless it is part of
the ''prompt string"

All input from the end of the prompt to the
carriage return is assigned to stringvar. If a
linefeed/carriage return sequence (this order only)
is encountered, both characters are displayed; but
the carriage return is ignored, the linefeed is put
into stringvar, and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return pressed to end
the input line does not display a carriage
return/linefeed sequence on the screen.

A LINE INPUT statement may be escaped by
pressing CTRL BREAK. GW-BASIC will return to
command level. Typing CONT resumes execution
at the LINE INPUT.

See example on next page.

REFERENCE

INPUT DATA

Example:

Ok

10 Line Input "Description of item? ";D$
20 PRINT D$
RUN

Description of item? ASCII keyboard
ASCII keyboard
Ok

REFERENCE

18. LOOPING

This chapter describes the following

FOR...NEXT statements

WHILE...WEND statements

REFERENCE

LOOPING

FOR..-NEXT statements

Allows a series of statements to be performed in a
loop a specified number of times.

Syntax:

FOR control-variable = initial-value TO final-
value [STEP increment]

[loop statements]

NEXT [control-variable]lcontrol-variable].

where

control-variable is an integer or single
precision variable used as a counter.

initial-value is a numeric expression
specifying the first value assigned to the
control-variable.

final-value is a numeric expression
specifying the limit of the control-variable.

increment is a numeric expression
specifying the value to be added (with its
algebraic sign) to the control-variable when
the NEXT statement is encountered.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.
Then the control-variable is incremented by the
amount specified by STEP increment A check is
performed to see if the value of the control-variable
is now greater than the final-value. If it is not
greater, GW-BASIC branches back to the
statement after the FOR statement and the process
is repeated. If it is greater, execution continues
with the statement following the NEXT statement.
This is a FOR...NEXT loop.

REPERENGE

LOOPING

If STEP is not specified, the increment is assumed to
loe one. If increment is negative, the final-value of
the control-variable must be less than the initial-
value. The control-variable is decreased each time
through the loop. The loop is executed until the
control-variable is less than the final-value.

The control-variable must be an integer or single
precision numeric variable. If a double precision
numeric variable is used, a Type mismatch error
will result.

The body of the loop is skipped if either the
increment is positive, and the initial-value exceeds
the final-value, or the increment is negative, and
the initial-value is less than the final-value.

If a NEXT statement is encountered before its
corresponding FOR statement, a NEXT without FOR
error message is displayed and execution is
terminated.

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. When using
nested loops, the variables(s) in each NEXT
statement must be specified.

Nested Loops

FOR...NEXT loops may be nested, that is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the outside
loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.
Note that a statement of this form:

100 NEXT VI, V2. V3

performs the same action as the sequence of
statements:

100 NEXT VI
110 NEXT V2
120 NEXT V3

REFERENCE Tins

LOOPING

Examples:

10K=10
20 F0RI = 1 TOKSTEP2
30 PRINT I;
40 K = K+10
50 PRINT K
60 NEXT
RUN
1

3
5

7

9
Ok

20
30
40

50
60

In the above example, the control-variable (I)
advances -I- 2 on each cycle. Each time through the
loop the control-variable value is displayed, the
value of K is calculated and displayed.

10J = 0

20 FOR I = 1 TO J
30 PRINT I

40 NEXT I
RUN
Ok

In the above example, the loop does not execute
because the initial-value of the loop exceeds the
final-value.

101 = 5
20 FOR I = 1 TO I + 5
30 PRINT I;
40 NEXT
RUN

1 23456789 10

In the above example, the loop executes ten times.
The final-value for the loop variable is always set
before the initial-value is set.

5^306" REFERENCE

LOOPING

WHILE...WEND statements

Execute a series of statements in a loop as long as a
given condition remains true.

Syntax:

WHILE condition

[loop statements]

WEND

where

condition is a numeric, relational or logical
expression.

GW-BASIC determines whether the condition is
true or false by testing the result of the expression
for non-zero and zero, respectively. A non-zero
result is true and a zero result is false. Because of
this, you can test whether the value of a variable is
non-zero or zero by merely specifying the name of
the variable as a condition.

If condition is not zero (true), loop statements are
executed until the WEND statement is
encountered. GW-BASIC then returns to the
WHILE statement and checks condition. If it is still
true, the process is repeated. If it is zero (false),
execution resumes with the statement following
the WEND statement.

WHILE...WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a WHILE
without WEND error, and an unmatched WEND
statement causes a WEND without WHILE error.

Do not direct program flow into a WHILE...WEND
loop without entering through the WHILE
statement.

3:3157REFERENCE

LOOPING

Example:

10FORC=1 T09
20 READ CUST${C)
30 NEXTC
40 DATA SHARON,MARILYN,FELIX
50 DATA BARBARA,SHERRY,TOM
60 DATA LORNA,KARL,ELISE
100 rem bubble sort of cust$ array
110 FLIPS = 1 'forces one pass thru loop
120 WHILE FLIPS
130 FLIPS = 0

140 F0RI = 1T0 8
1 SO If cust$(l) > cust$(l + 1) then

swap cust$(l),cust$(l +1):
FLIPS = 1

160 NEXT I
170 WEND
200 rem display sorted cust$ array
210 FOR X = 1 TO 9

220 PRINT CUST$(X)
230 NEXT X
RUN

BARBARA

ELISE
FELIX

KARL

LORNA
MARILYN

SHARON
SHERRY

TOM

Ok

5^308" REFERENCE

19. MISCELLANEOUS
STATEMENTS, COMMANDS

This chapter describes the following

BEEP statement

CLEAR command
DATES function
DATES statement
DEFINT/SGN/DBL/STR statements
ENVIRON statement

ENVIRONS function
PRE function
GWBASIC command
KEY statement
RANDOMIZE statement

REM statement
RND function
SWAP statement
TIMES function
TIMES statement
TIMER function
TIMER and ON TIMER GOSUB statements

REFERENCE 3^

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

BEEP statement

Activates the bell.

Syntax:

BEEP

The BEEP statement sounds the ASCII bell
character. This statement has the same effect as
PRINT CHR$(7).

Example:

10X= 15
20 IPX <20THEN BEEP
RUN

(speaker sounds)
Ok

REFERENCE

MISCELLANEOUS STATEMENTS. COMMANDS AND FUNCTIONS

CLEAR command

Clears all numeric variables to zero, all string
variables to null, and closes all open files. Options
set the highest memory location available for use
by GW-BASIC, and the amount of stack space.

Syntax:

CLEAR [, [memoryU, stack]]

where

memory is an integer expression
representing a memory location which; if
specified, sets the top of memory (i.e., the
maximum extension of the GW-BASIC Data
Segment).

stack is an integer expression whose value
sets aside stack space for GW-BASIC. The
default is 128 bytes or one-eighth of the
available memory, whichever is smaller.

The memory parameter should be specified to
reserve space in storage for assembly language
routines.

The stack parameter to use several nested GOSUBs,
FOR...NEXT loops, or PAINT to paint complex
pictures.

GW-BASIC allocates string space dynamically. An
Out of string space error occurs only if there is no
free memory left for GW-BASIC to use.

If a value of 0 is given for either expression, the
appropriate default is used. The default stack size
is 128 bytes, and the default top of memory is the
current top of memory.

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

The CLEAR command performs the following
actions:

closes all files

clears all COMMON variables

resets the stack and string space

resets all simple numeric variables and
numeric array elements to zero

resets all simple string variables and string
array elements to null

releases all disk buffers

resets all DEF FN, DEFINT/SNG/DBL/STR, DEF
SEG and DEF USR statements

Examples:

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

DATES function and statement

Retrieves the date (as a function), or sets the date
(as a statement).

Syntax 1 (as a function):

stringvar = DATE$

Syntax 2 (as a statement):

DATES = sthngexp

As a function, the current date is fetched and
assigned to the string variable stringvar. The
DATES function may also be used in any string
expression in a LET or PRINT statement.

As a statement, the current date is set. In this
case, DATES is the target of a string assignment.

The date may also have been set by MS-DOS prior
to entering GW-BASIC.

Rules

1. If stringexp is not a valid string, a Type
mismatch error will result. Previous values
are retained.

2. For stringvar = DATES, DATES returns a 10-
character string in the form "mm-dd-yyyy"
where mm is the month (01 to 12), dd is the
day (01 to 31) and yyyy is the year (1980 to
2099).

REPEREMCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

3. For DATES = stringexp, stringexp may be
one of the following forms:

"mm-dd-yy" or "mm/dd/yy"
or

"mm-dd-yyyy" or "mm/dd/yyyy"

If the month or day is specified by the use of only
one digit, GW-BASIC assumes a 0 (zero) in front of
it. If the year is specified by the use of one digit (y),
GW-BASIC assumes the year to be 200y; if two
digits are specified (yy), the year will be 19yy.

If any of the values are out of range or missing, an
Illegal function call error is issued. Any previous
date is retained.

Function examples:

10 PRINT DATES

Ok
PRINT DATES
07-01-1985

Statement examples:

10 DATES = "07-01-1985"

Ok
DATES = "07-01-1985"
Ok

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

DEFINT/SNG/DBL/STR statements

Declare the variable type in accordance with the
letter(s) specified.

Syntax:

DEFtype letter{- letter\[, letter[- letter]]...

where

type is INT, SNG, DBL, or STR. No space
should be entered between DEF and INT,
SNG, DBL, or STR.

letter represents a letter from the alphabet
(A-Z).

Any variable names beginnin|r with the letter(s)
specified in range of letters will be considerd the
type of variable specified by the type portion of the
statement.

A type declaration character (%, 1, #, $) always
takes precedence over a DEFtype statement.

If no type declaration statements are encountered,
GW-BASIC assumes all variables without
declaration characters are single precision
variables.

DEFtype statements must precede the use of the
defined variables.

Examples:

10DEFDBLL-P
(All variables beginning with the letters L, M, N,
0, and P will be double precision variables.)

10DEFSTR A
(All variables beginning with the letter A will be
string variables.)

10 DEFINT I-N, W-Z
(All variables beginning with the letters
1,J,K,L,M,N,W,X,Y,Z will be integer variables.)

REFERENCE Tin

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

ENVIRON statement

Allows modification of parameters in GW-BASIC's
Environment String Table. This is similar to the
MS-DOS SET command.

Syntax:

ENVIRON parm

where

parm is a valid string expression containing
the new Environment String parameter.
The string expression must only include
uppercase letters.

The ENVIRON statement may be used, for example,
to change the "PATH" parameter for a child
process. Parameters may also be passed to a child
process by inventing a new environment
parameter. ^

Rules

1. parm must be of the form parm-id = text
where:

parm-id is the name of the parameter such
as "PATH".

parm-id must be separated from text by an
equal sign (=) or " " (blank), such as
"PATH= ". ENVIRON takes everything to
the left of the first blank or " = " as the parm-
id, and everything to the right as text

text is the new parameter text. If text is a
null string, or consists only of ";" (a single
semicolon, such as "PATH = ;") then the
parameter (including parm-id=) is removed
from the Environment String table and the
table is compressed.

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

2. If parm-id does not exist in the Environment
String Table, then parm-id is added at the
end of the Enviornment String Table.

3. If parm-id does exist, it is deleted, the
Environment String Table is compressed
and the new parm-id is added at the end.

Examples:

The following MS-DOS command will create a
default "PATH" to the root directory on Disk A.

A>PATH

A>

A:

The PATH may be changed while in GW-BASIC to
a new value by:

Ok
ENVIRON "PATH x A:SALES;A:ACCOUNTS"
Ok

A new parameter may be added to the
Environment String Table:

ENVIRON "SESAME x PLAN"

The Environment String Table now contains:

PATH = A:SALES;A:ACCOUNTS
SESAME = PLAN

If you then enter:

ENVIRON "SESAME x

then you would have deleted SESAME, and you
would have a table containing:

PATH = A:SALES;A:ACCOUNTS

Possible Errors

Type mismatch Ifparmisnotastring.

Out of memory If the Environment Table is
full and no more can be
allocated.

REFERENCE "5:3T7

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

ENVIRONS function

Allows you to retrieve the specified Environment
String from GW-BASIC's Environment String
Table.

Syntax:

ENVIRONS {(parm) \ (nth-parm)}

where

parm is a valid string expression containing
the parameter to be retrieved. The string
expression must only include uppercase
letters.

nth-parm is an integer expression returning
a value in the range 1 to 255.

Rules

1. I

2.

3.

4.

f a string argument is used, ENVIRONS
returns a string containing the text
following parm = from the Environment
String Table.

If parm = is not found, or no text follows
parm = then a null string is returned.

If a numeric argument is used, ENVIRONS
returns a string containing the nth-parm
from the Environment String Table
including the parm.

If there is no nth-parm, then a null string is
returned.

See example on next page.

53TF" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Possible Errors

Illegal function call
If nth =parm is out of range.

Type mismatch
If parm is not a string.

String too long
If the string is longer than 255 characters.

Example:

This program will read the Environment String
Table and display the contents on the screen.

S rem read contents into an array
10DIMA$(50)
20X = 0
30X = X+ 1
40A$(X) = ENVIRON$(X)
50IFA$(X) <> "" GOTO30
60 rem display the contents of the array
70X = X-1

80 FOR CNT = 1 TO X
90 PRINT A$(CNT)
100 NEXT CNT
110 END

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

FRE function

Returns the number of bytes in memory not being
usedbyGW-BASIC.

Syntax:

FRE(dummy)

The argument to FRE is a dummy argument. Any
value may be supplied.

FRE("") forces a garbage collection before
returning the number of free bytes.

GW-BASIC will not initiate garbage collection
until all free memory has been used up. Therefore,
using FRE("") periodically will result in shorter
delays for each garbage collection.

Example:

PRINT FRE(O)
14542

Ok

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

GWBASIC command

Initializes GW-BASIC and the operating
environment (GWBASIC is an MS-DOS command,
not a GW-BASIC command).

Syntax;

GWBASIC [filespec] [<stdin][[>] >stdout]
[/F: number-of-files] [/S: Ired] (/C: buffer-
size] [/M: highest-memory]], max-blocksize]]
t/D] I/I]

where

Options beginning with a slash (/) are called
switches. A switch is a means used to specify
parameters.

filespec is a string literal (not included in
quotation marks) that specifies a GW
BASIC program file. If the file is present,
GW-BASIC proceeds as if a RUN "filespec"
command was given after initialization is
complete.

filespec is a file or path name with an
optional drive name. If the drive name is
omitted, the default drive is assumed. If the
path name is omitted, the current "working"
airectory is assumed.

A default extension of .BAS is used if none is
supplied and the file name is less than 9
characters long. The filespec option allows
GW-BASIC programs to be run in batch by
putting this form of the command line in an
AUTOEXEC.BAT file. (5W-BASIC
programs which run this way will need to
exit via the SYSTEM command in order to
allow the next command from the
AUTOEXEC.BAT file to be executed.

■5:371REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

stdin is a literal string (not included in
quotation marks) for the standard input file
specification. GW-BASIC input is
redirected from the file specified by stdin.
When present, this syntax must appear
before any switches. (See ''Redirection of
Standard Input and Output"" section below.)

stdout is a literal string (not included in
quotation marks) for the standard output
file specification. GW-BASIC is redirected
to the file specified by stdout. When
present, this syntax must appear before any
switches. (See "Redirection of Standard
Input and Output" below.)

/F: number-of-files is a switch that sets the
maximum number of files (from 1 to 15) that
may be open simultaneouly during the
execution of a GW-BASIC program. It is
ignored unless the /I switch is specified on
the command line. Refer to the // switch
below.

If this switch and the /I switch are present,
then the maximum number of files is set to
number-of'fUes. Each file requires 62 bytes
for the File Control Block (FCB) plus 128
bytes for the data buffer. The data buffer
size may be altered via the /S: option switch.
If the /F: option is omitted, the number-of-
files is set to 3.

The number of open files that MS-DOS
supports depends upon the value of the
FILES = parameter in the CONFIG.SYS file.
It is recommended that FILES = 10 for GW-
BASIC. Remember that the first 3 are taken
by stdin, stdout, stderr, stdaux, and stdprn.
One additional file handler is needed by
GW-BASIC for LOAD, SAVE, CHAIN, NAME,
and MERGE. This leaves 6 for GW-BASIC
File I/O, thus /F:6 is the maximum
supported by MS-DOS when FILES =10
appears in the CONFIG.SYS file.

Attempting to OPEN a file after all the file
handlers have been exhausted will result in
a Too many files error.

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

/S: I red is a switch that sets the maximum
record length allowed with random files. It
is ignored unless the // switch is specified on
the command line (refer to the // switch
below). If this switch and the // switch are
present, then the maximum record length is
set to I red. The record length option (record-
length) on the OPEN statement cannot
exceed this value. If the /S; option is
omitted, the record length defaults to 128
bytes. The maximum value permitted for
Ired is 32767 bytes.

/C: buffer-size, if present, controls RS232
Communications. If RS232 cards are
present, /CO disables RS232 support. Any
subsequent I/O attempts will result in a
Device Unavailable error. Specifying /C:n
allocates n bytes for the receive buffer for
each RS232 card present. If the /C: option is
omitted, GW-BASIC allocates 256 bytes for
the receive buffer of each card present. 128
bytes are always allocated to the transmit
buffer. GW-BASIC ignores the /C: switch
when RS232 cards are not present. The
maximum value permitted for buffer-size is
32767.

/M: [highest-memory] [,max-blocksize], when
present, highest-memory sets the maximum
number of bytes that will be used as GW-
BASIC workspace. GW-BASIC will attempt
to allocate 64K of memory for the data and
stack segment. If machine language
subroutines are to be used with GW-BASIC
programs, use the /M: switch to set the
highest memory location that GW-BASIC
can use. When omitted or 0, GW-BASIC
attempts to allocate all it can up to a
maximum of 65536 bytes.

In order to load programs above the GW-
BASIC workspace, you must use the
optional parameter max-blocksize to reserve
areas for the workspace and your programs.
This is necessary if you intend to use the
SHELL command. Failure to do so will result
in COMMAND being loaded on top of your
routines when a SHELL command is
executed.

"F523REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

max-blocksize must be in Paragraphs
(multiples of 16 bytes). When omitted,
&H1000 (4096) is assumed. This allocates
65536 bytes (65536 = 4096 x 16) for GW-
BASIC's Data and Stack segment. If you
require 65536 bytes for GW-BASIC and 512
bytes for machine language subroutines,
then use /M:&H1010 (4096 paragraphs for
GW-BASIC + 16 paragraphs for your
routines).

This option can also be used to shrink the
GW-BASIC block in order to free more
memory for SHELLing other programs.
/M:,2048 says: "Allocate and use 32768
bytes maximum for data and stack".
/M 132000,2048 allocates 32768 bytes
maximum but GW-BASIC will only use the
lower 32000. This leaves 768 bytes
available for program space.

/D, if present, causes the Double Precision
Transcendental maths package to remain
resident. The functions that will be
calculated in double precision if this
package is resident are: ATN, COS, EXP,
LOG, SIN, SQR, and TAN. If omitted, this
package is discarded and the space is freed
for program use. The amount of memory
required by this package is approximately
3000 bytes.

/I GW-BASIC is able to dynamically allocate
space required to support file operations.
For this reason, GW-BASIC does not need to
support the /S: and /F: switches. However,
some applications are written in such a
manner that certain BASIC internal data
structures must be static. In order to
provide compatibility with these BASIC
programs, GW-BASIC will statically
allocate space required for file operations
based on the /S: and /F: switches when the /I
switch is specified.

5-324 reperence

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Note

number-of-files, Ired, buffer-size, highest-memory
and max-blocksize are numbers that may be
Decimal, Octal (preceded by &0), or Hexadecimal
(preceded by &H).

Examples:

A>GWBASIC PAYROLL
Uses 64K of memory and 3 files, loads and executes
PAYROLL.BAS

A>GWBASIC l,NVENT/F:6
Uses 64K of memory and 6 files, loads and executes
INVENT.BAS.

A>GWBASIC /C:0/M:32768
Disables RS232 support and uses only the first 32K
of memory.

A>GWBASIC /F:4/S:512/l
Uses 4 files and allows a maximum record length of
512 bytes.

A>GWBASIC TTy/C:512
Uses 64K of memory and 3 files, allocates 512
bytes to RS232 receive buffers, load and execute
TTY.BAS.

Redirection of Standard Input and Output

Under GWBASIC you can redirect your Input and
Output. Generally, standard input is read from the
keyboard, but this can be redirected to any file
specified on the GWBASIC command line. Standard
output, generally written to the screen, can be
redirected to any device or file specified on the
GWBASIC command line.

1. When redirected, all INPUT. LINE INPUT,
INPUTS, and INKEY$ statements will read
from the stdirt specified instead of from the
keyboard.

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

2. All PRINT statements will write to stdout
instead of to the screen. If a pair of greater
than symbols (> >) are entered before the
stdout, data output by PRINT statements
will be "appended" to the specified file.

3. Error messages go to standard output.

4. File input from KYBD: still reads from the
keyboard.

5. File output to SCRN: still outputs to the
screen.

6. GW-BASIC will continue to trap keys from
the keyboard when the ON KEY(n)
statement is used.

7. The printer echo key will not cause LPTl:
echoing if standard output has been
redirected.

8. Typing CTRL BREAK will cause GW-BASIC
to close any open files, issue the message
Break in line nnnnn to standard output, exit
GW-BASIC, and return to MS-DOS.

9. When input is redirected, GW-BASIC will
continue to read from this source until a
CTRL Z is detected. This condition may be
tested with the EOF function. If the me is
not terminated by a CTRL Z or if an attempt
is made to read past end-of-flle by an
INPUT# statement, then any open files are
closed. The message Read past end is then
written to standard output, and GW-BASIC
returns to MS-DOS.

10. Because of the way in which MS-DOS
handles text files, it is not recommended to
execute a program in GW-BASIC with
output rerouted and appended to a file
created previously, either with EDLIN or in
sequential mode in GW-BASIC: commands
such as TYPE will only be able to show you
the original contents.

5^32^ REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Examples:

A>GWBASIC MYPROG > MYOUT.DAT
Data read by INPUT and LINE INPUT will continue
to come from the keyboard. Data output by PRINT
goes into the file MYOUT.DAT.

A>GWBASIC MYPROG < MYIN.DAT
Data read by INPUT and LINE INPUT will come from
MYIN.DAT. Data output by PRINT goes to the
screen.

A>GWBASIC MYPROG <IN.DAT >OUT.OAT
Data read by INPUT and LINE INPUT comes from the
file IN.DAT and data output by PRINT goes into
OUT.DAT.

A>GWBASIC MYPROG <\SALES\ED\TRANS.DAT
>>\SALES\SALES.DAT

Data read by INPUT and LINE INPUT will now come
from the file TRANS.DAT that is in the
\SALES\ED directory. Data output by PRINT will
be appended to the SALES.DAT files in the SALES
directory.

REFERENCE ■3327

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

KEY statement

Sets a function key to automatically type any
sequence of characters. Other options allows you
to enable or disable the function key display from
the 25th line, or to list the function key values.

Syntax:

KEY {OFF I ON | LIST | n ,stringexp}

where

n is the key number. An expression
returning an unassigned integer in the
range 1 to 10.

stringexp is a string expression assigned to
the key. String constants should be enclosed
in quotation marks. The stringexp value
may be up to 15 characters long. Longer
strings are truncated to 15 characters.

Characteristics

The KEY statement enables the designation of a
function key as a softkey. This means that you can
set any function key to generate any sequence of
characters.

KEY OFF erases the softkey display from the bottom
line, making this line available for your GW-
BASIC program. In this case, you can use LOCATE
25,1 followed by PRINT to display data on the
bottom line of the screen. KEY OFF does not disable
the function keys.

5^325" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

KEY ON causes the softkey values to be displayed
on the bottom line of the screen. If the screen
width is 80, all ten softkeys are displayed, but only
five softkeys are displayed if the width is 40. In
either case, only the first 6 characters of each key
value are displayed. If fewer than the total
number of function keys are displayed, you may
scroll the function key display (increasing the
number of the leftmost key displayed by one each
time) by pressing CTRL T. ON is the default state.

KEY LIST displays all softkey values on the screen,
with all 15 characters of each key displayed.

KEY n, stringexp sets function key n equal to
stringexp. Any one or all of the ten function keys
may be assigned up to a 15 byte string by KEY
n,stringexp. When the key is pressed, the
associated string will be input to GW-BASIC.

Initially, the softkeys default to the following
values:

F1 - LIST

F2 - RUN (carriage return)
F3 - LOAD"
F4-SAVE "
F5 - CONT (carriage return)
F6- ,"LPT" (carriage return)
F7 - TRON (carriage return)
F8 - TROFF (carriage return)
F9-KEY space
F10 - SCREEN 0,0,0 (carriage return)

Rules;

1. If the function key number is not in the
range 1 to 10, an Illegal function call error is
returned. The previous key string
expression is retained.

2. The key assignment string may be 1 to 15
characters in length. If the string is longer
than 15, characters, the first 15 characters
are assigned.

3. Assigning a null string (string of length 0) to
a softkey disables the function key as a
softkey.

REFERENCE 3:329

MISCELLANEOUS STATEMENTS. COMMANDS AND FUNCTIONS

4. When a softkey is assigned, the INKEY$
function returns one character of the softkey
string per invocation.

Examples:

40 rem display the softkeys on the bottom line.
50 KEY ON

55 rem erase softkey display.
60 KEY OFF

65 rem assigns the string "MENU" and a carriage
return to softkey 1. Such assignments might be
used for rapid data entry.
70 KEY 1,"MENU" + CHR$(13)

75 rem disables softkey 2 as a softkey.
80 KEY 2,""

The following routine initializes the first five
softkeys:

1 KEY OFF ' turn off key display during init.
10 DATA "EDIT". "LET". "SYSTEM". "PRINT".
"LPRINT"
20 FOR C = 1 TO 5: READ SOFTKEYS$(C)
30 KEY C.SOFTKEYS$(C)
40 NEXTC
50 KEY ON ' now display new softkeys.

5^330" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Defininff Kevs 15-20

Defining keys 15 to 20 allows you to trap any CTRL-
key, SHIFT-itey, or Super-SHIFT (ALT)-key. These
keys are defined by the statement:

KEY n, CHRSishift) + CHR$(scan-cocfe)

where

n is an integer expression in the range 15 to
20.

shift is a numeric value corresponding to the
following hex values:

CAPS LOCK &H40 (CAPS LOCK is active)
NUM LOCK &H20 (NUM LOCK is active)
ALT &H08 (ALT key is pressed)
CTRL &H04 (CTRL key is pressed)
Right SHIFT &H01
Left SHIFT &H02

Both the left and right SHIFT keys can be
used, where values of &H01, &H02, or
&H03 (the sum of hex 01 and hex 02) denote
a SHIFT key.

It is also possible to add multiple shift
states, such as CTRL and ALT keys together,
by adding the associated shift state values.

scan-code is a decimal number in the range
1 to 83. It represents the scan code (in
decimal) of the key to be trapped.

If several function keys are pressed while
temporarily de-activated by an explicit or implicit
KEY(n) STOP statement, the corresponding trap
routines will be called in the order that the keys
are re-activated. In the case of simultaneous re
activated of several trapped keys, they are
processed in the following order:

1. CTRLPRTSC. Note that CTRL PRT SC, even if
defined as a trappable key, will still produce
a printed copy of the screen.

REFERENCE "53n

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

3.

The function keys F1 to F10, and the cursor
direction keys. Defining a function key or
cursor movement key as a user-defined key
trap will have no effect as they are
considered predefined.

Finally, the user-defined keys are examined
(15-20).

Any key that is trapped is not passed to GW-
BASIC, i.e., it does not go into the keyboard buffer.
This applies to any key, including CTRL BREAK or
CTRL ALT DEL. This makes it possible to prevent
GW-BASIC users from accidentally interrupting a
program or rebooting the system.

5^337" REFeftENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

ON TIMER(n) GOSUB and TIMER statements

Causes an event trap every n seconds.

Syntax:

ON TIMER(n) GOSUB linenum

TIMER ON

TIMER OFF

TIMER STOP

where

n is an integer expression in the range 1
through 86400 (1 second through 24 hours).
Values outside this range will result in an
Illegal function call error.

linenum is the entry point line number of
the TIMER event trap subroutine.

The TIMER ON statement enables real time event
trapping by an ON TIMER(n) GOSUB statement.
While trapping is enabled, GW-BASIC checks
between every statement to see if the time has
reached the specified level. If it has, the ON
TIMER(n) GOSUB statement is executed.

TIMER OFF disables the event trap. If an event
takes place, it is not remembered if a subsequent
TIMER ON is used.

TIMER STOP disables the event trap, but if an event
occurs, it is remembered and an ON TIMER(n)
GOSUB statement will be executed as soon as
trapping is enabled.

REFERENCE "5:133

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

The ON TIMER(n) GOSUB statement will only be
executed if a TIMER ON statement has been
executed to enable event trapping. If event
trapping is enabled, and if the linenum in the ON
TIMER(n) GOSUB statement is not zero, GW-BASIC
checks between statements to see if the timer has
been reached. If it has, a GOSUB will be performed
to the specified line.

If a TIMER OFF statement has been executed, the
GOSUB is not performed and is not remembered.

If a TIMER STOP statement has been executed, the
GOSUB is not performed, but will be performed as
soon as a TIMER ON statement is executed.

If an ON TIMER(n) GOSUB is performed, an
automatic TIMER STOP is executed so that
recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a TIMER ON statement unless an explicit
TIMER OFF was performed inside the subroutine.

If an error trap occurs, all trapping will be disabled
including ERROR trapping.

The RETURN linenum form of the RETURN
statement may be used to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any
other GOSUBs, WHILEs, or FORs that were active at
the time of the trap will remain active, and errors
such as FOR without NEXT may result.

Example:

10 TIMER ON
20 ON TIMER(I) GOSUB 100
30 FORX = 1 TO 10000: NEXT
40 CLS
SO END
100 CLS
110 LOCATE 12,30
120 PRINT TIMES
130 RETURN

When this program is executed, every second the
screen is cleared and the time is displayed in the
middle of the screen until the FOR...NEXT loop is
exhausted.

5:333" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

RANDOMIZE statement

Reseeds the random number generator.

Syntax:

RANDOMIZE [numexp]

where

numexp is any numeric expression. The
value of the expression will be used to seed
the random numbers.

If numexp is omitted, GW-BASIC suspends
program execution and asks for a value by
displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

To get a new random seed without prompting the
user, use the numeric TIMER function. For
example:

RANDOMIZE TIMER

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN.
To change the sequence of random numbers every
time the program is RUN, place RANDOMIZE
statement at the beginning of the program and
change the argument with each RUN.

See example on next page.

REFERENCE ■5:315

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Examples:

10 RANDOMIZE
20 FOR I = 1 TO 3
30 PRINT RND,
40 NEXT I

RUN
Random Number Seed (-32768 to 32767)?
.2226007 .594141419 .2414202

Ok
RUN
Random Number Seed (-32768 to 32767)7
.628988 .765605 .5551561
Ok
RUN
Random Number Seed (-32768 to 32767)?
.2226007 .594141419 .2414202
Ok

Note that the numbers your program produces may
not be the same as the ones shown here.

5^335" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

REM statement

Allows explanatory remarks to be inserted in a
program.

Syntax;

REM remark

where

remark represents a sequence of characters.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into from a
GOTO or GOSUB statement. Execution will
continue with the first executable statement after
the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation mark
(') instead of REM. The single quotation mark may
also be entered just after the line number, like
REM.

Do not use remarks in a DATA statement, because
it would be considered legal data.

Examples:

110 rem calculate average velocity
120 F0RI = 1 TO 20
130 SUM = SUM + V(I)
140 NEXT I

or

120 FORI = 1 TO 20
130 SUM = SUM + \/(l) 'calculate average velocity
140 NEXT I

or

110 'calculate average velocity
120 F0R1= 1 TO 20
130 SUM = SUM + V(I)
140 NEXT I

REFERENCE T137

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

RND function

Returns a random number between 0 and 1.

Syntax:

RND- [(numexp)]

where numexp is a numeric expression which
modifies the returned value.

RND returns a untformly distributed random
number in the open interval between zero and 1.
Unless you write a RANDOMIZE statement before
the RND function the same sequence of random
numbers is generated on every run.

RND acts differently depending upon whether the
numexp evaulates to a positive number, negative
number, or zero:

RND(positive number) returns the next number in
the current sequence. ' ̂

RNDfnegative number) reseeds the random
number generator and returns the first random
number in the new sequence.

RND(O) returns the last random number generated,
without affecting the current sequence.

The numexp is optional. If you do not give one,
RND acts as if you had given a positive expression
as an argument.

To return integer random numbers in the range 0
to N, use:

INT(RND * (N + D)

Example:

10 FOR I = 1 T0 5
20 PRINT INT{RND*100);
30 NEXT
RUN
12 65 86 72 79

5:335" REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

SWAP statement

Exchanges the values of two variables.

Syntax:

SWAP vahablel, variable2

where vahablel and variable2 are two variables of
the same type (integer, single precision double
precision, or string).

The two variables to be exchanged must be of the
same tjrpe or a Type mismatch error occurs.

If the second variable is not already defined when
SWAP is executed, an Illegal function call error will
result.

B$ = " ALL " : C$ = "FOR"

Example:

Ok
10A$ = " ONE " :
20 PRINTACB$
30 SWAP A$, B$
40 PRINT ACB$
RUN
ONE FOR ALL
ALL FOR ONE

Ok

After line 30 is executed, A$ has the value'
and B$ has the value " ONE ".

ALL

"5^339REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

TIME$ statement and function

The TIMES statement sets the current time.

The TIMES function retrieves the current time.

Syntax 1: (as a statement)

TIMES = stringexp

Syntax 2: (as a function)

stringvar = TIMES

where

stringexp is a string expression indicating
the time to be set.

stringvar is a string variable in which the
current time (8 character string) is returned.

As a statement (to set the time):

stringexp is a string expression indicating
the time in the form:

hh (sets the hour; minutes and seconds
default to 00), or

hh:mm (sets the hour and minutes; seconds
default to 00), or

hh:mm:ss (sets the hour, minutes and
seconds)

A 24 hour clock is used; therefore 8:00 p.m. would
be entered as 20:00:00.

You may omit a leading zero to specify the values
of hours, minutes and seconds, but you must enter
at least one digit (see the examples below).

REFEftEMCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Note that the time may also have been set by MS-
DOS prior to entering GW-B ASIC.

As a function (to retrieve the time);

The TIMES function returns an eight-character
string in the form hh:mm;ss, where hh is the hour
(00 through 23), mm is minutes (00 through 59),
and ss is seconds (00 through 59). A 24 hour clock
is again used.

Example:

8:0"
Ok
TIMES =
Ok
PRINT TIMES
08:00:04
Ok

REFERENCE

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

TIMER function

Returns a single precision number indicating the
seconds that have elapsed since midnight or
system reset.

Syntax:

TIMER

TIMER is a numeric function. It calculates
fractional seconds to the nearest degree possible. It
may not be used as a user variable.

Example:

10 FORK = 1TO10

20 PRINT "TIMER = ";TIMER
30 NEXT

5-342 REFERENCE

MISCELLANEOUS STATEMENTS. COMMANDS AND FUNCTIONS

VARPTR$ function

Returns a character form of the memory address of
the variable.

Syntax:

VARPTR$(var/ab/e)

VARPTRS is primarily used to execute substrings
with the DRAW and PLAY statements in programs
that will later be compiled. With programs that
will not be later compiled, the standard system of
the DRAW and PLAY statements will be sufficient
to produce the desired ecffects.

For example:

PLAY "XA$;"

and

PLAY "X" + VARPTR$(A$)

produce the same effect.

The variable must have been defined prior to the
execution of the VARPTRS function; otherwise, an
Illegal function call error results. Variables are
defined by executing any reference to the variable.
Both numeric and string variables may be used.

VARPTR$ returns a three-byte string in the form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

REFERENCE ■5:353

MISCELLANEOUS STATEMENTS, COMMANDS AND FUNCTIONS

Note that type specifies the type of the variable, as
follows:

2 integer
3 string
4 single precision
8 double precision

Because array addresses, string addresses and file
data blocks change whenever a new variable is
assigned, it is unsafe to save the result of a
VARPTRS function in a variable. It is
recommended that VARPTR$ is executed before
each use of the result.

ftEFEREMCE

20. MULTIPLE DIRECTORIES

This chapter describes the following:

Directory paths

Current "working" directory

Make a directory

Change current "working" directory

Remove a directory

REFEmitr ■3:355

MULTIPLE DIRECTORIES

Directory paths

With GW-BASIC you can organize a disk in such a
manner that files that are not part of your current
task do not interfere with that task.

Previously, only a single directory was supported
that contained all files on a disk. MS-DOS extends
this concept to allow a directory to contain both
files and directories and to introduce the notion of
the current "working" directory.

To specify a file, you could use one of two methods,
either specify a path from the root directory to the
file, or specify a path from the current "working"
directory to the file. A path name is a series of
directory names separated by "\" and ending with a
file name. A path name that starts at the root
begins with the "\".

There are two special directory entries in each
directory, denoted by "." and They specify the
directory itself (".") or the parent of the directory

The root directory's parent is itself.

Let us take a hypothetical example.

In a particular business, both sales and accounting
share a computer with a hard disk and the
individual employees use it for preparation of
reports and maintaining accounting information.
One would naturally view the organization of files
on the disk in this fashion:

5-346 REFERENCE

MULTIPLE DIRECTORIES

STEVE

dir

REPORT

file
REPORT

file

ACCOUNTS

dir

REPORT

file

MARY

dir

SUE

dir

disk
(ROOT dir)

REPORT

file

JOHN

dir

SALES
dir

Using a directory structure like the hierarchy
above, and assuming that the current "working"
directory is at point [**] (directory JOHN), to
reference the REPORT under JOHN, the following
are equivalent:

REPORT

\SALES\JOHN\REPORT

To refer to the REPORT under MARY, supposing
that JOHN is still the current "working" directory,
the following are equivalent:

..\MARY\REPORT

\SALES\MARY\REPORT

To refer to the REPORT under SUE, supposing that
JOHN is still the current "working" directory, the
following are equivalent:

..\..\ACCOU NTS\SU E\REPORT

\ACCOUNTS\SUE\REPORT

REFERENCE

MULTIPLE DIRECTORIES

There is no restriction on the number of directories
except in the number of allocation units available.

The root directory will have a fixed maximum
number of entries for a diskette. There is no limit
to the number of files and/or subdirectories in the
root directory on a hard disk, other than the size of
the MS-DOS partition.

Other "subdirectories" can also be accessed via the
root directory, and these in turn can branch off to
further files and subdirectories. The only limit
being the space available on the disk.

Each directory can also contain the file and
directory names that also appear in other
directories.

Path names can be used with the following
commands:

BLOAD
BSAVE
CHAIN

CHDIR

FILES

GWBASIC(*)
KILL
LOAD

MERGE
MKDIR

NAME
OPEN
RMDIR

RUN
SAVE

(*) Used to initialize GW-BASIC. This is an MS-
DOS command (not a GW-BASIC command).

A path name may be considered as an extension of
filespec and a string expression of the form:

[device:][\][directory][\directory]... [\1 filename

or

[device:KS\[directory]\Sdirectory].. .[directory][\]

All characters that are valid for a file name are
also valid for a directory name.

A path name may not contain more than 63
characters. Path names longer than 63 characters
will give a Bad filename error.

5:3^ REFERENCE

MULTIPLE DIRECTORIES

Current "working" directory

If you enter a filename, in a GW-BASIC statement
or command, without specifying pathname, the
current "working" directory is searched. A single
directory is created on a disk when it is formatted.
That directory is called the "root" directory, and it
is the current "working" directory, initially. You
can create other directories by entering the MKDIR
command, or remove directories by entering the
RMDIR command. The CHDIR command allows you
to change the current "working" directory. (See
this chapter for details on these commands.)

If a pathname begins with a backslash (\), GW-
BASIC starts its search from the "root"; otherwise,
it starts its search from the current directory. The
pathname you specify can be either a sequence of
directory names starting with the "root", or with
the current "working" directory. If the file belongs
to the current "working" directory you only need to
specify the file.

REFERENCE

MULTIPLE DIRECTORIES

Make a directory

The MKDIR command permits the creation of a new
directory on a speciHed disk.

Syntax:

MKDIR pathname

where

pathname is a string expression specifying
the name of the directory to be created.

Examples:

Assume your directory structure is like to this:

ROOT
dir

PERSONEL
dir

AMOS ANDY
dir dir

To create a subdirectory MARKETNG from the
root on the current drive, enter:

MKDIR "MARKETNG"

To create a subdirectory called FRED under the
directory MARKETNG, enter:

MKDIR "MARKETNGXFRED"

5^350" REFERENCE

MULTIPLE DIRECTORIES

To create a subdirectory called WILMA under the
directory FRED, enter;

MKDIR "MARKETNG\FRED\WILMA"

The directory structure will now look like this;

AMOS

dir

ANDY

dir

WILMA

dir

FRED

dir

ROOT
dir

PERSONELMARKETNG
dir

Possible Errors

Bad file name

Path/File Access error

REFERENCE

MULTIPLE DIRECTORIES

Change current "working" directory

The CHOIR command changes the current / ^
"working" directory.

Syntax:

CHOIR pathname

where

pathname is a string expression identifying
the new directory which is to be the current
"working" directory.

Examples:

Assume your directory structure is like to this:

ROOT

MARKETNG
dir

PERSONEL

dir

WILMA

dir

FREO AMOS ANOY
dir dir dir

5:35r REFERENCE

MULTIPLE DIRECTORIES

To change the current "working" directory from
ROOT to PERSONEL, enter:

CHOIR "PERSONEL"

PERSONEL is now the current "working"
directory.

To change the current "working" directory from
PERSONEL to ANDY use:

CHOIR "ANDY"

Avoid nesting directories too deeply, as result, of
using MKOIR and CHOIR repeatedly.

Possible Errors

Bad file name

Path not found

Path/File Access error

REFERENCE "5:353

MULTIPLE DIRECTORIES

Remove a directory

The RMDIR command removes an existing
directory.

Syntax:

RMDIR pathname

where

pathname is a string expression identifying
the directory which is to be deleted.

RMDIR works exactly like the MS-DOS command
RMDIR. The directory to be deleted must be empty
of all files and subdirectories except the working
directory (".") and the parent directory (".. j
entries, or a Path not found error is given.

See example on next page.

5:353- REFERENCE

MULTIPLE DIRECTORIES

Examples:

Assume your directory structure is like to this:

ROOT

PERSONEL

dir
MARKETNG

dir

FRED AMOS ANDY

dir dir dir

WILMA

dir

You decide that you no longer want the
subdirectory ANDY. Assume that the current
"working" directory is ROOT. Then:

RMDIR "PERSONEL\ANDY"

deletes the directory ANDY.

On the other hand, if you want to make
PERSONEL the current "working" directory and
remove the directory called AMOS then:

CHOIR "PERSONEL"
RMDIR "AMOS"

Possible Errors

Bad file name

Path/File Access error usually indicating that the
directory is not empty.

■5:355REFERENCE

MULTIPLE DIRECTORIES

Notes:

5^355 REFERENCE

21. MUSIC

This chapter describes the following;

ON PLAY(n) GOSUB and PLAY {ON | OFF|
STOP} statements

PLAY statement

PLAY(n) function

SOUND statement

T357REFERENCE

MUSIC

ON PLAY(n) GOSUB and PLAY {ON|OFF|STOP}
statpmftnts

Specifies the first line number of a subroutine to be
executed when the music buffer contains fewer
than n notes. This permits continuous background
music during program execution.

Syntax:

ON PLAY(n) GOSUB linenum

PLAY ON

PLAY OFF
PLAY STOP

where

n is an integer expression in the range of 1 to
32. Values outside this range result in an
Illegal function call error.

linenum is the first line number of the
associated trap routine. A linenum of 0
disables play trapping.

If a PLAY ON statement is executed, PLAY(n)
trapping will be enabled.

If a PLAY OFF statement is executed, the PLAY(n)
trapping will be disabled.

If a PLAY STOP statement is executed, PLAY(n)
trapping will be suspended, i.e., the GOSUB is not
performed, but it will be performed as soon as a
PLAY ON is executed.

5-358 REFERENCE

MUSIC

If PLAY(n) trapping is enabled, and the background
music buffer has gone from n to n-1 notes, ON
PLAY(n) GOSUB linenum will be executed, and the
corresponding routine activated. To avoid recur
sive traps, a PLAY STOP is automatically executed
when the trap occurs. A RETURN from the trapping
subroutine will automatically perform a PLAY(n)
ON unless an explicit PLAY(n) OFF was performed
within the trap routine. The RETURN linenum
form may also be used. Use this form with care,
because any other active GOSUBs, WHILES, or FORs
will remain active and errors such as FOR without
NEXT may result.

If the program is running, PLAY(n) trapping is
enabled, and the background music buffer is
empty, no PLAY(n) trapping routine will be
executed.

A PLAY event trap is only effective when playing
Background Music (PLAY "MB..."). PLAY event
traps have no effect when running in Music
Foreground (PLAY "MF...").

A PLAY event trap is ineffective if the Music
Background buffer is already empty when a PLAY
ON is executed.

Care should be taken in selecting values for n. If n
is a large number, event traps will occur frequently
enough to reduce program execution speed.

Example:

10 PLAY ON
20 ON PLAY(8) GOSUB 1000

1000 REM SUB PLAY(8) TRAP

1050 RETURN

REFERENCE "5:359

MUSIC

PLAY statement

Plays music in accordance with a string which
specifies the notes to be played, and the way in
which the notes are to be played.

Syntax:

PLAY stringexp

where

stringexp is a string expression containing a
series of single-character commands.

PLAY uses a concept similar to that in DRAW (see
the "DRAW statement" in Chapter 15) by
embedding a Music Macro Language into one
statement. A set of subcommands, used as part of
the PLAY statement, specifies the particular action
to be taken.

The subcommands used for stringexp are:

COMMAND ACTION

A-G[#| + |-] Plays a note in the range A-G.
The suffixes (#) or (-H) after the
note specifies sharp; suffix (-)
specifies flat.

On Sets the current octave. There
are seven octaves, numbered 0
through 6.

>n Increments the octave and plays
note n. The octave is
progressively incremented, each
time note n is played, until
octave 6 is reached. Note n is
subsequently played at octave 6.

REFERENCE

MUSIC

COMMAND ACTION

< n Decrements the octave and plays
note n. The octave is
progressively decremented, each
time note n is played, until
octave 0 is reached. Note n is
subsequently played at octave 0.

Nn Plays one of 84 notes within the
7 possible octaves. The n
parameter ranges from 0 to 84. 0
indicates a rest. This command
is an alternative to specifying
notes using the note name (A-G)
and octave number commands.

Pn Specifies a pause. The n
parameter ranges from 1 to 64
and corresponds to the length of
each note, set by In.

Ln Sets the length of each note. The
n parameter ranges from 1 to 64,
where n = 1 is equivalent to a
whole note; n = 4 is equivalent to
a quarter note, etc.

The length may also follow the
note when a change of length
only is required for a particular
note. In this case, A16 is
equivalent to LI 6A.

. (period) A period after a note causes the
note to be played 3/2 times the
length determined by L multi
plied by T (tempo). Multiple
periods may appear after a note.
The period is scaled accordingly;
e.g., A. is 3/2, A., is 9/4, A... is
27/8, etc. Periods may appear
after a pause (P). In this case,
the pause length may be scaled
in the same way notes are
scaled.

REFERENCE ■5:351

MUSIC

COMMAND

Tn

MF

MB

MN

ML

MS

Xstring

ACTION

Sets the tempo, or number of
quarter notes in one minute.
The n parameter ranges from 32
to 255, with a default value of
120.

Sets Music Foreground. Music
(PLAY statement) and SOUND
are to run in Foreground. Each
successive note or sound will not
start until the preceding note or
sound has finished. This is the
default setting.

Sets Music Background. Music
(PLAY statement) and SOUND
are to run in Background. That
is, each note or sound is placed in
a buffer allowing the GW-BASIC
program to continue executing
while the note or sound plays in
the "background". Up to 32
notes can be played in the
background at a time.

Sets "music normal", so that
each note will play 7/8 of the
time determined by length (L).

Sets "music legato", so that each
note will play the full period set
by length (L).

Sets "music staccato", so that
each note will play 3/4 of the
time set by length (L).

Executes the specified string.

REFERENCE

MUSIC

The n parameter may be constant or variable,
where a variable is written as = variable;. The
semicolon is necessary when a variable is used in
this way, or when the X command is used, but it is
not allowed after MF, MB, MN, ML or MS. In all
other cases, a semicolon is optional between
commands.

Examples:

100 PLAY "<<" 'decrement by two octaves

200 PLAY ">" 'increment by an octave

300 PLAY "A> " 'increment by an octave and play
an A note -

400 PLAY "XSONGS"

This example will play the beginning of the first
movement of Beethoven's Fifth Symphony.

10 LISTENS = "T180 02 P2 P8 L8 GGG L2 E-"
20 FATES = "P24 P8 L8 FFF L2 D"
30 PLAY LISTENS + FATES

REFERENCE

MUSIC

PLAY(n) function

Returns the number of notes remaining in the
music background buffer.

Syntax:

PLAY(dummy)

where

dummy is a dummy argument. Any value
may be supplied.

If the program is running Music Foreground mode,
PLAY(n) returns 0.

If the program is running in Music Background
mode, PLAY(n) returns the number of notes
currently in the Music Background buffer. The
maximum value that PLAY(n) may return is 32.

Example:

210 IF PLAY (0) = 6 GOTO 500

5:353" REFERENCE

MUSIC

SOUND statement

Produces sound via a speaker.

Syntax:

SOUND frequency, duration

where

frequency is a numeric expression from 37
to 32767. It represents the frequency in
Hertz.

duration is the duration in clock ticks.
Clock ticks occur 18.2 times per second.
duration is an integer expression from 0 to
65535.

If the duration is zero, any SOUND statement that
is running will be turned off. If no SOUND
statement is currently running, a SOUND
statement with a duration of zero will have no
effect.

See ''Notes and Frequencies" on the next page.

Example:

This statement creates random sounds.

100SOUNDRND* 1000 + 37,2

REFERENCE

MUSIC

Notes and Frequencies

This table displays the frequencies of musical notes
(two octaves below and two octaves above middle
C).

1975.5 1760.0 1568.0 1396.9 1318.5 1174.7 1046.5
B A G F E D C

987.77 880.00 783.99 698.46 659.26 587.33 523.25
B A G F E D C

493.88 440.00 392.00 349.23 329.63 293.66 261.63
B A G F E D C

246.94 220.00 196.00 174.61 164.81 146.83 130.81
B A G F E D C

Tempos and Beats/Minute

Tempos

Larghissimo
Largo
Larghetto
Grave
Lento
Adagio

Adagietto
Andante

Andantino
Moderate

Allegretto
Allegro
Vivace
Veloce
Presto

Prestissimo

Beats/Minute

40-60
60-66

66-76

76-108

108-120

120-168

168-208

greater than 208

Ticks/Beat

28.13-18.75
18.75-17.05

17.05-14.8

14.8-10.42

10.42-9.38

9.38-6.7

6.7-5.41

less than 5.41

5155" REFERENCE

22. NUMERIC FUNCTIONS

This following functions are described in this
chapter:

ABS

ATN

COS
EXP

FIX

INT

LOG
SGN

SIN
SQR
TAN

REFERENCE TIE?

NUMERIC FUNCTIONS

ABS function

Returns the absolute value of a numeric
expression.

Syntax:

ABS(numexp)

The returned value will always be positive or zero.

Examples:

Ok
PRINT ABS(8*(-6))
48

Ok

110 DISTANCE = ABS(START-FINISH)

320IFABS(DELTA) < = LIMIT THEN STOP

5^353" REFERENCE

NUMERIC FUNCTIONS

ATN function

Returns the arctangent of the argument.

Syntax:

ATN(numexp)

The evaluation of ATN is performed in single
precision, unless /D is supplied in the GWBASIC
command line (see "GWBASIC command" in
Chapter 19).

The result is expressed in radians and falls in the
range -PI/2 to PI/2 (where PI = 3.141593)

Examples:

10 INPUT X
20 PRINT ATN(X)
RUN

? 3
1.249046
Ok

100 IF ATN(N)
DEGREES"

< PI/2.0 THEN PRINT "ANGLE 90

"5:359REFERENCE

NUMERIC FUNCTIONS

COS function

Returns the cosine of the argument.

Syntax;

COS(numexp)

The argument numexp represents the angle in
radians.

The calculation of the COS function is performed in
single precision, unless /D is supplied in the
GWBASIC command line {see "GWBASIC command"
in Chapter 19).

Example:

10X = i^COSU)
20 PRINT X
RUN

1.842122

Ok

5:370" REFItRENCE

NUMERIC FUNCTIONS

EXP function

Returns e (base of natural logarithms) to the power
of the argument.

Syntax;

EXP(nomexp)

numexp must be < = 87.3365. If EXP overflows,
the Overflow error message is displayed, machine
infinity with the appropriate sign is supplied as the
result, and execution continues.

EXP is calculated in single precision unless /D is
supplied in the GWBASIC command line (see
"GWBASIC command" in Chapter 19).

Example:

10X = 5

20 PRINT EXP(X-I)
RUN
54.59815
Ok

■3:371REFERENCE

NUMERIC FUNCTIONS

FIX function

Returns the truncated integer part of
argument.

Syntax:

F\X(numexp)

FlX(nomexp) is equivalent to SGH(numexp) *
INT(ABS{nun7exp)). The major difference between
FIX and INT is that FIX does not return the next
lower number for a negative argument.

Examples:

PRINT FIX(58.75)
58

Ok

PRINT F0X(-58.75)
-58
Ok

REFERENCE

NUMERIC FUNCTIONS

INT function

Returns the largest integer that is equal to, or less
than the argument.

Syntax:

INT(numexp)

Refer to the "FIX function" in this chapter and the
"CINT function" in Chapter 7, which also return
integer values.

Examples:

PRINTINT(99.89)
99
Ok

PRINT INT{-12.11)
-13
Ok

"5:373REFERENCE

NUMERIC FUNCTIONS

LOG function

Returns the natural logarithm of a positive
argument.

Syntax:

LOG(numexp)

LOG is calculated in single precision unless /D
option is supplied in the GWBASIC command line
(see "GWBASICcommand" in Chapter 19).

Examples:

PRINTINT(99.89)
99
Ok

PRINTINT(-12.11)
-13
Ok

REFERENCE

NUMERIC FUNCTIONS

SGN function

Returns 1 if the argument is positive, 0 if the
argument is zero, and -1 is the argument is
negative.

Syntax;

SGN(nofT)exp)

If numexp > 0, SGN(numexp) returns 1.

If numexp = 0, SG N(numexp) returns 0.

If numexp < 0, SGN(nu/nexp) returns -1.

Example:

Ok
10 READ X
20 PRINT "X = ".X, "SGN(X) = SGN(X)
30 GOTO 10
40 DATA 10,-5,0
RUN
X = 10 SGN(X) = 1
X = -5 SGN(X) = -1
X = 0 SGN(X) = 0
Out of DATA in 10
Ok

T375REFERENCE

NUMERIC FUNCTIONS

SIN function

Calculates the sine of the argument.

Syntax:

SIN(numexp)

The SIN function is calculated in single precision,
unless /D is supplied in the GWBASIC command
line (see '^GWBASICcommand" in Chapter 19).

Example:

PRINTSIN(1.5)
.9974951

Ok

See also the COS function in this chapter.

REFERENCE

NUMERIC FUNCTIONS

SQR function

Returns the square root of a positive numeric
expression.

Syntax:

SQR{numexp)

The SQR function is calculated in single precision,
unless /D is supplied in the GWBASIC command
line (see "GWBASICcommand" in Chapter 19).

An Illegal function call error results if the
argument is negative.

Example:

Ok
10 FORX = 10TO25STEP5
20 PRINT X,SQR(X)
30 NEXT
RUN

10 3.162278
15 3.872984
20 4.472136
25 5
Ok

REFERENCE 3:377

NUMERIC FUNCTIONS

TAN function

Returns the tangent of the argument.

Syntax:

TAN(numexp)

numexp is a numeric expression representing the
angle in radians.

The TAN function is calculated in single precision,
unless /D is supplied in the GWBASIC command
line (see ""GWBASIC command'' in Chapter 19).

If TAN overflows, the Overflow error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

Example:

PRINTTAN(3.14/4)
.999204
Ok

5:375" REFERENCE

23. OUTPUT TO SCREEN
OR PRINTER

The following are described in this chapter:

CLS statement

COLOR (Text Mode) statement
CRSLIN function
LCOPY command
LOCATE (Text Mode) statement
LPOS function
LSET and RSET statements
POS function
PRINT and LPRINT statements
PRINT USING and LPRINT USING statements
SCREEN function
SCREEN statement
SPC function
TAB function
VIEW PRINT statement
WIDTH statement
WRITE statement

REFERENCE 3:379

OUTPUT TO SCREEN OR PRINTER

CLS statement

Erases all or part of the screen.

Syntax:

CLS [n]

where

n is an integer expression in the range 0 to 2.

CLS without a parameter clears the entire screen to
the current text background color, unless a
graphics viewport has been defined, and resets the
function key line (if the function key display is
enabled).

If a viewport has been defined, the current
viewport only will be cleared to the graphics
background color. Outputting a formfeed
character (typing CTRL L or issuing the command
PRINT CHR$(12) will have the save effect).

If there is a text window, and no graphics viewport
(no VIEW statement in effect), then CLS will clear
only the text window.

CLS 0 clears the entire screen, resetting the
function key display.

CLS 1 clears the graphics viewport to the graphics
back^ound color (in one of the graphics modes). If
no viewport has been defined, this will have no
effect.

CLS 2 clears the text window to the text
background color, without resetting the function
key display.

5:350" REFERENCE

OUTPUT TO SCREEN OR PRINTER

CLS not only erases all or part of the screen, but
also returns the cursor to the upper left-hand
corner of the screen in Text Mode.

If you are in Graphics Mode, CLS makes the "last
referenced point" the center of the screen.

The screen can also be cleared by pressing CTRL
HOME, or by modifying the screen mode using the
SCREEN statement, or the width using the WIDTH
statement.

Examples:

10 CLS 'clears the screen (or the current viewport
or the text window)

60 CLS 0 'clears whole screen

90 CLS 1 ' clears the graphics viewport to graphics
background color

110 CLS 2 'clears the text window to text
background color.

3351REFERENCE

OUTPUT TO SCREEN OR PRINTER

COLOR (Text Mode) statement

Sets the text foreground and background colors in
Text Mode.

Syntax:

COLOR lforegrnd\[, [backgrndll dummy]]

where

foregrnd is a numeric expression rounded to
the nearest integer. It must be in the range
0 to 31. It selects the character foreground
color.

backgrnd is a numeric expression rounded
to the nearest integer. It must be in the
range 0 to 15, but it is interpreted modulo 8,
thus only values from 0 to 7 are taken into
consideration.

dummy allows for compatibility with other
BASICs. It will have no effect. It may
specify border color on other systems.

Characteristics (Color Text Mode)

If you enable color (see the SCREEN statement in this
chapter) or the color hardware is installed
(standard monitor), the following colors are
allowed for foregrnd:

0 Black 8
1 Blue 9
2 Green 10
3 Cyan 11

4 Red 12

5 Magenta 13
6 Brown 14

7 White 15

Gray
Light Blue

REFERENCE

OUTPUT TO SCREEN OR PRINTER

To make characters blink for a specific color, you
should set foregrnd equal to 16 plus the color
number.

Only colors 0 through 7 are allowed for backgrnd.

Characteristics (B/W Text Mode)

In a monochrome system, the following values can
be used for foregrnd:

0 Black
1 Underline character with white foreground
2-6 Shades of gray
7 White

Adding 8 to the number of the selected color, you
will get the color in high-intensity. For example,
15 will be high-intensity white. It is not possible to
get high-intensity black.

To make characters blink, add 16 to the number of
the desired color.

The following values are allowed for backgrnd:

0-1 Black
2-6 Shades of gray
7 White

Remarks

Foreground color may be the same as the back
ground color. In this case, any character displayed
is invisible.

Any parameter can be omitted. If a parameter is
omitted, the previous value is retained.

Upon initialization, the default values are:

foregrnd = 7 (white)

backgrnd = 0 (black)

That is, if no COLOR statement exists in your
program, the system assumes: COLOR 7,0.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

Examples:

This sets a black foreground on a green back
ground in color mode and a black foreground on a
black background, i.e., invisible characters, in BAV
mode.

100 COLOR 0,2

This sets a high-intensity white on a blue
background in color mode, and a high-intensity
white on a black background in BAV mode.

150 COLOR 15,1

Possible Errors

If you enter a comma (,) at the end of a COLOR
statement, a Missing operand error is returned.
For example:

COLOR 2,

is invalid.

Any parameters outside the specified ranges will
result in an Illegal function call error. In this case,
previous values are retained.

5:353- REFERENCE

OUTPUT TO SCREEN OR PRINTER

CSRLIN function

Returns the current line (row) position of the
cursor.

Syntax;

CSRLIN

CSRLIN returns a value in the range 1 to 25. To
return the current column position use the POS
function. (See the POS function in this chapter.)

Example:

Ok
5 CLS 'clears screen
10 Y = CSRLIN 'record current line
20 X = POS(O)'record current column
30 LOCATE 12,38 'move cursor
40 PRINT "HELLO"
SO LOCATE X,Y 'restore cursor position to old line
and column
RUN
(The screen is cleared, HELLO is displayed in the
middle of the screen, and Ok displays at the top of
the screen with the cursor on the next line. Use
the CLS command to clear this screen.)
Ok

"5:3H5REFERENCE

OUTPUT TO SCREEN OR PRINTER

LCOPY command

Dumps the screen (text and graphics) to the line
printer. The MS-DOS GRAPHICS command must
be executed before entering GW-BASIC to allow
you to dump graphics.

Syntax:

LCOPY [n]

where

n is a dummy argument. Any value may be
supplied. This parameter is allowed only for
compatibility with other BASICs, where it
may specify to copy either text or graphics.

5:355" REFERENCE

OUTPUT TO SCREEN OR PRINTER

LOCATE (Text Mode) statement

Moves the cursor to the specified position on the
active page. LOCATE may also turn the cursor on
and off and define the size of either the user cursor,
or both the user and overwrite cursors.

Syntax:

LOCATE [row]i [column]^ [cursor][, [startyi.
stop]]]]

where

row is the screen line number. A numeric
expression returning an unsigned integer in
the range 1 to 25.

column is the screen column number. A
numeric expression returning an unsigned
integer in the range 1 to 40 or 1 to 80,
depending upon screen width.

cursor is a boolean value indicating whether
the user cursor is visible or not. A 0 (zero)
value turns the user cursor off, a nonzero
value (say 1) turns the cursor on.

start is a numeric expression whose integer
value represents the cursor top (starting)
scanline. If start is in the range 0-31, start
and stop will affect the overwrite cursor. If
start has a larger value, it will be
interpreted modulo 32, and start and stop
will change the size of the user cursor.

stop is a numeric expression whose integer
value represents the bottom (stop) cursor
scanline. If this parameter is omitted, and
start is given, stop defaults to the same
value as start, and the height of the cursor
will be one scanline.

REFERENCE "3^357

OUTPUT TO SCREEN OR PRINTER

In GW-BASIC, there are three cursors.

• The insert-mode cursor which appears when
insert-mode is in effect.

• The overwrite cursor which appears when
overwrite mode is in effect (during command
entry and input with the INPUT statement).

• The user cursor which appears during
program execution when an INPUT
statement is not being executed.

The overwrite cursor is the one which appears most
of the time.

The overwrite cursor is initialized to a 2-scanline
underline.

The insert-mode cursor is initialized to a half-
height block.

The user cursor is initially disabled (but its size is
initialized to a full-size block).

The insert-mode cursor has a fixed size. The sizes
of the overwrite and user cursors may be changed.

Following a LOCATE statement, 1/0 statements to
the screen begin placing characters at the specified
location. The user cursor is normally off during
program execution, but can be turned back on
using LOCATE,, 1.

Note that start and stop parameters enable you to
define the size of the cursor by indicating the
starting and ending scanlines. The scanlines are
numbered from 0 at the top of the character
position. The bottom scanline is 7 if a color
monitor has been installed and 13 if a B/W monitor
is used. If you specify start and omit stop, this
assumes the value of start.

Normally, GW-BASIC will not print to line 25
because of the softkey display. This can be turned
off, however, using KEY OFF; then use LOCATE
25,1 :PRINT... to display characters on line 25.
PRINT statements on line 25 must end with a
semicolon; otherwise, the screen may scroll under
certain circumstances.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

Also, the following sequence of statements will
result in a 25-line scrolling display, without any
function key line:

KEY OFF

VIEW PRINT

Any parameter may be omitted, and will then
assume the current value.

Any values entered outside of the ranges indicated
will result in an Illegal function call error.
Previous values are retained.

Examples:

100 LOCATE 1,1
(Moves the cursor to the home position in the upper
left-hand corner.)

200 LOCATE,, 1
(Makes the cursor visible, its position remains
unchanged.)

300 LOCATE„0
(Turns both the user and overwrite cursors off.
This is useful during a program which displays
text or graphics and only uses INPUT to input
keyboard data (INPUT uses the screen editor).)

400 LOCATE 6,1,1,0,7
(Moves the overwrite cursor to line 6, column 1.
Makes the cursor visible, covering the entire
character cell, starting at scan line 0 and ending on
scanline 7 (if a color monitor is installed).)

L0CATE„1J3
(Makes the overwrite cursor visible, its position
remains unchanged, its shape will be a thin
horizontal line at the bottom of the character cell
(in monochrome).)

LOCATE„1,45
(Makes the user cursor visible, its position remains
unchanged, its shape will be a thin horizontal line
at the bottom of the character. cell (in mono
chrome).)

REFERENCE 3:359

OUTPUT TO SCREEN OR PRINTER

LPOS function

Returns the current position of the print head
within the printer buffer.

Syntax:

LPOS(printer)

where

printer is an integer expression whose value
(1, 2, or 3) indicates which printer is to be
tested (LPTl:, LPT2:, or LPT3:).

LPOS does not necessarily give the physical
position of the print head.

Example:

When the print head is greater than 30, a carriage
return is executed.

10 FOR I = 1 TO 100

20 LPRINTI;
30 IFLPOS(I) > 30THEN LPRINTCHR$(13)
40 NEXT

REFERENCE

OUTPUT TO SCREEN OR PRINTER

LSET and RSET statements

LSET left-justifies a string value in a string
variable.

RSET right-justifies a string value in a string
variable.

Syntax 1:

LSET stringvar = stringexp

Syntax 2:

RSET stringvar = stringexp

where

stringvar represents a non-fielded string
variable.

stringexp represents the string to be left- or
right-justified in a given field.

Example:

This program right-justifies the string N$ in a 20-
character field. This can be very handy for
formatting displayed/ printed output.

Ok
10 N$ = "SHARON"
20A$ = SPACE$(20)
30 RSET A$ = N$
40 PRINT A$
RUN

SHARON

Ok

REFERENCE T3T1

OUTPUT TO SCREEN OR PRINTER

POS function

Returns the current horizontal (column) position of
the cursor.

Syntax:

POS(dummy)

where

dummy is a dummy argument. Any value is
accepted.

The current horizontal (column) position of the
cursor is returned. The leftmost position is 1. The
rightmost position may be 40 or 80, depending on
the current screen width. To return the current
vertical line position of the cursor, use the CSRLIN
function (see CSRLIN function and the LPOS function
in this chapter).

Example:

When the print head or cursor position is greater
than 30, a carriage return is executed.

10FORI=1TO25

20 PRINTI;
30 IFPOS(X)> 30 THEN PRINT CHR$(13)
40 NEXT

REFERENCE

OUTPUT TO SCREEN OR PRINTER

PRINT and LPRINT statements

PRINT displays data on the screen.

LPRINT prints data on a printer. It assumes a 132-
character wide printer.

Syntax:

PRINT [list-of-expressions separated by
commas or semicolons or blanks]

LPRINT [list-of-expressions separated by
commas or semicolons or blanks]

where

list-of-expressions may be numeric and/or
string expressions. String constants must
be enclosed in quotation marks. Each
expression should be separated from the
next by a comma, semicolon, or blank.

If list-of-expressions is omitted, a blank line
displayed/printed.

IS

If list-of-expressions is included, the values of the
expressions are displayed/printed.

When entering a program line, a question mark
may be used in place of the word PRINT in a PRINT
statement. It will be interpreted as the word
"PRINT" and will appear as "PRINT" in subsequent
listings. This expansion may cause the end of a
line to be truncated if the line length is close to 255
characters.

"5:553REFERENCE

OUTPUT TO SCREEN OR PRINTER

Print Positions

The position of each displayed/printed item is
determined by the punctuation used to separate
the items in the list. GW-BASIC divides the line
into print zones of 14 spaces each. In the list-of-
expressions, a comma causes the next value to be
displayed/printed at the beginning of the next
zone. A semicolon causes the next value to be
displayed/printed immediately after the last value.
Typing one or more spaces between expressions
has the same effect as typing a semicolon.

If a comma or a semicolon terminates the hst-of-
expressions, the next PRINT/LPRINT statement
begins displaying/printing on the same line,
spacing accordingly. If the Iist-of-expressions
terminates without a comma or a semicolon, a
carriage return is entered at the end of the line and
the next PRINT/LPRINT statement is
displayed/printed on the next line. If the
displayed/printed line is wider than the
screen/printer width, GW-BASIC goes to the next
physical line and continues displaying/printing.

Displayed/printed numbers are always followed by
a space. Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 7 or fewer digits in the unsealed format, are
output using the unsealed format. For example,
lE-7 is output as .0000001 and lE-8(-7) is output
as lE-08. Double precision numbers that can be
represented with 16 or fewer digits in the unsealed
format no less accurately than they can be
represented in the scaled format, are output using
the unsealed format. For example, lD-17 is output
as .0000000000000001 and 10-16 is output as 10-
16.

OUTPUT TO SCREEN OR PRINTER

Examples:

NOTE: In these examples, the PRINT statement is
used. But it could be replaced with the LPRINT
statement if the data was to be output to a printer.

In this example, the commas in the PRINT
statement cause each value to be displayed at the
beginning of the next print zone.

10X = 5

20 PRINT X + 5, X-5, X*(-S), X^5
RUN
10 0 -25 3125
Ok

In this example, the semicolon at the end of line 20
causes both PRINT statements to be displayed on
the same line and line 40 causes a blank line to be
displayed.

10 INPUT X

15IFX = 999 THEN END
20 PRINTX "Squared is" X^2 "and";
30 PRINT X "Cubed is" X'^3
40 PRINT
50 GOTO 10
RUN

?9
9 Squared is 81 and 9 Cubed is 729

7999
Ok

In this example, the semicolons in the PRINT
statement causes the values to be displayed on the
same line. In line 30, a "?" is used instead of the
word PRINT.

10 FOR X = 1 T0 5
20 J = J + 5:K = K+10
30 ?J;K;
40 NEXT X
RUN

5 10 10 20 15 30 20 40 25 50
Ok

REFERENCE 3:335

OUTPUT TO SCREEN OR PRINTER

PRINT USING and LPRINT USING statements

PRINT USING displays data using a specified format
on the screen.

LPRINT USING prints data using a specified format
on the printer. It assumes a 132-character wide
printer.

Syntax:

PRINT USING format-string: list-of-
expressions separated by commas or
semicolons or blanks.

LPRINT USING format-string: list-of-
expressions separated by commas or
semicolons or blanks.

where

format-string is a string expression (usually
a constant or variable) composed of special
formatting characters. These formatting
characters (see below) determine the field
and the format of the displayed/printed
strings or numbers.

list-of-expressions is comprised of the string
expressions or numeric expressions that are
to be displayed/printed, separated by
commas, semicolons, or blanks. String
contants must be enclosed in quotation
marks. If a comma or semicolon terminates
the list of expressions, the next PRINT or
PRINT USING statement begins printing on
the same line, spacing accordingly.

NOTE: In the examples on the following pages, the
PRINT USING statement is used. It could be replaced
with the LPRINT USING statement if the data was to
be output to a printer.

5^355"

OUTPUT TO SCREEN OR PRINTER

String Fields

When PRINT USING/LPRINT USING is used to
display/print strings, one of three formatting
characters may be used to format the string field:

• The specifies that only the first character
in the given string is to be displayed/printed.

The "\n space5\" specifies that 2 + n
characters from the string are to be
displayed/printed. If the backslashes are
typed with no spaces, two characters will be
displayed/printed; with one space, three
characters will be displayed/ printed, and so
on. If the string is longer than the field, the
extra characters are ignored. If the field is
longer than the string, the string will be left-
justified in the field and padded with spaces
on the right. For example:

;A$;B$

10A$="LOOK":B$="OUT"
20 PRINT USING "!";A$;B$
30 PRINT USING "
40 PRINT USING "
RUN

LO
LOOKOUT

LOOKOUT !!

Ok

(Note: In line 30, there are two spaces between
the backslashes. In line 40, there are three
spaces between the backslashes.)

The ampersand sign (&) specifies a variable
length string field. When the field is specified
with the string is output exactly as
input.

Ok
10A$="LOOK":B$="OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN

LOUT

Ok

ftefERENCE 3:357

OUTPUT TO SCREEN OR PRINTER

Numeric Fields

When PRINT USING/LPRINT USING is used to
display/print numbers, the following special
characters may be used to format the numeric
field:

A riumber sign (#) is used to represent each
digit position. Digit positions are always
filled. If the number to be displayed/printed
has fewer digits than {wsitions specified, the
number will be right-justified (preceded by
spaces) in the field.

If the number of digit positions specified in
the format string exceeds 24, an Illegal
function call error will result.

A decimal point (.) may be inserted at any
position in the field. If the format string
specifies that a digit is to precede the decimal
point, the digit will always be displayed/
printed (as 0, if necessary). Numbers are
rounded as necessary.

Ok
PRINT USING "##.##";.78
0.78
Ok
PRINT USING '*###.##";987.654
987.65
Ok

Print Using "##.## 5.3,66.789,-234
5.30 66.79 0.23
Ok

In the last example, three spaces were
inserted at the end of the format string to
separate the displayed values on the line.

5-398 REFERENCE

OUTPUT TO SCREEN OR PRINTER

A plus sign (+) at the beginning or end of the
format string will cause the sign of the
number (plus or minus) to be displayed/
printed before or after the number. (See
examples in the minus sign description.)

A minus sign (-) at the end of the format field
will cause negative numbers to be displayed/
printed with a trailing minus sign.

Ok
Print Using " + ##.## ";.68.95.2.4,-.9
-68.95 + 2.40 -0.90
Ok

Print Using "##.##- ";-68.95.22.449.-7.01
68.95- 22.45 7.01-
Ok

A double asterisk (**) at the beginning of the
format string causes leading spaces in the
numeric field to be filled with asterisks. The
** also specifies positions for two more digits.

Ok
Print Using "**#.# ".-12.39.-0.9,765.1
*12.4 *-0.9 765.1
Ok

A double dollar si^ ($$) causes a dollar sign
to be displayed/printed to the immediate left
of the formatted number. The $$ specifies two
more digit positions, one of which is the dollar
sign. The exponential format cannot be used
with $$. Negative numbers cannot be used
unless the minus sign trails to the right.

Ok
Print Using
$456.78
Ok

■$$###.##";456.78

T359REFERENCE

OUTPUT TO SCREEN OR PRINTER

The **$ at the beginning of a format string
combines the effects of the previous two
symbols. Leading spaces will be asterisk-
filled and a dollar sign will be
displayed/printed before the number. **$
specifies three more digit positions, one of
which is the dollar sign. The exponential
format cannot be used with **$. When
negative numbers are displayed/printed, the
minus sign will appear immediately to the
left of the dollar sign.

Ok
Print Using "**$##.##";2.34
***$2.34
Ok

A comma (,) that is to the left of the decimal
point in a formatting string causes a comma
to be displayed/printed to the left of every
third digit to the left of the decimal point. A
comma that is at the end of the format string
is displayed/printed as part of the string. A
comma specifies another digit position. The
comma has no effect if used with the
exponential format.

Ok
PRINT USING "####,.##"; 1234.5
1,234.50
Ok
PRINT USING "####.##/';1234.5
1234.50,
Ok

Four carats (AAAA) may be placed after the
digit position characters to specify
exponential format. The four carats allow
space for E -I- XX or D + XX to be
displayed/printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading -I- or trailing + or
- is specified, one digit position will be used to
the left of the decimal point to display/print a
space or a minus sign. See examples on next
page.

5:2100- REFERENCE

OUTPUT TO SCREEN OR PRINTER

Ok
PRINT USING ••##.##^^^'"';234.56
2.35E + 02
Ok
PRINT USING ■■.####^^^^-";-888888
.8889E + 06-
Ok
PRINT USING " + .##^^'^^";123
+ .12E + 03
Ok

An underscore () in the format string causes
the next character to be output as a literal
character.

The literal
underscore
together "

Ok
PRINT USING
112.34!
Ok
PRINT USING

12.34
Dk —

character itself may be an
by placing two underscores

" in the format string.

!##.## !";12.34

##.## ';12.34

If the number to be displayed/printed is larger
than the specified numeric field, a percent
sign (%) is displayed/printed in front of the
number. If rounding causes the number to
exceed the field, a percent sign will be
displayed/printed in front of the rounded
number.

Ok
PRINT USING "##.##"; 111.22
%111.22
Ok
PRINT USING ".##";.999
%1.00
Ok

REFERENCE

OUTPUT TO SCREEN OR PRINTER

SCREEN function

Returns either the ASCII code (0-255) or the color
number for the character at the specified screen
location, depending on the value of a given
condition.

Syntax:

SCREEN(row, columnl condition])

where

row is a numeric expression returning an
unsigned integer in the range 1 to 25.

column is a numeric expression returning
an unsigned integer in the range 1 to 40 or 1
to 80 depending on the screen width.

condition is a valid numeric, relational or
logical expression returning a boolean result
(0 or 1). If condition is given a non-zero, the '
color number for the character is returned
instead of the ASCII code.

The SCREEN function returns zero if the system is
in graphics mode and the specified screen location
contains graphics data.

If you enter a value outside the above mentioned
ranges, an Illegal function call error is returned.

Refer to Appendix A for a complete list of ASCII
codes.

Examples:

100 X = SCREEN(10,10) 'If the character at 10,10 is
A then return 65.

110X = SCREEN(1,1J) 'returns the color number of
the character in the upper left hand corner of the
screen.

5:302" REFERENCE

OUTPUT TO SCREEN OR PRINTER

SCREEN statement

Sets the specifications for the display screen.

Syntax:

SCREEN [moc/elL lburst]l [apage]l vpage]]]

where

mode is a numeric expression resulting in
an integer value in the range 0 to 255. It
defines either Text Mode (0), Medium
Resolution Graphics Mode (1), High
Resolution Graphics Mode (2), or Super
Resolution Graphics Mode (3 to 255).

burst is a numeric expression resulting in an
integer value of 0 or 1. It enables color on a
color TV set. In Text Mode, a 0 value
disables color, and a 1 value enables color.
In Medium Resolution Graphics Mode, a 0
value enables color, and a 1 value disables
color. Both in High Resolution and Super
Resolution Graphics Modes, the burst value
is ignored, as these two modes only support
monochrome.

For a standard monitor, this parameter has
no meaning.

apage (Text Mode only) is an integer
expression in the range 0 to 7 for width 40,
or 0 to 3 for width 80. It selects the active
page, i.e., the page to be written to by output
statements to the screen. If omitted, the
active page defaults to 0.

vpage (Text Mode only) is an integer
expression in the range 0 to 7 for width 40,
or 0 to 3 for width 80. It selects the visual
page, i.e., the page to be displayed on the
screen which may be different from the
active page. If you omit this parameter, the
visual page will default to the active page.

REFERENCE "5:2RJ3

OUTPUT TO SCREEN OR PRINTER

Mode and Burst Parameters

In the following table, the first two columns are the
mode and burst parameters of a SCREEN
statement.

The burst parameter enables color on color TV sets.
For systems with standard monitors, this
parameter has no real meaning. For example, a
burst value of 0 or 1 in medium resolution mode
will have the same effect if a color monitor is used;
likewise, it will have the same effect if a
monochrome monitor is used (in this case the four
colors will appear as shades of gray).

mode burst Description

0 0 80 column x 25 row

B/W Text Mode

0 1 80 column x 25 row

Color Text Mode

1 0 320 hor. pixels x 200 vert, pixels
Color Medium Resolution
Graphics Mode
(40 column x 25 row)

1 1 320 hor. pixels x 200 vert, pixels
B/W Medium Resolution
Graphics Mode
(40 column x 25 row)

2 X (ignored) 640 hor. pixels x 200 vert, pixels
B/W High Resolution Graphics
Mode
(80 column x 25 row)

3-255 X (ignored) 640 hor. pixels x 400 vert, pixels
B/W Super Resolution Graphics
Mode
(80 column x 25 row)

ftEFERENCE

OUTPUT TO SCREEN OR PRINTER

Default Values

If you do not enter a SCREEN statement, the system
assumes the following default values:

mode = 0 (Text Mode)
burst = 0(BAV)
apage = 0 (active page 0)
vpage = 0 (visual page 0)

It would be the same, if you entered:

SCREEN 0,0,0,0

The SCREEN statement must precede any I/O
statement to the screen, but you can use more than
one SCREEN statement to define different screen
attributes for different sections of your program.

apage and vpage Parameters

If Text Mode is selected, you can specify two more
parameters (apage and vpage) to select the active
and visual page. There are eight display pages
(numbered 0 to 7) in 40-column Text Mode, and
four display pages (numbered 0 to 3) in 80-column
Text Mode. Only one display page is available in
any of the three graphics modes.

Only one cursor is shared between the pages, thus,
if you select a new active page, you must save the
cursor position (by POS(O) and CSRLIN) before
changing to the new page. If you return to the
original active page, you must restore the cursor
position by the LOCATE (Text) statement. If you
use the SCREEN statement only to change the
pages, you can omit the first two parameters
(mode and burst).

REFERENCE

OUTPUT TO SCREEN OR PRINTER

Screen Width

At initialization the width is 80 columns, thus you
should use the WIDTH statement to select a 40-
column screen. If you select the medium resolution
mode by the SCREEN statement, this also causes
the number of columns to be 40 without using the
WIDTH statement.

While in Text Mode, the WIDTH statement may be
used to select between the 40-column mode and the
80-column mode. Likewise, the WIDTH statement
may be used to select between modes 1 and 2
(medium or high resolution mode).

Selecting Text Mode imode=0) after selection of
one of the graphics modes will select either a 40-
column screen or an 80-column screen, depending
on the width used in the graphics mode. For
example:

SCREEN 1 'set screen to medium res. mode
(WIDTH = 40)
SCREEN 0 'changes screen to 40x25 Text Mode

See the WIDTH statement in this chapter.

Remarks

If all parameters are valid, the new screen mode is
saved, the screen is erased, the foreground and the
background colors are set to their default values.

If all parameters are identical to the preceding
ones, nothing is altered.

If you omit a parameter, it assumes the preceding
value except for the visual page that defaults to the
active page.

REEERENCE

OUTPUT TO SCREEN OR PRINTER

Examples:

10 SCREEN 0,1,0,0

20 SCREEN,, 1,2

30 SCREEN 2

40 SCREEN 1,1

SO SCREEN ,0

'select text mode with color,
'active and visual page to 0.

'mode and color burst
unchanged,
'use active page 1,
'visual page 2.

'switch to high res. graphics
mode.

'switch to medium res. color
graphics.

'medium res. graphics, color
off.

Possible Errors

If you enter a value outside the specified ranges, an
Illegal function call error is returned.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

SPC function

Skips spaces in a PRINT, LPRINT, or PRINT#
statement.

Syntax:

SPC(n)

where

n is an integer expression from 0 to 255. It
specifies the number of spaces to be inserted
in the output line.

SPC may only be used with PRINT, LPRINT and
PRINT# statements.

If n is greater than the defined width, then the
value used is n MOD width. '

A semicolon (;) is assumed to follow the SPC
function; thus GW-BASIC does not add a carriage
return, if you enter an SPC function at the end of a
list of data.

If n is outside the specified range, an Illegal
function call error is returned.

Example:

Ok
PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

See also the SPACES function in Chapter 26.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

TAB function

Tabs the cursor or the print head to a specified
position, PRINT, LPRINT, or PRINT# statements.

Syntax:

TAB(n)

where

n is an integer expression from 1 to 255.

If the current cursor or print position is already
beyond the specified value n, TAB goes to that
position on the next line.

Space 1 is the leftmost position, and the rightmost
position is the width minus one.

If the value of n exceeds the defined width, the
modulo operation is applied. For example, PRINT
TAB(243) on a 40-coIumn screen is the same as
PRINT TAB(3), because 243 MOD 40 = 3.

A semicolon is assumed to follow the TAB function,
thus GW-BASIC does not add a carriage return if
you enter a TAB function at the end of a list of data.

Example:

10 PRINT "Account" TAB(25) "Amount"
15 PRINT

20 READACCT$,AMT$
30 PRINT ACCT$ TAB(25) AMT$
40 DATA "G. T. JONES","$25.00"
RUN

Account Amount

G.T. JONES

Ok
$25.00

REFERENCE 3:409

OUTPUT TO SCREEN OR PRINTER

VIEW PRINT statement

Sets the boundary of the text window.

Syntax:

VIEW PRINT [linel TO Iine2]

where

linel is the top line of the text window.

Iine2 is the bottom line of the text window.

Statements and functions which operate within the
text window include CIS, LOCATE, and the SCREEN
function. The Screen Editor will limit functions
such as scroll and cursor movement to the text
window.

If no parameters are specified, VIEW PRINT will
initialize the text window to include the whole
screen.

Example:

VIEW PRINT 110 5

creates a text window of 5 lines on the top of the
screen.

5-410 "REFERENCE

OUTPUT TO SCREEN OR PRINTER

WIDTH statement

Sets the line width in characters. GW-BASIC adds
a carriage return after outputting the specified
number of characters.

Syntax 1:

WIDTH [LPRINT] size

Syntax 2:

WIDTH#f/7enun7, size

Syntax 3:

WIDTH device, size

where

size is an integer expression in the range 0 to
255. It specifies the new width.

filenum is the number under which the file
was opened.

device is a string expression indicating the
device that is to be used. Valid devices are:
SCRN:, LPTl:, LPT2:, LPT3:, COMl:,
COM2:, COM3:, or COM4:.

WIDTH LPRINT5/ze

Sets the line width at the line printer.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

WIDTH size or WIDTH "SCRN:"^/ze

Sets the screen width (in Text Mode), selects a text
window or changes mode (in Graphics mode).
Changing the screen or text window width, or the
mode, causes the screen to be cleared.

In Text Mode, size may only have the values 40 or
80, selecting either a 40-column or an 80-column
screen.

In Graphics Mode you can either change mode or
select a text window to the left of the screen of
width less than or equal to 40 (Medium Resolution
Mode) or less than or equal to 80 (High or Super
Resolution Mode).

The widti) of the function key display will
correspond to the selected width. If the number of
columns displayed is less than 80 columns, a CTRL
T may be entered to scroll the function key display
horizontally.

The table on the next page summarizes all possible
cases.

WIDTH #filenum,size

If the file is open, the width is immediately
changed to the specified size. This allows the width
to be changed while the file is open.

WIDTH device, size

The default line width for the specified device is set
to size. The line widths of currently open files are
not modified.

Stores the new size without changing the current
width, if the device is already open. A subsequent
OPEN device FOR OUTPUT AS #n will use the
specified value for width initially.

5OT- REFERENCE

OUTPUT TO SCREEN OR PRINTER

IF mode is... AND size is... THEN you ...

0 (text)
40 select a 40-column screen

80 select an 80-column screen

1

(medium-res)

80 place the system in high-
resolution (mode 2)

8<=s/ze<=40 create a text window of
width size

2

(high res)

40 place the system in
medium resolution (mode
1) with burst in whatever
state the system was when
a text or medium resolu
tion mode was last used

8< =size< =39
or

41< = size< = 80

create a text window of
width size

size = 4 create a text window of
width 40

3-255
(super res)

8< =size< = 80 create a text window of
width size

8< = size-80< = 80 create a text window of
width size

REFERENCE 3^

OUTPUT TO SCREEN OR PRINTER

When the WIDTH statement causes a change in the
screen mode, colors are set to their default values.

You should turn the function key display off when
changing the window width by a KEY OFF
statement; otherwise, if the width is decreased,
part of the old (wider) function key display may be
left on the screen.

If size is 255, the line width is "infinite"; that is ,
GW-BASIC never inserts a carriage return.
However, the position of the cursor or the print
head, as given by the POS or LPOS function, returns
to zero after position 255. WIDTH 255 is the default
for communications files.

If you alter the width for a communications file,
you do not modify the receive or the transmit
buffer: GW-BASIC will insert a carriage return
after the number of characters, equal to the
specified size, has been received or sent.

If size is outside the specified ranges, an Illegal
function call error is returned. The previous value
is retained.

See examples on next page.

REFERENCE

OUTPUT TO SCREEN OR PRINTER

Examples:

10 Print "abcdefghijklmnopqrstuvwxyz"
RUN
abcdefghijklmnopqrstuvwxyz
Ok
WIDTH 18 This changes line width to 18

characters.
Ok

RUN
abcdefghijklmnopqr
stuvwxyz
Ok
WIDTH 255 This changes the line width

back to 255 characters.
Ok

10 WIDTH "LPT1;",5
20 OPEN "LPT:" FOR OUTPUT AS 1
30 PRI NT 1,"1234567890"
35 PRINT 1

40 WIDTH 1,6
50 PRI NT 1,"1234567890"
RUN

will yield on the printer

12345
67890

123456
7890

SCREEN 1,0

WIDTH 80

WIDTH 40

SCREEN 0,1

WIDTH 80

set screen to medium res. color
graphics
change screen to high res.
graphics
changes screen back to medium
res.

changes screen to 40x25 text
color mode
changes screen to 80x25 text
color mode

REFERENCE

OUTPUT TO SCREEN OR PRINTER

WRITE statement

Writes data to the screen.

Syntax:

WRITE [list-of-expressions]

where

list-of-expressions is a list of numeric and/or
string expressions. They must be separated
by commas.

The values of the expressions are output to the
screen. If no expression is indicated, a blank line is
output.

Each item displayed is separated from the last by a
comma. Strings are delimited by quotation marks.
Numeric values are displayed using the same
format as the PRINT statement, but they are not
followed by blanks. After the last item in the list is
displayed, GW-BASIC inserts a carriage return,
line feed.

Example:

Ok
10 A = 80:B = 90:C$ = "THAT'S ALL"
20 WRITE A,B,C$
RUN
80,90, "THAT'S ALL"
Ok

5:4TF REFERENCE

24. PROGRAM INTERRUPTS

The following are described in this chapter:

Manual interrupts

Automatic interrupts

Programmable interrupts

3^517REFERENCt

PROGRAM INTERRUPTS

Manual interrupt

If you press CTRL BREAK, the program is
interrupted, Break in nnnnn message displays,
GW-BASIC enters command level and displays Ok.

CTRL BREAK does not close any data files.

You can resume execution by entering a CONT
command (see CONT command in this chapter).
You can display program variables by direct PRINT
or PRINT USING statements or change their values
by direct LET or SWAP statements. You can also
display program lines by an EDIT or LIST command,
and modify them.

If you modify lines, you cannot continue execution
via a CONT command. You can only rerun the
program by entering RUN.

5-418 REFERENCE

PROGRAM INTERRUPTS

Automatic interrupt

Syntax Error

If a Syntax error is found, the program is
interrupted, GW-BASIC displays the error
message, enters command level, and displays the
line that caused the error positioning the cursor
under the first digit of the line number.

You can modify the line, and then rerun the
program by entering RUN. You cannot continue
execution by entering CONT.

If you want to examine the contents of some
variables before making any modiBcations, you
should press CTRL BREAK to return to command
level. After examining the contents of the
variables, you can edit the line and run the
program. For example:

10A = 2$6
RUN
Syntax error in 10
Ok
10 A = 2$6

Other Errors

If an error other than a Syntax error is found, the
program is interrupted, GW-BASIC displays the
error message, enters command level, and displays
Ok.

You can either display program variables or
display program lines by an EDIT or LIST command
and then modify them. You cannot continue
execution by entering a CONT command, but you
can rerun the program by entering RUN. For
example, running a program which contains:

100 FORK =

will cause:

Missing operand in 100
Ok

REFERENCE

PROGRAM INTERRUPTS

Programmable interrupts

The END, STOP and SYSTEM statements can be use
as program interrupts.

END statement

Terminates program execution, closes all open
data files, and returns to command level.

Syntax;

END

END statements may be placed anywhere in the
program to terminate execution.

Unlike the STOP statement, END does not cause a
Break in nnnnn message to be displayed.

An END statement at the end of a program is
optional.

GW-BASIC always returns to command level after
an END is executed.

Example:

520 IF K > 1000 THEN END ELSE GOTO 20

REFERENCE

PROGRAM INTERRUPTS

STOP statement

Interrupts program execution then returns to
command level.

Syntax:

STOP

A STOP statement may be used anywhere in a
program.

When a STOP is encountered, the following
message is displayed:

Break in nnnnn

The STOP statement does not close files, unlike the
END statement.

GW-BASIC always returns to command level after
a STOP is executed. Execution is resumed by
issuing a CONT command.

Example:

Ok
10 INPUT A,B,C
20 K = A'^2*5.3:L = B''3/.26:PRINT L
30 STOP
40M = C*K+ 100:PRINTM
RUN

? 1.2.3
30.76923
Break in 30
Ok
CONT
115.9
Ok

REFERENCE "5^

PROGRAM INTERRUPTS

CONT command

Resumes program execution after a CTRL BREAK
has been typed or a STOP or END.

Syntax;

CONT

Execution resumes at the point where the break
occurred. If the break occurred after a prompt from
an INPUT statement, execution continues with the
reprinting of the prompt ("?" or prompt string).

CONT is usually used in conjunction with STOP for
debugging. When execution is stopped, inter
mediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.

CONT may not be used to continue execution after
an error has occurred. CONT is also invalid if the
program has been modified during the break.

Example:

10 INPUT A, B
20 TEMP = A*B
30 STOP
40 FINAL = TEMP + 300:PRINT FINAL
RUN
? 32, 2.4
Break in 30
Ok
PRINT TEMP

76.8
Ok
CONT

376.8
Ok

5:^ REFERENCE

PROGRAM INTERRUPTS

SYSTEM command

Closes all open data files and returns control to
MS-DOS.

Syntax:

SYSTEM

When a SYSTEM command is executed, all open
files are closed, the current program is lost, and
control is returned to MS-DOS.

If GW-BASIC has been entered through a Batch
file from MS-DOS, SYSTEM returns control to the
Batch file.

REFERENCE

PROGRAM INTERRUPTS

Notes:

RFFEREFTCE

25. PROGRAM HANDLING

This chapter describes

Automatic program line numbers
Clear memory
Display/print contents of a program
Execute a program in memory
Renumber program lines
Save a program to disk
Send a program listing to a device or file

3:^REFERENCE

PROGRAM HANDLING

Automatic program line numbers

When entering a new program or adding program
lines to an existing program, you can use the AUTO
command to automatically enter the program line
numbers. AUTO is used only in direct mode.

Syntax:

AUTO [linenum][, [increment]]

AUTO generates a line number automatically after
every carriage return.

If given, AUTO begins numbering with linenum
and increments each subsequent line number by
the increment.

AUTO 100,50 generates line numbers
100, 150, 200,250,...

The default for both values is 10.

AUTO generates line numbers
10, 20, 30,40,...

If a linenum is given but no comma or increment is
specified, line numbering begins with the linenum
specified and increments by 10.

AUTO 100 generates line numbers
100,110,120,130,...

If a comma and increment are specified but no
linenum is given, line numbering starts with 0 and
increments as specified.

AUTO ,5 generates line numbers
0, 5,10,15,...

5^325" REFERENCE

PROGRAM HANDLING

If linenum is followed by a comma but no
increment is specified, the last increment specified
in an AUTO command is assumed.

AUTO 50, If the last command was
AUTO 10,20, this would
generate line numbers 50,
70,90,110,...

If no preceding AUTO
command was given, an
increment of 10 is assumed.

If AUTO generates a line number that is already
being used, an asterisk is displayed after the
number to warn you that any input will replace the
existing line. However, typing a carriage return
immediately after the asterisk will save the line
and generate the next line number.

50*

You can use the command AUTO . to start line
numbering with the current line in memory.

AUTO ., 5 If the current line number
was 100, this would
generate line numbers
100*, 105,110,...

If a carriage return is entered immediately after a
program line number, numbering will resume
there.

To exit the AUTO command, press the CTRL C or
CTRL BREAK. The line in which CTRL C or CTRL
BREAK is pressed is not saved. The system returns
to command level.

REFERENCE

PROGRAM HANDLING

Clear memory

The NEW command deletes the program currently
in memory and clears all variables so that you may
enter a new program.

Syntax:

NEW

NEW is entered at command level (direct mode) to
clear memory before entering a new program.

GW-BASIC always returns to command level after
a NEW command is executed.

NEW closes all files and switches off the trace flag
in the same way as TROFF.

Example:

Ok
NEW

Ok

REFERENCE

PROGRAM HANDLING

Display/print a program listing

LIST displays all or part of the program currently in
memory on the screen or sends it to a specified file
or device (see '^Send program listing to a device or
file" in this chapter).

LUST prints all or part of the program currently in
memory to the printer. It assumes a 132-character
wide printer.

After execution, GW-BASIC returns to command
level.

Syntax 1:

LIST [linenum]
LLIST [linenum]

Syntax 2:

LIST [linenumi] - [Ijnenum2]
LLIST [linenumi] - [Iinenum2]

where

linenum is the program line to display/print.

linenumi is the beginning program line to
display/print.

Iinenum2 is the ending program line to
display/print.

ReFEREIMCE 3:329

PROGRAM HANDLING

Syntax 1

If linenum is omitted, the entire program is
displayed/printed beginning at the lowest line
number. Listing is terminated either by the end of
the program or by pressing CTRL BREAK.

If linenum is included, only the specified program
line will be displayed/printed.

You may use a period (.) for the linenum to indicate
the current line.

Examples:

LIST or LLIST

Displays/prints entire program currently in
memory.

LIST 500 or LLIST 500

Displays/prints line 500.

LIST . or LLIST .

Displays/prints the current program line.

5^330" REFERENCE

PROGRAM HANDLING

Syntax 2

This format allows the following options:

- If only linenum 1 is specified, that program
line and all higher-numbered program
lines are displayed/printed.

If only Iinenum2 is specified, all program
lines from the beginning of the program
through that program line are
displayed/printed.

If both line numbers are specified, the
entire range is displayed/printed.

You may use a period (.) for either line number to
indicate the current line.

You can stop the listing by pressing CTRL BREAK at
any time.

Examples:

LIST 150- or LLIST 150-

Displays/prints all program lines from 150 to the
end of the program.

LIST -1000 or LLIST -1000

Displays/prints all program lines from the lowest
number through 1000.

LIST 150-1000 or LLIST 150-1000

Displays/prints program lines 150 through 1000,
inclusive.

REFERENCE 3:351

PROGRAM HANDLING

Execute a program in memory

The RUN command/statement is used to execute
(run) a program that is currently in memory or a
program stored on disk (see "Execute a program file
(.BAS)" in Chapter 11).

After execution, GW-BASIC returns to command
level.

Syntax:

RUN [linenum]

where

linenum is the beginning program line.

If linenum is specified, execution begins with that
program line. Otherwise, execution begins at the
lowest program line number.

Examples:

RUN

Executes the program in memory.

RUN 500

Executes the program in memory starting at line
500.

5:33r REFERENCE

PROGRAM HANDLING

Renumber program lines

The RENUM command allows you to change the
line numbers of the current program.

RENUM is used only in direct mode.

Syntax:

RENUM [newnum][,[oldnum] [./ncrement]]

where

newnum is the first program line number to
be used in the new sequence. The default is
10.

oldnum is the line in the current program
where renumbering is to begin. The default
is the first line of the program.

increment is the increment to be used in the
new sequence. The default is 10.

RENUM also changes all program line number
references following GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB, RESTORE, RESUME and
ERL statements to reflect the new line numbers. If
a nonexistent line number appears after one of
these statements, the error message Undefined
line xxxxx in yyyyy is displayed. The nonexistent
program line number reference (xxxxx) is not
changed by RENUM, but line number yyyyy may be
changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when
the program has three lines numbered 10, 20 and
30) or to create line numbers, greater than 65529.
An illegal function call error will result.

■3:333REFERENCE

PROGRAM HANDLING

Examples:

RENUM

Renumbers the entire program. The first new line
number will be 10. Lines will be numbered in
increments of 10.

RENUM 300„50

Renumbers the entire program. The first new line
number will be 300. Lines will be numbered in
increments of 50.

RENUM 1000,900,20

Renumbers the lines from 900 up, so they start
with line number 1000 and are numbered in
increments of 20.

REPERENGE

PROGRAM HANDLING

Save a program to disk

After creating or editing a program, you can store
it on disk using the SAVE command.

Syntax:

SAVE "fUespec" [,A or ,P]

where

"filespec" is a string expression which
specifies where to save the program and
what file name to save it under.

"filespec" is a file or path name with an
optional drive name. With MS-DOS, the
default extension .BAS is supplied. If the
drive name is omitted, the default drive is
assumed. If the path name is omitted, the
current "working" directory is assumed.

If a file with the same name already exists on the
selected disk, it will be written over.

Use the A option to save the file in ASCII format.
Otherwise, GW-BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires an ASCII
format file. Attempts to MERGE binary programs
will result in a Bad file mode error. Also, some
operating systems commands such as TYPE may
require an ASCII format file.

Use the P option to protect the file by saving it in
an encoded binary format. When a protected file is
later RUN (or LOADed), any attempt to LIST or EDIT
it will fail with an Illegal function call error.

CAUTION: No way is
'*unprotect" such a program.

provided to

REFERENCE ■5:335

PROGRAM HANDLING

Examples:

SAVE "PAYROLL"

Saves the program PAYROLL.BAS to the disk in
the default drive in binary format. '

SAVE "B:SALES".A

Saves the program SALES. BAS to the disk in
Drive B in ASCII format, where B could be
replaced with any drive name.

SAVE "B:PROG",P

Saves the program PROG. BAS to the disk in Drive
B as a protected file.

SAVE "JOHN\PAYROLL"

Saves the PAYROLL.BAS program to the
subdirectory named JOHN of the current
"working" directory.

5:335" REFERENCE

PROGRAM HANDLING

Send a program listing to a device or file

The LIST command can be used to send all or part of
the program currently in memory to a specified file
or device.

Syntax:

LIST [Iinenum1][-[linenum2]] .device

where

linenum 1 is the beginning program line.

Iinenum2 is the ending program line.

device is a device designation string, such as
SCRN: or LPTl:, or a file specification.

device allows the listing to be directed to a device
such as a printer or communications device.

Or, it allows the listing to be sent to a file on a disk.
If the file does not exist, it is created. If the file
does exist, the list is stored over the existing
program. The existing program is destroyed so be
careful when using this application. When you
direct a listing to a disk file, the program is saved
in ASCII format, thus you may later use this file
with MERGE.

You cannot interrupt (stop) a listing directed to a
file or device. In this case, the listing will continue
until the range is exhausted.

■5:337REFERENCE

PROGRAM HANDLING

Examples:

LIST 150-1000 "PAYROLL"

The above command stores program lines 150
through 1000 of the program currently in memory
to a file named PAYROLL on the disk in the active
drive.

LIST,LPT1:

Lists the program to the line printer.

5:^ REFERENCE

26. STRING MANIPULATION

The following are described in this chapter:

INSTR function
LEFTS function
LEN function
MiD$ function
MID$ statement
RIGHTS function
SPACES function
STRINGS function

REFERENCE

STRING MANIPULATION

INSTR function

Searches for the first occurrence of a given
substring in a string, and returns the position at
which the match is found.

Syntax:

INSTR([start,] string, substring)

where

start is an integer expression in the range 1
to 255, which specifies where the search is to
begin. If omitted, 1 is assumed.

string is a string expression (in particular a
string constant or variable) whose value is
the string to be searched.

substring is a string expression in particular
a string constant or variable whose first
occurrence is to be searched for.

Optional offset start sets the character position for
starting the search. It must be in the range 1 to
255. If it is greater than the number of characters
in string (LEN(str/ng)) or if string is null or if
substring cannot be found, INSTR returns 0. If
substring is null, INSTR returns start or 1, and if no
start was specified, then INSTR returns 1. If
start=0 is specified, error message Illegal function
call will be displayed.

Example:

10 A$ = "ABCDEB"
20 B$ = "B"
30 PRINTINSTR(A$,B$)
40 PRINT INSTR(4,A$,B$)
RUN

2

6
Ok

5:330" REFERENCE

STRING MANIPULATION

LEFT$ function

Returns a substring extracting a number of
characters to the left of a given string, as specified
by the length parameter.

Syntax:

LEFT$(str/ng,/engt/})

where

string is a string expression whose value is
the string from which the substring is to be
returned.

length is an integer expression (from 0 to
255) which specifies the number of the
characters to be returnd.

If length is greater than LEN(str/ng), the entire
original string will be returned.

If length = 0, the null string (length zero) will be
returned.

Refer to the MID$ and RIGHTS functions in this
chapter.

Example:

10A$ = "GW-BASIC"
20 8$ = LEFT$(A$,6)
30 PRINT B$
RUN
GW-BAS
Ok

REFERENCE

STRING MANIPULATION

LEN function

Returns the length of a given string.

Syntax;

LEN(str/ngexp)

where

stringexp is a string expression whose
length will be returned.

Unprintable characters and blanks are counted in
the number of characters.

If the argument stringexp is a null string, LEN
returns zero.

Example:

10 A$ = "PORTLAND, OREGON"
20 PRINT LEN(A$)
RUN

16
Ok

REFERENCE

STRING MANIPULATION

MID$ function

Returns a substring from a specified string.

Syntax:

MID$(str/ng, start[, length])

where

string is a string expression whose value is
the string from which the substring is to be
returned.

start is an integer expression whose value
specifies the character position of the
beginning of the returned string. It must be
>=1.

length is an integer expression from 0 to 255
which represents the length of the returned
string.

The function returns a substring from a specified
string, starting from a specified character position
{start). The length of the returned substring can be
specified. If length is omitted or if there are fewer
than length characters to the right of the specified
character position, all rightmost characters
beginning with the specified character position are
returned. If length is equal to zero, or if start is
greater than LE N(str/ng), then MID$ returns a null
string Also see LEFTS and RIGHTS functions in this
chapter.

Example:

10A$="Good"
20 B$ = "morning evening afternoon"
30 PRINT A$;MID$(B$,9,7)
RUN
Good evening
Ok

-5^REFERENCE

STRING MANIPULATION

MID$ statement

Replaces a part of a string with another string.

Syntax:

MID$(str/ngf, start[. length]) = substring

where

string is a string expression whose value is
the string from which a substring is to be
replaced.

start is an integer expression from 1 to 255,
whose value specifies the character position
where the replacement has to begin, start
must be < = LEN(str/ng).

length is an integer expression from 0 to 255
which represents the length of the returned
string.

substring is a string expression which
replaces the characters in string, beginning
from start positon.

The characters in string, beginning from start
position, are replaced by the characters in
substring. The optional length refers to the
number of characters from substring that will be
used in the replacement. If length is omitted, all of
the characters of substring are used. However,
regardless of whether length is omitted or
included, the replacement of characters never goes
beyond the original length of string. If either start
or lerigth is out of the specified range, an Illegal
function call error will be returned.

Example:

10 A$ = " KANSAS CITY. MO"
20MID$(A$,14) = "KS"
30 PRINTA$
RUN

KANSAS CITY, KS
Ok

5-444 REFERENCE

STRING MANIPULATION

RIGHTS function

Returns a substring from a specified string,
extracting its rightmost characters.

Syntax:

RIG HT$(str/ng,/engt/7)

where

string is a string expression whose value is
the original string from which a substring is
to be returned.

length is a numeric expression rounded to
the nearest integer, whose value (from 0 to
255) represents the length of the returned
string.

If length is greater than or equal to LE N(str/ng),
then the entire original string is returned. When
length = 0, the null string (length of zero) is
returned.

Also see the LEFT$ and MID$ functions in this
chapter.

Example:

10A$ = "DISKGWBASIC"
20 PRINTRIGHT$(A$,7)
RUN

GWBASIC

Ok

REFEftENCE

STRING MANIPULATION

SPACES function

Returns a string of a specified number of spaces.

Syntax:

SPACE$(/engtb)

where

length is an integer expression from 0 to
255. It specifies the number of spaces, i.e.,
the length of the returned string.

If length is outside the specified range, an Illegal
function call error is returned.

Example:

10 FOR I = 1 T0 5
20 X$ = SPACE$(I)
30 PRINT X$; I
40 NEXT I
RUN

1
2

3
4

5

Ok

REPERENCe

STRING MANIPULATION

STRINGS function

Returns a string of specified length whose
characters all have the same ASCII code (Appendix
A) or equal to the first character of a given string.

Syntax 1;

STRING$(/engt/), code)

Syntax 2:

STRING$(/engt/?, stringexp)

where

length is an integer expression from 0 to
255. It specifies the length of the resulting
string.

code is an integer expression in the range 0
to 255. It speciRes the ASCII code whose
corresponding character is used to form the
resulting string.

stringexp is a string expression whose first
character is used to form the resulting
string.

Examples:

10X$ = STRING$(10,45)
20 PRINT X$ "SALES REPORT" X$
RUN

SALES REPORT-

Ok

10A$= "DALLAS"
20X$ = STRING$(8,A$)
30 PRINT A$
RUN
DDDDDDDD
Ok

REFERENCE

STRING MANIPULATION

Notes:

5^335 REFERENCE

27. USER-DEFINED FUNCTIONS

The DEF FN statement is used to define and name a
function that is written by the user.

Syntax:

DEF ?Hname[{argument[, argument]...)] =
expression

where

name is a legal variable name beginning
with FN. No blanks may be inserted
between FN and the remainder of the name
and the first character after FN must be a
letter.

argument is a "dummy" variable that is to
be replaced by the corresponding argument
value when the function is called.

expression is an expression that performs
the operation of the function.

The type of expression must agree with the
type (numeric or string) of the function,
specified by name.

In the DEF FN statement, variable names serve
only to define the function; they do not affect
program variables that have the same name. A
variable name used in a function definition may or
may not appear in the argument list. If it does, the
value of the parameter is supplied when the
function is called. Otherwise, the current value of
the program variable is used.

■OT9REFERENCE

USER-DEFINED FUNCTIONS

The variables in the argument list represent, on a
one-to-one basis, the argument variables or values
that are to be given in the function call.

User-defined functions may be numeric or string
The-type of the function is specified by name. The
type of the expression must match the type of the
function; otherwise, a Type mismatch occurs. If the
function is numeric, the value of the expression is
forced to that type before the function value
returned.

IS

If a DEF FN statement has not been executed before
the function it defines is called, an Undefined user
function error occurs.

Example:

400X=10:Y = 20
410DEFFNAB(X,Y) = X*3 + Y*2
4201 = 10:1 = 20
430T = FNAB(l,j)
440 PRINT T
RUN

70
Ok

Line 410 defines the function FNAB. The function
is called in line 430.

5^550" REFERENCE

ASCII CODE

^ APPENDIX A

ASCII CODE

Notes:

ASCII CODE

ASCII CODE

ASCII CODE

This table shows the 256 elements of the standard ASCII character
set, together with their decimal and hexadecimal equivalents.

DEC HEX CHARACTER DEC HEX CHARACTER DEC HEX CHARACTER DEC HEX CHARACTER

000 00 (Nl)LL) 016 10 ► (OLE) 032 20 BLANK
(SPACE) 048 30 0

001 01 ©(SOH) 017 11 ^ (DCl) 033 21 I 049 31 1

002 02 9 <STX) 018 12 \ (DC2) 034 22 050 32 2

003 03 V(ETX) 019 13 !! (DC3) 035 23 # 051 33 3

004 04 ♦ (EOT) 020 14 Tr(l>C4) 036 24 $ 052 34 4

005 OS ♦ (ENQ) 021 15 § (NAC) 037 25 ®/o 053 35 5

006 06 4 (ACK) 022 16 a (SYN) 038 26 & 054 36 6

007 07 • (BEL) 023 17 039 27
9 055 37 7

008 08 D <0S) 024 18 t (CAN) 040 28 (056 38 8

009 09 O (HT) 025 19 1 (EM) 041 29) 057 39 9

010 OA 026 lA — (SUB) 042 2A * 058 3A •
•

Oil OB CT (VT) 027 IB ^ (ESC) 043 2B + 059 3B 9

012 OC 9 (FF) 028 IC 1— (fS) 044 2C 9 060 3C <

013 OD (CR) 029 ID (GS) 045 2D — 061 3D =

014 OE ^ (SO) 030 IE A (RS) 046 2E .
062 3E >

015 OF (Si) 031 IF ▼ (US) 047 2F / 063 3F 9
•

ASCII CODE

ASCII CODE

DEC HEX CHARACTER DEC HEX CHARACTER DEC HEX CHARACTER DEC HEX CHARACTER

064 40 ® 080 50 P 096 60
«

112 70 P

065 41 A 081 51 Q 097 61 a 113 71 q

066 42 B 082 52 R 098 62 b 114 72 r

067 43 C 083 53 S 099 63 c 115 73 s

068 44 D 084 54 T 100 64 d 116 74 t

069 45 E 085 55 U 101 65 e 117 75 u

070 46 F 086 56 V 102 66 f 118 76 V

071 47 G 087 57 W 103 67 g 119 77 w

072 48 H 088 58 X 104 68 h 120 78 X

073 49 I 089 59 Y 105 69 i 121 79 y

074 4A J 090 5A Z 106 6A j 122 7A z

075 4B K 091 5B [107 6B k 123 7B I

076 4C L 092 5C \ 108 6C 1 124 7C 1

077 4D M 093 5D 1 109 6D m 125 7D)

078 4E N 094 5E A 110 6E n 126 7E

079 4F O 095 5F 111 6F 0 127 7F A

7^ ASCII CODE

ASCII CODE

DEC HEX CNAIACTEX DEC HEX CHARACTER DEC HEX CHARACTER DEC HEX CHARACTER

128 80 c 144 90 t 160 AO ft 176 BO

129 81 il 145 91 m 161 A1 i 177 B1 9
130 82 146 92 /E 162 A2 6 178 B2 M
131 83 ft 147 93 6 163 A3 ft 179 B3 1

132 84 ft 148 94 6 164 A4 ft 180 B4 H

133 85 ft 149 95 6 165 A5 N 181 B5 H

134 86 ft 150 96 ft 166 A6 a 182 B6 HI

135 87 9 151 97 ft 167 A7 o 183 B7 -n

136 88 ft 152 98 y 168 A8 L 184 B8 =1

137 89 e 153 99 6 169 A9 185 B9 HI

138 8A ft 154 9A u 170 AA -| 186 BA II

139 8B 1 155 9B 0 171 AB 1/2 187 BB =1

140 8C 1 156 9C £ 172 AC 1/4 188 BC J

141 8D 1 157 9D
y
T

173 AD I 189 BD J

142 8E A 158 9E PI 174 AE « 190 BE

143 8F A 159 9F f 175 AF » 191 BF n

ASCII CODE "S:B

ASCII CODE

DEC HEX CHARAOER DEC HEX CHARACTER DEC HEX CHARAQER DEC HEX CHARACTER

192 CO L 208 DO JL 224 EO a 240 FO ■

193 C1 -L 209 D1 T 225 El P 241 F1 ±

194 02 T 210 D2 T 226 E2 r 242 F2

195 03 h 211 D3 IL 227 E3 n 243 F3

196 04 — 212 04 L 228 E4 Z 244 F4 r
197 05 + 213 05 r 229 E5 a 245 F5 j
198 06 N 214 06 r 230 E6 246 F6 +

199 07 Ih 215 07 + 231 E7 T 247 F7

200 08 L 216 08 + 232 E8 4> 248 F8
0

201 09 =11 217 09 j 233 E9 e 249 F9 •

202 OA 218 OA r 234 EA Q 250 FA •

203 OB T 219 OB ■ 235 EE 6 251 FB yT
204 00 11= 220 OO ■ 236 EO 00 252 PO n

205 OD
= 221 OO 1 237 EO 0 253 FO 2

206 OE =lh 222 DE 1 238 EE € 254 FE 1

207 OF 223 OF
■

239 EF n 255 FF BLANK
TP

ST- ASCII CODE

MATHEMATICAL FUNCTIONS

_ APPENDIX B

MATHEMATICAL FUNCTIONS

Notes:

^ MATHEMATICAL FUNCTIONS

MATHEMATICAL FUNCTIONS

DERIVED FUNCTIONS

Functions that are not intrinsic to GW-BASIC may be caicuiated as
follows.

FUNCTION GW-BASIC EQUIVALENT

SECANT SEC(x) = 1/C0S(x) when x <>1.570796

COSECANT CSC(x)=1/SIN(x) when xOO

COTANGENT C0T(x) = 1/TAN(x) when xOO

INVERSE SINE ARCSIN(x)=ATN(x/SQR(1 -x*x))

INVERSE COSINE ARCCOS(x) 1.570796-ATN(x/SOR(1-x*x)) when
ABS(x)<1

INVERSE SECANT ARCSEC(x)=ATN(SQR(x*x-1))
+ SGN(SGN(x)-1)*1.570796 when ABS(x) >= 1

INVERSE COSECANT ARCCSC(x)» ATN(1/SQR(x*x-1)) when ABS(x)>1
+ (SGN(x)-1)*1.570796

INVERSE

COTANGENT

ARCCOT(x) = 1.570796-ATN(x)

HYPERBOLIC SINE SINH(x)=(EXP(x)-EXP(-x)) / 2

HYPERBOLIC

COSINE

COSH(x)»(EXP(x) + EXP(-x)) / 2

HYPERBOLIC

TANGENT

TANH(x) = (EXP(x)-EXP(-x)) /
(EXP(x) + EXP(-x))

HYPERBOLIC

SECANT

SECH(x) = 2 / (EXP(x) + EXP(-x))

HYPERBOLIC

COSECANT

CSCH(x)=2 / (EXP(x)-EXP(-x)) when xOO

MATHEMATICAL FUNCTIONS

MATHEMATICAL FUNCTIONS

FUNCTION GW-BASIC EQUIVALENT

HYPERBOLIC

COTAGENT
COTH(x) = (EXP(x) + EXP(-x)) /
(EXP(x)-EXP(-x)) when xOO

INVERSE

HYPERBOLIC SINE
ARCSINH(x) = LOG(x + SQR(x*x +1))

INVERSE

HYPERBOLIC

COSINE

ARCCOSH(x) = LOG(x + SQR(x*x-1)) when x >= 1

INVERSE

HYPERBOLIC
TANGENT

ARCTANH(x) = LOG((1 + x) / (1-x)) / 2 when
ABS(x)< 1

INVERSE

HYPERBOLIC

SECANT

ARCSECH(x) = LOG((SQR(1 -x*x) +1) / x) when
0<x<=1

INVERSE

HYPERBOLIC

COSECANT

ARCCSH(x) = LOG((SGN(x)*SQR(x*x +1) +1) / x)
when x>0

INVERSE

HYPERBOLIC

COTANGENT

ARCCOTH(x) = LOG((x +1) / (x-1)) / 2 when
ABS(x)>1

LOGARITHM TO

BASE 'a'
LOGA(x) = LOG(x) / LOG(a) when a>0 and x>0

You can define a derived function in your program by use of a DEF
FN statement, to avoid coding tfie formula eacfi tirrie you need it.

Note that both 'x' and 'a' can be any numeric constant, variable, ar
ray element, function or expression. Any values of 'x' or 'a' that would
cause error messages are noted.

MATHEMATICAL FUNCTIONS

ERROR CODES AND
ERROR MESSAGES

^ APPENDIX C

ERROR CODES AND ERROR MeSSAfitS CT

Notes:

?r2 ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

ERROR MESSAGES

NUMBER MESSAGE

1 NEXT without FOR

A variable in a NEXT statement does not corres
pond to any previously executed, unmatched FOR
statement variable.

2 Syntax error

A line is encountered which includes an incorrect
sequence of characters (misspelled keyword, un
matched parenthesis, incorrect punctuation, etc).
GW-BASIC automatically enters edit mode at the
line that caused the error.

3 RETURN without GOSUB

A RETURN statement is encountered for which
there is no previous, unmatched GOSUB
statement.

4 Out of data

A READ statement is executed when there are no
DATA statements with unread data remaining in the
program.

5 Illegal function call

A parameter that is out of range is passed to a
numeric or string function. This FC error may also
occur as the result of:

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

1. A negative or unreasonably large subscript.

2. A negative or zero argument with LOG.

3. A negative argument to SQR.

4. A negative mantissa with a nonlnteger exponent.

5. A call to a USR function for which the starting
address has not yet been given.

6. An Improper argument to MID$, LEFT$, RIGHT$,
INP. OUT. WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR, or ON...GOTO.

7. A negative record number used with GET(Files)
or PUT(Files) statements.

Overflow

The result of a calculation is too large to be
represented In GW-BASIC number format. If
underflow occurs, the result is zero and execution

continues without an error.

Out of memory

A program is too big, or has too many loops,
subroutines, variables, or has expressions that are
too complicated to evaluate.

Undefined line

A nonexistent line is referenced in a GOTO,
GOSUB, IF...THEN...ELSE, or DELETE statement.

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

9 Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the ar
ray or with the wrong number of subscripts.

10 Duplicate Definition

Two DIM statements are given for the same array;
or a DIM statement is given for an array after the
default dimension of 10 has been established for

that array; or an OPTION BASE is given after an
array has been dimensioned.

11 Division by zero

A division by zero is encountered in an expression;
or, the value zero has been raised to a negative
power. In the former case, the result is machine
infinity (with the appropriate sign); in the latter case,
the result is positive machine infinity. In both cases
execution continues.

12 Illegal direct

A statement that is illegal in direct mode is entered
as a direct mode command.

13 Type mismatch

A string variable name is assigned a numeric value
or vice versa; a function that expects a numeric
argument is given a string argument or vice versa.

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

14 Out of string space

String variables have caused GW-BASIC to exceed
the amount of free memory remaining. GW-BASIC
will allocate string space dynamically, until it runs
out of memory.

15 String too long

An attempt is made to create a string more than
255 characters long.

16 String formula too complex

A string expression is too long or too complex to
be processed. It should be broken into smaller ex
pressions.

17 Can't continue

An attempt is made to continue a program that:

1. Has halted due to an error.

2. Has been modified during a break in execution.

3. Does not exist.

18 Undefined user function

A USR function is called before the function defini

tion (DBF statement) is given.

CT" ERROR CODES AND errOR MESSAGES

ERROR CODES AND ERROR MESSAGES

19

NUMBER MESSAGE

19 No RESUME

An error handling routine is entered but contains
no RESUME statement.

20 RESUME without error

A RESUME statement is encountered before an er
ror handling routine is entered.

22 Missing operand

An expression contains an operator with no
operand following it.

23 Line buffer overflow

An attempt has been made to input a line that has
too many characters.

24 Device Timeout

GW-BASIC did not receive information from an I/O
device within a predetermined amount of time.

25 Device Fault

An incorrect device designation has been entered.

26 FOR without NEXT

A FOR statement was encountered without a mat
ching NEXT.

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

27 Out of paper

The printer is out of paper or is not switcfied on.
Insert paper, ensure power is switched on and
continue.

29 WHILE without WEND

A WHILE statement does not have a matching
WEND.

30 WEND without WHILE

A WEND statement was eiKXMjntered wittiout a

matching WHILE.

50 FIELD overflow

A FIELD statement is attempting to allocate more
bytes than were specified for the record length of
a random file.

51 1 Intemal error

1 An intemal malfunction has oocuned in GW-6ASiC.

52 1 Bad file number

1 A statement or command references a fHe with a
1 file numt)er that is not OPEN or is out of the range
1 of file numbers specified at initialization.

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

53 File not found

A LOAD, KILL, NAME or OPEN statement/com-

mand references a file that does not exist on the

current disk

54 Bad file mode

An attempt is made to use PUT(Files), GET(Files),
to LOAD a random file, or to execute an OPEN
statement with a file mode other than 1, 0. or R.

55 File already open

A sequential output mode OPEN statement is
issued for a file that is already open; or a KILL com
mand is given for a file that is open.

57 Device I/O Error

An I/O error occurred on a disk I/O operation. It is
a fatal error; i.e., the operating system cannot
recover from the error.

58 File already exists

The filename specified in a NAME command is
identical to a filename already in use on the disk.

61 Disk full

All disk storage space is in use.

ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

62 Input past end

An INPUT statement is executed after all the data

In the file has been INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect
the end-of-file.

63 Bad record number

In a PUT(Files) or GET(Files) statement, the record
number is either greater than the maximum allow
ed (16,777,215) or equal to zero.

64 Bad file name

An illegal form is used for the filename with a
LOAD, SAVE, KILL, or OPEN statement/command

(e.g., a filename with too many characters).

66 Direct statement in file

A direct statement is encountered while LOADing
an ASCII-format file. The LOAD is terminated.

67 Too many files

An attempt is made to create a new file (using
SAVE or OPEN) when all 255 directory entries are
full.

68 Device unavailable

An attempt was made to open a file to a non
existent device. It may be that hardware did not ex
ist to support the device, such as LPT2: or LPT3:,

uw ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER

69

70

MESSAGE

or was disabled by the user. This occurs if an OPEN
'*C0M1 statement is executed after the user has

disabled RS232 support via the /C:0 switch direc
tive on the GWBASIC command line.

Communication buffer overflow

Occurs when a communication input statement is
executed but the input queue was already full. Use
an ON ERROR GOTO statement to retry the input
when this condition occurs. Subsequent inputs' will
attempt to clear this fault, unless characters con
tinue to be received faster than the program can
process them. In this case several options are
available:

1. Increase the size of the COM receive buffer via

the /C: switch.

2. Implement a "hand-shaking" protocol with the
host/satellite such as XON/XOFF to turn transmit

off long enough to catch up.

3. Use a lower baud rate for transmit and receive.

Disk Write Protected

This is one of 3 "hard" disk errors returned from

the disk controller. This occurs when an attempt
is made to write to a diskette that is write protected.
Use an ON ERROR GOTO statement to detect this

situation and request user action.

Errors 71,72, and 74 are other possible "hard" disk
errors.

ERROR CODES AND ERROR MESSAGES -CT\

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

71 Disk not ready

Occurs when the diskette drive door is open, or a
diskette is not in the drive. Again use an ON ER
ROR GOTO statement to recover.

72 Disk media error

Occurs when the FDC controller detects a hard

ware or media fault. This usually indicates damag
ed media. Copy any existing files to a new diskette
and reformat the damaged diskette. FORMAT will
flag the bad tracks and place them in a file "bad-
track". The remainder of the diskette is now usable.

74 Rename across disks

An attempt was made to rename a file with a new
drive designation.

75 Path/Tile access error

During an OPEN, MKDIR, CHDIR, or RMDIR
operation, MS-DOS was unable to make a correct
Path to Filename connection. The operation Is not
completed.

76 Path not found

During an C^N, MKDIR, CHDIR, or RMDIR
operation, MS-DOS was unable to find the path
specified. The operation is not completed.

UTT ERROR CODES AND ERROR MESSAGES

ERROR CODES AND ERROR MESSAGES

NUMBER MESSAGE

* * Can't continue after SHELL

No error number. Upon returning from a Ctilld pro
cess, tfie SHELL statement discovers that there is
not enough memory for GW-BASIC to continue.
GW-BASIC closes any open files and exists to
MS-DOS.

ERROR CODES AND ERROR MESSAGES irf3

ERROR CODES AND ERROR MESSAGES

Notes:

UU ERROR CODES AND ERROR MESSAGES

GW-BASIC RESERVED WORDS

_ APPENDIX D

GW-BASIC RESERVED WORDS DH

Notes:

GW-BA5IC RESERVED WORDS

GW-BASIC RESERVED WORDS

RESERVED WORDS

GW-BASIC comprises a set of statements, commands, function names,
and operator names which are treated as reserved words, and which
cannot be used as variable names. The total list of GW-BASIC reserv
ed words is as follows:

ABS DELETE lOCTLS

AND DIM KEY

ASC DRAW KILL

ATN EDIT LEFTS

AUTO ELSE LEN

BEEP END LET

BLOAD ENVIRON LINE

BSAVE ENVIRONS LIST

CALL EOF LLIST

CALLS EQV LOAD

CDBL ERASE LOC

CHAIN ERDEV LOCATE

CHOIR ERDEVS LOF

CHR$ ERL LOG

CINT ERR LPOS

CIRCLE ERROR LPRINT

CLEAR EXP LSET

CLOSE FIELD MERGE

CLS FILE MIDS

COLOR FIX MKDIR

COM FNxxxxxxxx MKDS
COMMON FOR MKIS

CONT FRE MKSS

COS GET MOD

CSNG GOSUB NAME

CSRLIN GOTO NEW

CVD HEXS NEXT

CVI IF NOT

CVS INKEYS OCTS

DATA INP OFF

DATES INPUT ON

DEF INPUTS OPEN

DEFDBL INPUT# OPTION

DEFINT INSTR OR

DEFSGN INT OUT

DEFSTR lOCTL PAINT

GW-BASIC RESERVED WORDS "15:3

GW-BASIC RESERVED WORDS

PEEK TO
PLAY TROFF
PMAP TRON

POINT USING
POKE USR

POS VAL
PRESET VARPTR

PRINT VARPTRS
PRINT# VIEW

PSET WAIT

PUT WEND

RANDOMIZE WHILE

READ WIDTH
REM. WINDOW
RENUM WRITE

RESET WRITE#

RESTORE XOR
RESUME

RETURN

RIGHTS

RMDIR

RND

RSET

RUN

SAVE

SCREEN

SON

SHELL

SIN

SOUND

SPACES

SPC

SQR

STEP

STOP

STRS

STRINGS
SWAP

SYSTEM

TAB

TAN

THEN

TIMER

TIMES

T5^ GW-BASIC RESERVED WORDS

HEXADECIMAL CONVERSION
TABLES

APPENDIX E

HEXADECIMAL CONVERSION TABLES E^l

Notes:

F2 ^ HEXADECIMAL CONVERSION TABLES

HEXADECIMAL CONVERSION TABLES

HEXADECIMAL CONVERSION TABLES

BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10

B 45056 B 2816 B 176 B 11

C 49152 0 3072 C 192 0 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

4 3 2 1

HEXADECIMAL CONVERSION TABLES

HEXADECIMAL CONVERSION TABLES

BINARY TO HEXADECIMAL CONVERSION TABLE

The following table shows the decimal (base 10), binary (base 2), oc
tal (base 8), and hexadecimal (base 16) representations for the
numbers 0 to 16.

DECIMAL BINARY OCTAL HEX

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3
4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 10D0 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 8
12 1100 14 0
13 1101 15 D
14 1110 16 E
16 1111 17 F
16 10000 20 10

HEXADECIMAL CONVERSION TABLES

TECHNICAL INFORMATION

^ APPENDIX F

TECHNICAL INFORMATION PI

Notes:

Tl TECHNICAL INFORMATION

TECHNICAL INFORMATION

HOW GW-BASIC ALLOCATES VARIABLES

Offset
Length
(in bytes)

Description Comments

0 1 Type The value of the variable type is:

2 (integers)
3 (strings)
4 (single-precision numbers)
8 (double-precision numbers)

1 1 to n Name - Bytes 1 and 2 contain the first 2
characters of the name

- Byte 3 contains a number
indicating how many more
characters are in the name

- Bytes 4 to n contain the additional
characters

4 + n 2 Integer Integers are stored low byte first,
then high byte

3 String
Descriptor

- First byte contains the string length
(0-255)

- Second byte is the low byte of the
offset into the GW-BASIC's data

segment

- Third byte is the high byte of the
offset into the GW-BASIC's data

segment

4 Single
Precision

In floating point format

8 Double

Precision

In floating point format

TECHNICAL INFORMATION

TECHNICAL INFORMATION

Note that 3 bytes are reserved for a variable name, even if the name
is one or two characters long. In this case the data item itself (or the
string descriptor) begins with an offset of 4.

INTERNAL REPRESENTATION OF FLOATING POINT
NUMBERS

The following section describes the internal representation of numbers
in GW-BASIC.

Single Precision - 24 bit mantissa

1 0 1 1 I 2 I 3 I

I loman | |S|himan| exp

where loman = the low mantissa

S =1 the sign
himan = the high mantissa
exp = the exponent
man = himan:...:loman

- If exp = 0, then number = 0

- If exp <>0, then the mantissa is normalised and
number = sign * .1 man * 2 ** (exp -sbh)

That is, in single precision (hex notation - bytes low to high)

00000080 = .5

00008080 = -.5

Double Precision - 56 bit mantissa

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1

I loman | | | | | |S|himan| exp |

PS TECHNICALINFORMATION

TECHNICAL INFORMATION

MEMORY MAP

The map below illustrates the system memory when GW-BASiC is load-
ed (address values are approximate).

separate

segment

System interrupt
vectors, variables,

etc.

MS-DOS

approximately 12 K

MS-DOS workarea

QW-BASIC 2.01

code

approximately 60 K

QW-BASIC

Communications buffer(s)

Interpreter
Workarea

approximately 3 K

GW-BASIC Program

Scalar Variables

Arrays

String Space

GW-BASIC stack

128 Bytes
(or set by the CLEAR

command)

GW-BASIC Code Segment

GW-BASIC Data Segment

* see below

Data Segment
max 64K bytes
(or set by the CLEAR
command)

Stack

System memory, screen memory

ROM

Fig. F-1 Memory Map

TECHNICALINFORMATION T3

TECHNICAL INFORMATION

* In the GW-BASIC workarea there are some variables available to
the user, which may be accessed via the PEEK or POKE. These
variables are not at the actual addresses specified; the PEEK and
POKE map the specified addresses to the actual locations.

The paragraph address of the GW-BASIC Data Segment may be ob
tained by examining the word at absolute location 0:51 OH. (This Is an
actual address).

This Information Is not required to execute PEEKs and POKEs.. a DEF
SEG statement sets up the right segment. In this case, the following
locations are of significance:

Address

(Decimal)
Offset

(Hex)
Meaning

46 2EH Current line number

839 347H Current Error line

number

48 30H Offset of start of

Program

856 358H Offset of start of

Variables

106 6AH Keyboard buffer
PEEK/POKE location

TECHNICALINFOftMATION

TECHNICAL INFORMATION

The first four locations are word variables which are mapped to the
given addresses when the PEEK function and POKE statements are
used. Note that these are 2-byte variables; thus, execution of the pro
gram line

1234 X = PEEK(46) -I- 256 * PEEK(47)

sets X = to the value 1234, which is the current line number.

POKE-ing a 0 to the location 106 (decimal) will clear the GW-BASIC
line buffer. The GW-BASIC line buffer holds characters received from
the system keyboard buffer. These characters are handled by the GW-
BASIC screen editor. Any other value POKE-ed to this address will
have no effect.

PEEK(106) will return a 0 if no keyboard characters are available, and
a 1 if any are available.

TECHNICALINFORMATION ^

TECHNICAL INFORMATION

Notes:

F^S TECHNICALINFORMATION

CONVERSION OF PROGRAMS
TO GW-BASIC

APPENDIX G

CONVERSION OF PROGRAMS TO GW-BASIC 5^

CONVERSION OF PROGRAMS TO GW-BASIC

INTRODUCTION

GW-BASIC bears a simjiarity to many BASICs. Your personal com
puter will support programs written for an extensive variety of
microcomputers. For programs written in a BASIC ottier than GW-
BASIC, some minor adjustments may be necessary before running
them. This appendix highlights some specific areas to examine when
converting programs.

STRING DIMENSIONING

LENGTH OF STRINGS

GW-BASIC strings are of variable lengths. Therefore, all statements
that declare the length of strings should be deleted. For example, in
a statement which dimensions a string array for 'J' elements of lengths
T such as:

DIM A$(I,J)

the conversion for GW-BASIC would be:

DIM A$(J)

SUBSTRINGS

In GW-BASIC the following functions are used to take substrings of
strings:

LEFT$
MID$
RIGHT$

Other forms, such as:

A$(l) (to access the Ith character in A$) or,
A$(I,J) (to take a substring of A$ from position I to J) should t)e chang- '
ed as follows:

CONVERSION OF PROGRAMS TO GW-BASIC

CONVERSION OF PROGRAMS TO GW-BASIC

Other BASICS GW-BASIC

X$ = A$(I) X$ = MID$(A$,I,1)
^ X$ = A$(I.J) X$ = MID$(A$.I,J-I + 1)

If the substring reference is on the left side of an assignment and X$
is used to replace characters in A$, then the conversion should be car
ried out as follows:

Other BASICS GW-BASIC

A$(I) = X$ MID$(A$,I,1) = X$
A$(I.J) = X$ MID$(A$.I.J-I + 1) = X$

CONCATENATION

GW-BASIC uses a plus (-i-) sign to denote string concatenation. Other
BASICS use a comma (,) or an ampersand (&) which should be altered
accordingly.

^ MAT FUNCTIONS

Some BASICS incorporate MAT functions for array handling. To con
vert a program which uses these functions to the GW-BASIC environ
ment, it is necessary to rewrite the program including FOR...NEXT
loops.

MULTIPLE ASSIGNMENTS

Some BASICS allow the following syntax:

10 LET D = E = 0

to set D and E equal to zero. GW-BASIC interprets the second equal
sign as a logical operator and sets D equal to -1 if E was equal to 0.
This statement' should therefore be broken up into two assignment
statements as follows:

10 D = 0:E = 0

CONVERSION OF PROGRAMS TO GW-BASIC ^

CONVERSION OF PROGRAMS TO GW-BASIC

MULTIPLE STATEMENTS

Multiple statements on a GW-BASIC line must always be separated
by colons (:), unlike some other BASICs which use a backslash (\)
instead.

PEEKS AND POKES

The execution of programs containing PEEK and POKE instructions
may vary from machine to machine. It is therefore necessary to analyse
the purpose of these Instructions in other BASIC programs before
translating the same functions into GW-BASIC.

iF...THEN...[ELSE...]

Not all BASICS feature the optional ELSE clause which is performed
in the event of a test proving false.

For example, a BASIC statement may originally be;

10 IF D = E THEN 30 ^
20 PRINT "NOT EQUAL" : GOTO 40
30 PRINT "EQUAL" ^
40 REM CONTINUE

The above statement sequence will work correctly, but it may be op
timized in GW-BASIC as follows:

10 IF D = E THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"
20 REM CONTINUE

FILE I/O

In some BASICs, the I/O to disk may differ from GW-BASIC.

GRAPHICS

Selecting screen attributes and drawinq objects on the screen can vary
from BASIC to BASIC.

^ CONVERSION OF PROGRAMS TO GW-BASIC

INDEX

Absolute value function, 5-368
ABS function, 5-368
Adding program lines, 3-16
Arctangent function, 5-369
Arithmetic operators, 3-7,4-18
priority of, 3-7

Arrays, 5-11
defining arrays, 5-25
one-dimension arrays, 5-13

assigning values, 3-76,5-15
tutorial on using arrays, 3-73
two-dimension arrays, 5-17

assigning values, 3-84,5-19
ASC function, 5-102
ASCII code, A-3
Assembly language subroutines, 5-29
calling

calling from GW-BASIC, 5-33
using MS-FORTRAN calling conventions, 5-39
using the CALL statement, 5-33
using the CALLS statement, 5-39
using the USR function, 5-39

loading into memory, 5-30
using POKE, 5-30
using BLOAD, 5-31

memory allocation, 5-29
Asynchronous communications, 5-51
communication I/O, 5-53
COM(n) statement, 5-66
EOF function, 5-61
GET (COM flies) statement, 5-62
INPUT$ function, 5-63
LOC function, 5-64
LOF function, 5-65
ON COM(n) GOSUB statement, 5-66
OPEN COM statement, 5-69
opening communications flies, 5-52
PUT (COM files) statement, 5-72
ATN function, 5-369
AUTO command, 3-14
starting AUTO, 3-14,5-426

_ stopping AUTO, 3-25,5-427
Automatic program line numbers, 3-14,5-426

INDEX-1

INDEX

B
Backspace key, 5-194
BEEP statement, 5-310
Bell, 5-310
BLOAD command, 5-42
with assembly language subroutines, 5-31

Branching, 5-73
conditional

IF...GOTO [...ELSE] statement, 5-77
IF...THEN [...ELSE] statement, 5-77
KEY(n) GOSUB, 5-83
nested IF statements, 5-80
ON...GOSUB statement, 5-81
ON...GOTO statement, 5-81
ON KEY (n) GOSUB, 5-83
tutorial, 3-60

unconditional
GOSUB...RETURN, 5-74
GOTO statement, 5-76
tutorial, 3-57

BSAVE command, 5-44

CALL statement, 5-33
CALLS statement, 5-39
Catalog (directory) of file names, 5-175
CDBL function, 5-103
Chaining programs, 5-89
CHAIN statement, 5-90
COMMON statement, 5-95
MERGE command, 5-99

Changing working directory, 5-352
Character set, 4-7
CHDIR command, 5-352
Child processes, 5-283
CHR$ function, 5-104
CINT function, 5-105
CIRCLE statement, 5-227
CLEAR command, 5-311
Clear memory, 5-428
Clear screen, 5-380
CLOSE statement
for I/O to a device, 5-116
for sequential and random access files, 5-143
Closing open files using CLEAR statement, 5-311
CLS statement, 5-380

INDEX-2

INDEX

COLOR statement
high resolution mode, 5-234
medium resolution mode, 5-231
super resolution mode, 5-236
text mode, 5-382
COLOR (text mode) statement, 5-382
Coloring areas, 5-252
Communicating with other computers and
peripherals, 5-51
communication I/O, 5-53
COM(n) statement, 5-66
EOF function, 5-61
GET (COM files) statement, 5-62
INPUT$ function, 5-63
LOC function, 5-64
LOF function, 5-65
ON COM(n) (jOSUB statement, 5-66
OPEN COM statement, 5-69
opening communications files, 5-52
PUT (COM files) statement, 5-72
COM(n) statement, 5-66
event trapping, 5-212
Command level, 4-3
Constants, 4-10
string constants, 4-10
numeric constants, 4-10

single and double precision, 4-12
Constant, 3-6
CONT command, 5-422
Control characters, 4-35
Conversion of programs to GW-BASIC, G-1
Conversion functions, 5-101
ASC function, 5-102
CDBL function, 5-103
CHR$ function, 5-104
CINT function, 5-105
CSNG function, 5-106
decimal to hexadecimal, 5-107
decimal to octal, 5-108
HEX$ function, 5-107
numeric to double precision, 5-103
numeric to integer (rounding), 5-105
numeric to single precision, 5-106
numeric to string, 5-109
OCT$ function, 5-108
STR$ function, 5-109
string to ASCII code, 5-102
string to numeric, 5-110

for random access files, 5-144

INDEX-3

INDEX

VAL function.S-l 10
COS function, 5-370
Cosine function, 5-370
CSNG function, 5-106
CSRLIN function, 5-385
CTRL BREAK, 5-194
CTRL END, 5-192
CTRL HOME. 5-190
CTRL left arrow. 5-191
CTRL RETURN, 5-194
CTRL right arrow, 5-191
Cursor

define position on screen, 5-387
cursor position function, 5-385
use in editing, 5-190
CVD function. 5-144
CVI function, 5-144
CVS function. 5-144

D
Data files, 5-129
DATA statement, 5-290
DATE function, 5-313 _
DATE statement, 5-313
Debugging, 5-113
TRON (TRACE ON) command, 5-114
TROFF (TRACE OFF) command, 5-114
Decimal to hexadecimal conversion, 5-107
Decimal to octal conversion, 5-108
Declare variable type, 5-315
DEF SEG statement, 5-46
DEF USR statement, 5-47
DEFINT/SNG/DBL/STR, 5-315
DEL key, 5-194
Deleting file (program) from disk, 3-25,5-173
Deleting program lines, 3-17
Device independent I/O, 4-31
Devices, 5-115
error codes, 5-117
naming, 4-34
send listing to, 5-437
setting line width, 5-127
Dimension
number of elements allowed, 5-25 ('
DIM statement, 5-21
tutorial, 3-79,3-87

Direct Input, 5-16,5-20

INDEX-4

INDEX

Direct mode, 4-3
Directories (MS-DOS)
directory paths, 5-346
changing working directory, 5-352

_ current directory, 5-349
making a directory, 5-350
removing a directory, 5-354
working directory, 5-349

Directory listing of disk flies, 5-175
Directory paths, 5-346
Disk data files, 5-129
CLOSE statement, 5-143
EOF function, 5-145
LOG function, 5-156
LOF function, 5-157
OPEN statement, 5-160
opening files, 5-160
random access files, 5-135

accessing, 5-138
allocating space for variables, 5-146
converting string to numeric, 5-144
converting numeric to string, 5-159
creating, 5-136
CVI,CVS,CVD functions, 5-144
FIELD statement, 5-146
GET statement, 5-149
LSET statement, 5-158
MKI$, MKS$, MKD$ functions, 5-159
PUT statement, 5-167
reading record into random buffer, 5-149
RSET statement, 5-158
writing record to file, 5-167

sequential files, 5-130
accessing, 5-133
adding data to, 5-134
creating, 5-130
INPUT # statement, 5-151
INPUTS function, 5-153
PRINT# statement, 5-164
PRINT# USING statement, 5-164
LINE INPUT# statement, 5-154
reading lines from disk data, 5-154
reading numerical data from file, 5-151
reading characters from file, 5-153
WRITE# statement, 5-170
writing data to file, 5-170

terminating I/O to file, 5-143
VARPTR function, 5-169

INDEX-5

INDEX

Disk files, 5-171
closing all open data files, 5-172
deleting files from disk, 5-173
display file names (directory), 5-175
execute program, 5-178,5-432
FILES command, 5-175
handling disk files, 4-31
KILL command, 5-173
LOAD command, 5-180
Load program, 5-180
move file to another directory, 5-182
NAME command, 5-182,5-184
naming files, 4-32
rename file, 5-184
RESET COMMAND, 5-172
RUN command, 5-178,5-432
SAVE command, 5-186
save program, 5-186
Display file names, 3-23,5-175
Display program, 3-19
Display program results, 3-20
Down arrow (keypad), 5-190
DRAW statement, 5-238
Drawing arcs, 5-228
Drawing circles and ellipses, 5-228
Drawing rays, 5-228 ' '
Dump (graphics and text) 5-386 ^
Duplicate Definition in nnnnn error, 5-22,5-23

E
e function, 5-371
Editing, 5-189
correcting current line, 5-195
editing program lines (tutorial), 3-17
modifying program lines, 5-198
using special screen editor keys, 5-190
END key, 5-192
END statement, 5-420
Entering data, 5-289
Entering programs, 3-13
ENVIRON statement, 5-316
ENV1R0N$ function, 5-318
EOF function, 5-61
for sequential and random access files, 5-145
ERASE statement, 5-26
Erasing program files from disk, 5-173
Erasing the screen, 5-380

INDEX-e

INDEX

ERDEV function, 5-117, 5-202
ERDEV$ function, 5-117,5-202
ERL function, 5-203
ERR function, 5-203

_ Error codes, C-1
r\ Error handling, 5-201

device, 5-117
Error messages, C-1
ERROR statement, 5-205
Error trapping, 5-207
program continuation, 5-209
ESC key, 5-194
Event trapping, 5-211
Execute a program, 5-178,5-432
Exit GW-BASIC, 2-4,3-27
Exit temporarily to MS-DOS, 5-283
EXP function, 5-371
Expressions, 4-18
as subscripts 5-14,5-18

FIELD statement, 5-146
FILES command, 5-175
FIX function, 5-372
Floating point numbers
internal representation, F-4
Flow of control, 5-73
FOR...NEXT statement, 5-304
tutorial, 3-63
FRE function, 5-320
Function keys
deRning keys, 5-331
KEY statement, 5-328

Functional operators, 4-27,5-449
Functions
conversion, 5-101
mathematical, B-1
numeric, 5-367
string manipulation, 5-439
user-uelined, 5-449

INDEX-7

INDEX

G
Garbage collection, 5-320
GET (COM files) statement, 5-62
GET (graphics) statement, 5-243
GET statement, 5-149
GML movement commands, 5-238
GOSUB...RETURN, 5-74
GOTO statement, 5-76
Graphics, 5-215
animation, 5-266
CIRCLE statement, 5-227
COLOR statement 5-231
coloring areas, 5-252
converting physical coordinates to world, 5-257
displaying points, 5-226
DRAW statement, 5-238
drawing and coloring lines, shapes, 5-226
drawing arcs, 5-228
drawing circles and ellipses, 5-228
drawing lines, 5-245
drawing rays, 5-229
drawing rectangles, 5-245
GET (graphics) statement, 5-243
GML movement commands, 5-238
LINE statement, 5-245
LOCATE (graphics) statement, 5-248
moving cursor to designated position, 5-248
PAINT statement, 5-252
PMAP function, 5-257
POINT function, 5-259
PRESET statement, 5-261
PSET statement, 5-262
PUT statement, 5-264
screen coordinates, 5-223
SCREEN statement, 5-267
VIEW statement, 5-224
viewport, 5-224
WINDOW statement, 5-224
world coordinates, 5-224

Graphics Modes, 5-219
high resolution mode (SCREEN 2), 5-221
medium resolution mode (SCREEN 1), 5-220
super resolution mode (SCREEN 3), 5-222
GW-BASIC
exit GW-BASIC, 2-4
getting started, 2-3
loading GW-BASIC, 2-3

INDEX-8

INDEX

major features, 1-3
reserved words, D-1
system requirements, 1-5
GWBASIC command, 5-321

H
Hexadecimal conversion tables, E-2
HEX$ function, 5-107
High resolution mode (SCREEN 2), 5-221
HOME key, 5-190

IF...GOTO [...ELSE] statement, 5-57
IF...THEN [...ELSE] statement, 5-77
Initializing GW-BASIC, 5-321
INKEY$ function, 5-295
INP function, 5-118
Input data, 3-32,5-289
DATA statement, 5-290
INKEY$ function, 5-295
INPUT statement, 5-297
INPUT$ statement, 5-299
LET statement, 5-300
LINE INPUT statement, 5-300
READ statement, 5-292
RESTORE statement, 5-294
tutorial, 3-32
INPUT statement, 5-15, 5-19,5-297
INPUT # statement, 5-151
INPUT$ function, 5-63,5-299
with sequential files, 5-153

INS key, 5-192
INSTR function, 5-440
lOCTL function, 5-119
IOCTL$ function, 5-121
I/O information, 5-115
allowing I/O to a device, 5-122
byte read from a port, 5-118
CLOSE statement, 5-116
device independent I/O, 4-31

— redirecting, 5-325
setting line width, 5-127
suspending program execution to monitor status

INDEX-9

INDEX

of input port, 5-126
terminating I/O to a device, 5-116
transmitting byte to outport port, 5-125

Iteration, 5-303

K
KEY(n) statement, 5-83
event trapping, 5-212
KEY statement, 5-329
Keywords
direct entry, 4-37
KILL command, 5-173

LCOPY command, 5-386
Leaving GW-BASIC, 2-4
Left arrow (keypad), 5-190
Left-justify string, 5-391
LEFT$ function, 5-441
LEN function, 5-442
Length of given string, 5-442
LET statement, 5-300
LINE INPUT statement, 5-301
LINE INPUT# statement, 5-154
LIST command, 3-19,5-429
Listing a program, 3-19,5-429
LLIST command, 3-19,5-429
LOAD command, 5-180
Loading a program into memory, 3-24,5-80
Loading GW-BASIC, 2-3
LOG function, 5-64
for sequential and random access files, 5-156
LOCATE (graphics) statement, 5-248
LOCATE (text mode) statement, 5-387
LOF function, 5-65
for sequential and random access files, 5-157
LOG function, 5-374
LOOPING
FOR...NEXT statement, 5-304
WHILE...WEND statement, 5-307
tutorial, 3-63 „

Logical operators, 4-23
LPOS function, 5-390
LPRINT command, 3-20,5-393
LPRINT USING statement, 5-396
LSET statement, 5-158,5-391

INDEX-10

INDEX

M
Machine language routines
accessing, 5-47
loading, 5-42
saving, 5-44
Making a directory, 5-350
Mathematical functions, B-1
Medium resolution mode, 5-220
Memory Map, F-5
MID$ function, 5-443
MID$ statement, 5-444
MKDIR command, 5-350
MKI$, MKS$, MKD$ functions, 5-159
Modes of operation, 4-3
direct mode, 4-3
program mode, 4-4
Move program file to another directory, 5-182
Multiple directories, 5-345
Multiple display pages, 5-217
Music, 5-357

N
NAME command, 5-182,5-184
natural logarithm, 5-374
Nested IF statements, 5-80
Nested FOR...NEXT loops, 5-305
tutorial, 3-69
NEW command, 5-428
Numeric functions, 5-367
Numeric to double precision conversion, 5-103
Numeric to integer conversion (rounding), 5-105
Numeric to string conversion, 5-109
in random access files, 5-159

o
OCT$ function, 5-108
ON COM(n) GOSUB statement, 5-66
ON...GOSUB statement, 5-81
event trapping, 5-213

_ ON.. .GOTO statement, 5-81
ON ERROR GOTO statement, 5-207
ON KEY(n) GOSUB statement, 5-83
event trapping, 5-212
ON PLAY(n) GOSUB statement, 5-358
event trapping, 5-212

INDEX-11

INDEX

ON TIMER(n) GrOSUB statement, 5-333
event trapping, 5-212
OPEN statement, 5-160
Opening data files, 5-160
OPEN COM statement, 5-69
Opening communications files, 5-52
Operators, 4-18
arithmetic operators, 4-18
functional operators, 4-27
logical operators, 4-23
relational operators, 4-22
string operators, 4-28
OPTION BASE statement, 5-28
OUT statement, 5-125
Output to screen or printer, 5-379
CLS statement, 5-380
COLOR (text mode) statement, 5-382
CSRLIN function, 5-385
LCOPY command, 5-386
LIST command, 5-429
LLIST command, 5-429
LOCATE (text mode) statement, 5-387
LPOS function, 5-390
LSET and RSET statements, 5-391
POS function, 5-392
PRINT and LPRINT statements, 5-393 f
PRINT USING and LPRINT USING statements,
5-396
SCREEN function, 5-402
SCREEN statement, 5-403
SPC function, 5-408
TAB function, 5-409
VIEW PRINT statement, 5-410
WIDTH statement, 5-411
WRITE statement, 5-416

Output data (tutorial), 3-46

PAINT statement, 5-252
PEEK function, 5-48
PLAY statements, 5-358,5-360
error trapping, 5-212
PLAY(n) nmction, 5-364
PMAP function, 5-257
POINT function, 5-259
POKE statement, 5-49
with assembly language subroutines, 5-30
POS function, 5-392

INDEX-12

INDEX

PRESET statement, 5-261
PRINT statement, 5-393
Print head position, 5-390
Printing a dump, 5-386

— Printing a program listing, 3-19, 5-393, 5-429
r^\ Printing program results, 3-20, 5-379

PRINT# statement
for sequential files, 5-164
PRINT# USING statement
for sequential files, 5-164
PRINT USING statement, 5-396
Program handling, 5-425
Program interrupts, 5-417
automatic interrupt, 5-419
manual interrupt, 5-418
programmable interrupts, 5-420
CONT statement, 5-422
END statement, 5-420
STOP statement, 5-421
SYSTEM command, 5-423

Program mode, 4-4
PSET statement, 5-262
PUT (COM files) statement, 5-72
PUT (graphics) statement, 5-264
animation, 5-266
PUT statement
for random access files, 5-167

R
Random access Hies, 5-135
accessing, 5-138
allocating space for variables, 5-146
converting string to numeric, 5-144
converting numeric to string, 5-159
creating, 5-136
CVI,CVS,CVD functions, 5-144
FIELD statement, 5-146
GET statement, 5-149
LSET statement, 5-158
MKI$, MKS$, MKD$ functions, 5-159
reading record into random buffer, 5-149
RSET statement, 5-158
writing record to file, 5-167
Random number generation
returning random number 0 to 1,5-338
reseeding random number generator, 5-335
RANDOMIZE statement, 5-335

INDEX-13

INDEX

READ statement, 5-292
READ/DATA statement, 3-32,5-16,5-20
Real time event trapping, 5-333
Redirection of I/O, 5-325
Relational operators, 4-22
REM statement, 3-14,5-337
Remark statements, 3-14
Removing a directory, 5-354
Rename a disk file, 5-184
RENUM command, 5-433
Renumber program lines, 5-433
Replace part of string, 5-444
RESET command, 5-172
Reserved words, D-1
RESTORE statement, 5-294
RESUME statement, 5-209
RETURN statement, 5-74
event trapping, 5-214
Right arrow (keypad), 5-190
Right-justify a string, 5-391
Right tab, 5-193
RIGHTS function, 5-445
RMDIR command, 5-354
RND function, 5-338
Rounding function, 5-105
RSET statement, 5-391, 5-158 ^
Run a program file, 3-21,5-178
RUN command, 5-178,5-432

SAVE command, 3-22,5-186,5-435
Save program to disk, 3-22,5-186,5-435
SCREEN function, 5-402
SCREEN statement, 5-216,5-267,5-403
Screen attributes, 5-215
Screen coordinates, 5-223
Screen editor keys, 5-190
Screen specifications, 5-403
apage and vpage parameters, 5-405
default values, 5-405
mode and burst parameters, 5-404
selecting change mode, 5-216
selecting screen attributes, 5-216
screen width, 5-406 '

Search for substring, 5-440
Send program listing to device or file, 5-437

INDEX-14

INDEX

Sequential files, 5-130
accessing, 5-133
adding data to, 5-134
creating, 5-130

— INPUT # statement, 5-151
INPUT$ function, 5-153
PRINT# statement, 5-164
PRINT# USING statement, 5-164
LINE INPUT# statement, 5-154
reading lines from disk data, 5-154
reading numerical data from file, 5-151
reading characters from file, 5-153
WRITE# statement, 5-170
writing data to file, 5-170

Set numeric variables to zero, 5-311
Set string variables to null, 5-311
Setting current time, 5-340
SON function, 5-375
SHELL command, 5-286
Sign determination function, 5-375
SIN function, 5-376
Sine function, 5-376
Spaces in printed text, 5-408,5-446
SPACE! function, 5-446
SPC function, 5-408
Special screen editor keys, 5-190
SQR function, 5-377
Square root function, 5-377
SOUND statement, 5-365
Sounds
BEEP statement, 5-310
Music generation, 5-358

Starting GW-BASIC, 5-321
String manipulation, 5-439
INSTR function, 5-440
LEFT! function, 5-441
LEN function 5-442
MID! function, 5-443
MID! statement, 5-444
RIGHT! function, 5-445
SPACE! function, 5-446
STRING! function, 5-447

String operators, 4-28
String to ASCII conversion, 5-102
String to numeric conversion, 5-110
for random access files, 5-144
STRING! function, 5-447

INDEX-15

INDEX

STOP statement, 5-421
Subroutines, assembly language, 5-29
calling

calling from GW-BASIC, 5-33
using MS-FORTRAN calling conventions, 5-39 —
using the CALL statement, 5-33 ^
using the CALLS statement, 5-39
using the USR function, 5-39

loading into memory, 5-30
using POKE, 5-30
using BLOAD, 5-31,5-42

memory allocation, 5-29
nested subroutines, 3-94
tutorial, 3-91

Subscript
minimum value default, 5-21
using variables as subscripts, 5-14,5-18
using expressions as subscripts, 5-14, 5-18

Super resolution mode, 5-222
SWAP statement, 5-339
Syntax conventions, 4-39
SYSTEM command, 5-423

TAB function, 5-409
TAN function, 5-378
Tangent function, 5-378
Technical information, F-1
Text mode (SCREEN 0), 5-217
Time
setting current time, 5-340
retrieving current time, 5-340
TIME$ function, 5-340
TIME$ statement, 5-340
TIMER function 5-342
TIMER statement, 5-333
event trapping, 5-212
TRON (TRACE ON) command, 5-114
TROFF (TRACE OFF) command, 5-114
Truncating function, 5-372
Tutorial, 3-1

u
up arrow (keypad), 5-190
User-defined functions, 5-449

INDEX-16

INDEX

VAL function, 5-110
Variables, 4-13
allocation, F-3
assubscripts, 5-14,5-18
assigning value to, 5-300
declaring variable type, 4-14,5-315
exchanging values of two variables, 5-339
explanation of (tutorial), 3-5
Hnding address, 5-50
memory requirements, 4-15
names, 4-13
setting value to zero or null, 5-311
subscripted, 5-13
type conversion, 4-16
VARPTR function, 5-50,5-343
for sequential and random access files, 5-169
VIEW statement, 5-224,5-272
VIEWPRINT statement, 5-410
Viewports, 5-224

w
WAIT statement, 5-126
WHILE . WEND statement, 5-307
WIDTH statement, 5-127,5-267
WINDOW statement, 5-279
Windows
VIEW statement, 5-224, 5-272
VIEWPRINT statement, 5-410
WINDOW, 5-279

World coordinates, 5-224
WRITE statement, 5-416
WRITE# statement, 5-170

INDEX-17

NOTES

INDEX-18

