

PUBLISHED BY
Microsoft Press
A Drvision of Microsoft Corporation
10700 Northup Way, Bellevue, Washington 98004

Copyright © 1984 by Peter Norton
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher:

Library of Congress Cataloging in Publication Data
Norton, Peter; 1943-
Exploring the IBM PCjr Home Computer
Includes Index.
1. IBM PCGjr (Computer) 1. Title.
I1. Title: Exploring the LB.M. P.C.jr home computer
QA76.8.12593N67 1984 001.64 84-3828
ISBN 0-914845-02-0

Printed and bound in the United States of America
123456789 DODO 890987654

Distributed to the book trade in the United States and Canada
by Simon and Schuster;, Inc.

CompuServe® is a registered trademark of CompuServe Information Services, Inc. Digital Research® is a
registered trademark of Digital Research. Epson® is a registered trademark of Epson America, Inc. IBM®,
PCjr™, and XT™ are trademarks of International Business Machines Corporation. Intel® is a registered
trademark of Intel Corporation. Microsoft®, Microsoft® Word, Microsoft® Flight Simulator, and Microsoft®
Multiplan™ are trademarks of Microsoft Corporation. Motorola® is a registered trademark of Motorola, Inc.
Texas Instruments® and TI® are registered trademarks of Texas Instruments, Inc. THE SOURCESM is a
service mark of Source Telecomputing Corporation, a subsidiary of The Reader’s Digest Association, Inc.
The Norton Utilities™, DiskLook™, UnErase™, SecMod™, FileHide™, FileFix™, SSAR™, Hard-
Look™, and Hard UnErase™ are trademarks of Peter Norton. UCSD Pascal® is a registered trademark of
the Regents of the University of California.

Introduction: Junior Magic at Home

Even if we have no immediate practical use for the inside scoop on how the
PCjr works, this knowledge is interesting in itself and potentially very useful.

The second reason for exploring the PCjr is to become able to move on to
more advanced uses of the machine. If we want to write programs for Junior,
the more we understand this computer, the better the programs we are going
to produce.

But whatever our reasons for wanting to know more, here is the place to
get into the real workings of this remarkable computer. Before we start,
though, let’s settle on a little bit of groundwork. Every book has to make some
assumptions about its readers; otherwise, it could end up trying to please the
world, but satisfying no one.

I’'ll be assuming that you have had your PCjr long enough to have become
comfortable using it. Especially if you are fairly new to computers, I hope that
you have read the first book in this series, Discovering the IBM PCjr Home
Computer. This second book is complete in itself, but it does build on the
information presented in Discovering, so many of you will probably find it
helpful to read these books in order.

It will also be helpful, though again not necessary, for you to know a little
about the BASIC programming language. I’ll be presenting a few programming
examples to illustrate certain features of the PCjr, but for those of you who
don’t yet know BASIC, we’ll move from simple programs to more complex
ones. Since BASIC uses very English-like language and I’ll be explaining
what’s going on, you should have very little difficulty following the logic of
these program examples.

Some authors of books about the inner workings of computers assume that
you already understand enough to know what does what and how everything
fits together. In this book, I'll try to provide that framework. Of course, |
present lots of information that will be of special interest to computer profes-
sionals and hobbyists, but, as much as I can, I’'ll make it accessible to those of
you who are unfamiliar with the concepts and the terminology.

More than anything else, this book bridges the gap between beginner’s
material, which helps you start out, and technician’s material, which lays out
the facts coldly and with little or no explanation. You will probably find most, or
all, of what you want to know about Junior in this book, but in case you need to
know where to look for more information, I have included a list for further
reading as an appendix.

In this book, we will take a complete tour of the PCjr. First, in Chapter 1
we’ll take a look at the IBM personal computer family; then, in Chapters 2
through 5, we’ll look at the basic parts of the PCjr and see how the computer
does its thinking and its work. Then we will move on in Chapter 6 to the PCjr’s
elementary education, which is embodied in its ROM-BIOS programs. We

xi

EXPLORING THE IBM PCjr

will take a look at a little assembly language in Chapter 7, and examine the
cartridges in Chapter 8.

For the PCjr’s higher education, Chapter 9 will explain the disk operating
system, called DOS, which adds special layers of sophistication. The key to an
operating system is disk storage, so in Chapter 10 we’ll delve into the mysteries
of disks.

When the computer shows us its stuff, it uses a display screen. So Chapters
11 through 13 will cover the many aspects of Junior’s displays.

Lots of other pieces of magic are also incorporated into the PCjr. We'll
cover the telephone connection in Chapter 14, sounds in Chapter 15, the
keyboard in Chapter 16, and some odds and ends in Chapters 17 and 18. More
mysteries of the built-in ROM-BIOS will be covered in Chapter 19, and we’ll
end in Chapter 20 with the secrets of programming access to the PCjr.

That’s the magic we will find here, as we go exploring the IBM Personal
Computer Junior. ‘

1: The IBM PC Family

Naturally, to hold down the cost of the PCjr, something had to be given up.
A modest fraction of the speed—the computing power—was sacrificed to
make it possible to eliminate some costly parts. Also, much of the expansion
capability of the PC and the XT was lost, again to save the cost of the circuitry
that makes expansion possible. But on the whole, the main parts of the PC and
XT were left intact in Junior, so that this little system could have most of the
capabilities and be able to use most of the programs of the first two models.

Although some speed and much of the expansion capability were given up,
many wonderful features were added to the PCjr—features that aren’t avail-
able on the original PC and XT. These are features that are particularly nice in
home computers but of much less use or interest in business and professional
computers. They include improved color graphics and much richer sound-
making ability, both important for educational and entertainment programs.

As we explore the PCjr in this book, I will mention topic-by-topic how it
differs from its bigger brothers; I’ll talk about where it has more, where it has
less, and where it is just plain different. The main fact, though, and the most
important thing to remember, is that the PCjr really is a full-fledged IBM
personal computer. It may be the baby of the family, but it is a full-blooded
family member.

And now, on with the show, and into exploring the magic of the IBM
Personal Computer Junior. N

2: A Tour Through the Hardware Store

Figure 2-2. The front of the PCyr system unit showing
the diskette drive, two cartridge slots,
and infrared light sensor

The drive is half-high because it only takes up half as much vertical space
as the diskette drives used on the PC and XT. Those older, standard-size
diskette drives are about 32 inches high and 6 inches wide (9 by 15 centime-
ters). Through improvements in design and materials, it has now become
possible to make inexpensive and reliable diskette drives that are only half the
height of the old units, or about 1% inches (4.5 centimeters) high; the width
stays the same, though, since it fits the size of the diskette. These new drives
are made half the height of the older design so that two can be installed in the
space allotted to one full-height drive—a useful feature for upgrading older
computers. In the case of the PCjr, which was designed from scratch, either
height diskette drive could have been used. The half-high drive was chosen to
help make the system unit lighter and more compact.

The next part of the diskette drive description specifies that it uses 5%-
inch diskettes. Although some computers use a larger, 8-inch-diameter diskette,
most popular microcomputers, including all the IBM personal computers, use
the 5%-inch size. Using the same diskette size and the same way of storing
information on the diskette are key factors in the PCjr’s ability to use nearly all
of the software developed for the PC and XT.

While we are on the subject, we ought to make note of one bit of terminol-
ogy that might cause some confusion. Because the 8-inch size is called a
diskette, our 5%-inch size is sometimes called a mini-diskette. So, if you are
ordering supplies from a computer catalog and see a listing for mini-diskettes,
don’t be confused—that’s what you need for your PCjr. There are also several
kinds of micro-diskettes, which are about 3 or 4 inches in diameter; our PCjr
doesn’t use them.

2: A Tour Through the Hardware Store

Figure 2-3. The back of the PC]r system unit
showing the 13 sockets

these sounds is partly wasted if we use its built-in speaker.

All the sound signals that go to the speaker, though, also go to the audio
output jack, and some of the PCjr’s sounds o7/y go to the audio jack. When a hi-
fi cable is plugged into this audio jack, the PCjr’s built-in speaker is automati-
cally shut off so that it will not interfere with the better-quality sounds coming
from the hi-fi. The electrical signals sent to this jack are adjusted to the level
needed for input into a hi-fi amplifier. They are not strong enough to be used
directly with a loudspeaker. Ordinarily, this jack will be connected to the AUX,
or auxiliary input of an amplifier. The better sound quality that can be pro-
duced through a hi-fi system can be very valuable for entertainment programs,
and it is nice for any program that creates sounds.

The next connection on the system unit’s back is the power input, labeled
P; this is where we plug in Junior’s power transformer. The PCjr has a two-stage
power supply. The first stage is the transformer, which converts our high-
voltage, AC household current down to a safer 17 volts, still AC. The 17-volt
power that comes out of Junior’s transformer plugs into this P socket on the
back of the system unit. The step-down transformer is outside the PCjr’s
system unit for two main reasons: First, it makes the PCjr safer, since there is
nothing but low voltages inside the system unit; and second, it separates the
heat-sensitive circuitry inside the system unit from the heat-generating trans-
former. The second stage of the power supply is inside the system unit, and
we’ll cover it shortly.

Next comes the cassette recorder outlet, labeled C. This socket is used to
connect an ordinary cassette tape player to the computer. Cassette tapes have
been used as a way for very low-priced home computers to store programs and
data. Cassette recording is similar to disk data storage, butitis cheaperand also

11

EXPLORING THE IBM PCjr

much slower and clumsier. The PCjr’s BASIC programming language gives all
the commands necessary to store and retrieve cassette data. The original PC
model also came with a cassette connection, but it was hardly ever used; the
higher-powered XT model doesn’t even have a cassette outlet. We probably
won’t see much use of the cassette connection with our PCjrs, but it is nice to
know that it is there, if we have a use for it.

After the cassette plug comes the serval port, labeled S. The serial port is
designed to transmit signals following a widely used computer standard known
as RS§-232C. You’ll find this facility commonly called RS-232, or a serial port, or
a serial connection; all these terms refer to the same thing. The serial port can
be used for many things, but two are most common: to connect the computer to
a telephone (to talk to other computers), or to a printer.

To use the computer with a telephone, the computer’s signals have to be
converted into telephone signals, which is done with a modem. To do this
converting, we can either plug a modem into the serial port and then connect
the modem to a telephone, or we can use an optional internal modem that fits
inside the PCjr’s system unit and connect it to a telephone. When we use the
internal modem, the serial port socket is bypassed.

To connect the serial port to a printer;, we must have a printer that is
designed to work with the RS-232 serial format, such as the IBM Compact
Printer. Some computer printers use this serial format, while others use another
format, known as parallel, or Centronics. Before you plan to connect a printer
to Junior’s serial port, be sure that you have the right kind of printer.

The next socket is labeled D, for direct-drive RGB video. This is one of the
three outlets for connecting the PCjr to different types of display screens. To
get the highest-quality picture possible, this outlet provides separate signals
for each of the three colors that are used to make color video images: red,
green, and blue—the initials of these colors give RGB its name. The RGB
signal can be connected to an RGB monitor, which is the highest-quality
computer display screen. The IBM Color Display is an RGB monitor. Many of
the new component-type TV sets can also use the RGB signal, although
ordinary T'Vs can’t.

Next along is the modem output, labeled M. As we mentioned, to use the
computer with a telephone, the computer’ serial signal must be converted by a
modem. If we use a separate external modem, it connects to the PCjr’s S, or
serial, plug. But if we install Junior’s optional smart modem, then the serial
signal comes out of this M socket, already converted to telephone format. This
modem outlet takes a standard, modular-type telephone cord.

After the modem outlet comes the second of the three video outlets, the
composite video signal, labeled V. While the D connection is for use with
expensive RGB monitors, this V connection is for cheaper composite display
monitors. The composite signal combines the three color signals into one,

12

EXPLORING THE IBM PCjr

RAM or random access memory, can be read and modified, and the computer uses
itlike a working notepad. The RAM used by the PCjris provided in the form of
64K memory chips. The PCjr contains 64K (65,536) bytes, or characters, of RAM
_on its system board, and another 64K of working RAM can be added.

A little confusion in terminology creeps in here. When computer folks talk
about a computer’s memory, they usually talk in terms of bytes. A byte is the
amount of memory needed to store one character, such as the letter A, and is
made up of eight bits, or binary digits. But when these same folks talk about
memory chips, they talk in terms of bits. So, to get 64K of working memory, in
8-bit bytes, we need to use eight separate 64K (bit) memory chips.

To guard against errors, most computers have one additional parsty it for
each byte; the parity bit is set based on the eight data bits on the byte. While
the PC and XT models have parity bits, our PCjr's memory doesn’t. That
sounds serious, but it isn’t, for two reasons. First, today’s memory chips are
very reliable, so errors almost never occur. Second, the PC and XT don’t make
very good use of parity checking anyway. Leaving out parity checking helped
IBM keep the cost of the PCjr low.

The second kind of memory installed on the PCjr’s system board is ROM,
or read only memory. A computer cannot do anything without programs to tell it
what to do, and the most essential and fundamental programs for controlling
the PCjr are stored in the ROM. Since the information stored in ROM cannot
be changed, having the control programs in this type of memory eliminates the
danger of accidentally erasing them. Also, they are always there, ready and able
to perform the fundamental logic operations necessary to control the computer.

There are two separate kinds of programs stored in the PCjr's ROM. The
first is called the ROM-BIOS, or Basic Input/Output System. 'The ROM-BIOS
programs are truly the most fundamental to the operation of the computer, and
they are responsible for such things as responding to our touch on the com-
puter’s keyboard and keeping track of the time of day.

In addition to the ROM-BIOS, the PCjr's ROM also contains the programs
necessary to provide us with the BASIC programming language; this is called
the ROM-BASIC. (Let’s pause to avoid some confusion; the letter B in ROM-
BIOS stands for basic, meaning fundamental; when we say BASIC in capital
letters, we mean the programming language whose name is BASIC.)

Any programming language requires some supporting programs in order to
work. The core programs needed to operate BASIC are built into the PCjr’s
ROM-BASIC. More sophisticated aspects of BASIC are provided by programs
that are kept either in the BASIC cartridge or on diskettes. For the full glory of
the BASIC programming language, we need these extra parts of BASIC; but for
ordinary BASIC use, the permanently built-in ROM-BASIC is enough. This
means that we can do BASIC programming on our Juniors without needing any
additional cartridges, disks, or equipment.

16

2: A Tour Through the Hardware Store

Computer microprocessors grow in capacity by expanding the amount of
data they can work with at one time—which is called the dus size. The larger
the bus, the larger the amount of information that the microprocessor can
sling around at one time. The size of the bus is also referred to as the
microprocessor’s bit size.

The first microprocessor, a very primitive creature indeed, was the Intel
4004. It had only a 4-bit bus; it could only transfer four bits of data at a time.
The first microprocessor to see widespread use was an outgrowth of the 4004
called the 8080. It had an 8-bit bus, and it could do arithmetic eight bits at a
time. While the 8080 (and some of its competing offshoots, such as the Z80
microprocessor) was very successful, it suffered from the 8-bit limitation, which
held down both the amount of memory it could use, and its operating speed.

To break out of those limitations, Intel produced its 16-bit microprocessor,
the 8086. The 8086 could sling numbers around 16 bits at a time; it also talked
to the world around it (to its memory, for example) 16 bits at a time. The
internal capacity was a real advantage, but the 16-bit external bus did have one
drawback: It couldn’t use the cheap and readily available 8-bit circuitry that
had become popular with 8-bit computers. The solution to that problem was
the 8088 microprocessor. The 8088 is internally exactly the same as the 8086: It
uses the same programs, handles the same data, and has the same computing
power. But when the 8088 talks to the outside world, it uses an 8-bit external
bus so that it can work with inexpensive 8-bit parts. (The 8086’s 16-bit external
bus makes it slightly faster than our 8088.)

All of the first three IBM personal computers share the 8088 micro-
processor, with its 8/16-bit split personality.

The 8088 and the 8086 are designed to work with other processors in three
different ways. First, they include features that make it possible to wire
together several 8088s (or several 8086s), so that they can act as one closely
cooperating team. The IBM personal computers do not use this feature of the
8088 design, but it is interesting to know about. The other two ways that our
microprocessor can get assistance are with either of two special co-processors.
Two different kinds of computing workload can be moved out of the main
microprocessor and into a specialized co-processor. One is the 8089 1/0O pro-
cessor, which can take on the work of talking to peripheral devices; none of the
IBM personal computers use the 8089. The other is the 8087 arithmetic co-
processor. The 8087 is designed to do complicated arithmetic at lightning
speed, and it has remarkably sophisticated features.

Both the PC and the XT models have the circuitry and a socket needed to
accommodate an 8087. When the 8087 is plugged in, and appropriate software
is used, the PC and XT can do arithmetic ten times faster or more. Our PCjr,
though, cannot take an 8087 chip. This is one of the several ways in which the
PCjr is a reduced-performance model of IBM personal computer. The simple

19

2: A Tour Through the Hardware Store

addition to the three voices, the sound chip also has a fourth noise channel that
can be used for nonmusical sounds, such as explosions.

Apart from the TI® sound chip, all of the helpers mentioned are common to
the PC and XT as well as our PCjr.
And that completes our basic tour through the PCjr’s hardware.

21

4: The PCjr’s Brain: The 8088

CHR$(32) (hex 20). For text data we always use bytes—16-bit words are of no
use when we’re dealing with text data.

There is quite a bit more to know about text data, but much of it relates to
how text data are stored on diskettes, so we’ll put off more discussion until
Chapter 10.

When we work with numbers, there is a host of ways to look at bytes and
words. First let’s just consider whole numbers. These are what BASIC calls
integer values and identifies with the % symbol as, for example, in the variable
names A%, THIS%, and THAT%.

When the 8088 works with a byte, it can treat that byte as an unsigned,
positive number, which could have any value in the range 0 through 255 (hex
FE, the largest byte value). We can also tell the 8088 to treat the same bytes as
signed numbers, which can take on both positive and negative values. The
range for bytes interpreted as signed numbers is from —128 through +127.
(When we work with signed numbers there is an unequal number of values
available for positive and negative numbers. For reasons too complex to go into
here, the extra value is given to the negative range, so there is one negative
number, —128, that doesn’t have a corresponding positive number.)

When the 8088 works with 2-byte words, we have a wider range of values. A
word interpreted as an unsigned, positive number can have a value ranging
from 0 through 65,535. As a signed number, the value can range from — 32,768
through +32,767.

We can make up whole integer numbers with three, four, or more bytes
for a wider range of values. Unfortunately the 8088 doesn’t work easily with
numbers this large—this is what makes it a 16-bit computer. We can do
arithmetic on these larger numbers, but it involves some special program-
ming—the ability is not built into the 8088.

Of course, we don’t do all of our work with whole numbers; we need
fractional numbers as well. Computers deal with fractions through the use of
what are called floating-point numbers. Floating-point numbers are made up of
some numeric digits, and a number that indicates where the decimal point
is for the number. The decimal point can “float” around, which allows the
number to be very large or very small and still be accurate for as many digits as
there are in the number. In BASIC, floating-point is called single or double
precision, depending upon how many bytes are devoted to storing the number.
A single-precision number is stored in four bytes and is accurate to about six
decimal digits; a double-precision number is stored in eight bytes and is accurate
to about 14 decimal digits.

Like integers that are three or four bytes long, floating-point numbers are
not handled automatically by the 8088; so everything we do with floating-point
numbers on the PCjr must be done with the help of lengthy subroutines.
Because of this, Junior can work with integers much faster than it can work with

33

4: The PCjr’s Brain: The 8088

only three clock cycles, so the PCjr can do 1¥2 million additions of this type per
second—an incredible amount of work for a little computer.

At the other end of the spectrum, some of the slowest instructions for the
8088, such as multiplying and dividing 16-bit numbers, take about 120 to 150
clock cycles. That’s a rate of about 30 to 40 thousand instructions per second —
much less, but still impressive. (The time varies according to how hard the
numbers are to work with—remember, you and I can multiply a number by 100
much faster than we can multiply it by 37.6.) In between these extremes we’ll
find other instructions, such as one that moves data around and takes 22 clock
cycles, or the equivalent of about a quarter of a million instructions per second.

How fast the 8088 runs on the average depends on the typical mixture of
instructions it is given. On the basis of our figures and the fact that short, fast
instructions are used much more than long, slow ones, we can say that our
PCjr’s 8088 microprocessor hums along performing about half a million instruc-
tions each second. If we had to think up these instructions one by one, we’d be
hard-pressed to keep Junior busy. It is always possible to give any computer,
even the very fastest, more work than it can handle. But in practical terms, at
half a million instructions a second, the 8088 provides us with as much com-
puting power as we’re likely to need, or more.

While we are on the subject of speed, we ought to mention that there are
some speed differences among the PCjr, the PC, and the X'T; even though they
all start out with the same basic brain and horsepower: an 8088 running at 4.77
MHz. Two factors account for these speed differences: disk and memory. Disk
drives vary in speed, so heavy use of disk storage can make a significant
difference in the total performance of the computer. The XT uses a very fast,
Winchester-type, hard disk system, which operates five to ten times faster than
the diskette drives used in the PC and PCjr. With a program that uses the disks
a great deal, use of a hard disk can mean a significant difference in perfor-
mance. While the diskette drive in the PCjr runs just as fast as the ones in the
PC, the way in which the PCjr controls its diskette drive ties up the computing
power of the 8088. Thus, Junior’s disk drive slows down the overall perfor-
mance of the computer (compared to a PC) somewhat, though not a great deal.

Memory is the other factor that sets the speed of the PCjr apart from its
brothers. In all three computers, it takes four clock cycles for the 8088 to use
the memory, but in the PCjr, the 8088 shares use of the memory with the
display screen (as we’ll learn more about later). For all practical purposes, this
means that the PCjr needs six clock cycles for each use of the memory, instead
of only four, because it has to wait while the display circuitry gets its share of
memory use. The 8088 doesn’t use its memory all the time, so these lost clock
cycles don’t cost as much as you might think. On the average, Junior runs
perhaps 20 percent slower than the PC and XT— not much of a sacrifice in
speed for a considerable savings in price.

35

EXPLORING THE IBM PCjr

Unlike the built-in hardware interrupts, software interrupts can be created
by any program at any time, and they can use any interrupt numbers, even
mimicking the fixed numbering of the hardware interrupts. To make all this
possible, the 8088 has an interrupt-generating instruction called INT (for
interrupt). Programmers can use this instruction followed by an interrupt
number of their choice, as in INT 10. Once the INT instruction takes effect,
this software interrupt works just like any other. Naturally there are conven-
tions about which software interrupt numbers are used for which purpose, but
the conventions are not cast in bronze.

As part of their design, IBM personal computers have a number of software
interrupts reserved for some special purposes. The ROM-BIOS control pro-
grams include a host of useful service subroutines, all invoked through inter-
rupts. Most of these interrupts are located in the interrupt vector table in a
block from 16 (hex 10) through 26 (hex 1A), though one of them, interrupt 5,
which performs the print-screen operation, is nestled right next to the first
five interrupts set by Intel. Interrupts 16 through 26 are known as the BIOS
entry points, since they are the means by which the ROM-BIOS programs
are activated.

After the BIOS entry points come two special and interesting interrupts:
the user-interface interrupts. They are based on the clever idea of providing
interrupts for two important events that our programs might need to know
about: the pressing of the Break key on the keyboard (Interrupt 27, hex 1B),
and the ticking of the clock 18.2 times a second (Interrupt 28, hex 1C).
(Interrupt 28 occurs in connection with the interrupt 8 that we have already
discussed.) When either of these things happens, the BIOS routines generate
one of these two interrupts. Normally, the interrupts then activate a dummy
interrupt handler; which does nothing. It takes sophisticated programming skills
to make use of either of these events, but we can do it by replacing the
addresses of the dummies in the interrupt vector table with the addresses of our
own interrupt handlers.

The interrupt vector table contains the vector addresses of interrupt-
handling programs; but since it already exists anyway, it can also be used as a
place to keep other important addresses, even if they are not the addresses of
- interrupt-handling programs. Interrupts 29 through 31 (hex 1D through 1F) are
used to hold three such addresses, meaning that numbers 29 through 31 cannot
be used as actual interrupts, since their corresponding places in the vector table
have been used for other purposes.

These three entries form another unusual and interesting category known
as the BIOS parameters. The BIOS parameters are the video initialization table,
which gives some technical parameters used to start up the PCjr’s display
controller; the disé base, which gives various parameters controlling the dis-
kette drive; and the sable of video graphics characters, which don’t exist, unless
we provide them. We’ll look into the details of these tables later.

42

4: The PGjr’s Brain: The 8088

speaker by setting the two low-order bits of the port on with the OUT
statement. The program in Figure 4-3 shows how it is done; you might want to
key it into your PCjr to see what happens.

Line 140 saves the current value of the speaker port as the variable X, and
line 160 reports the value (probably 12) to us. In line 200 we do some calculating
to make certain that the two low-order bits are turned on, and then we send
that value back OUT to the port. The speaker immediately begins to sound,
and it keeps sounding until we press a key at the keyboard, causing the
computer to reset the port, in line 280, with the original value that we saved in
the variable X.

Running this program will quickly demonstrate both how ports work and a
little of how the PCjr’s speaker works.

Ordinarily, we don’t have any practical use for the ports. They are almost
exclusively the territory of Junior’s most intimate control programs, the ROM-
BIOS. Even if we were doing some very sophisticated programming, it is
unlikely that we would have any direct use for the ports. Although I am sure
that there are programmers who do use the ports directly, for us the use of ports
is mostly a matter of intellectual curiosity.

45

5: A Look at Memory and Registers

example above, instead of representing a power of 10, each digit represents a
power of 16.)

Now;, 12340 is a 20-bit number, but one that has a zero on its end, so shifting
16-bit numbers over doesn’t generate all possible 20-bit values. Our shifted, or
multiplied, number can only take on a value that is an exact multiple of 16. To
be able to address a byte in any 20-bit address space, we have to be able to
generate all possible 20-bit numbers. So we complete this process by taking our
second number, 4321, and adding it to the shifted first number:

12340
+ 4321
16661

Now we have a way to generate a 20-bit number that can take on any value. It
can be used to address a 20-bit address space, that is, to locate any byte out of
over a million bytes.

This is the technique that Junior’s 8088 microprocessor uses to create its
addresses. 'Two 16-bit numbers are combined in this way to make up a
20-bit address.

The two parts of these 20-bit addresses are referred to as the segment part
(the number that is shifted over) and the offsez part (the number that is added
in). The segment part refers to any location in the 1,024K byte memory space
that is a multiple of 16. (These locations are known as paragraph boundaries
and each unit of 16 memory locations is known as a paragraph.) The offset part
refers to any location that is up to 64K bytes away from the segment location.
The segment part thus addresses a base location for the offset part’s 64K
working area. Together, the two parts make up a complete segmented address.

The offset part of an address is also sometimes called the re/ative part, or
the relative offset, since it indicates a memory location relative to the starting
point given by the segment part.

When we need to write the segmented addresses out on paper, there are
two ways we can do it. One way is to write out the finished 20-bit address with
five hex digits, such as the 16661 in our example. When you read about the
PCjr’s addresses, you will sometimes see them written this way. The other way,
which is more common, is to write the address in its two separate parts,
separated by a colon, such as 1234:4321. When you read technical information
on the 8088, or when you deal with assembly-language programming, you will
often encounter addresses written in this form.

There is one disadvantage, or complication, that you should know about in
using the segmented notation (the two numbers with a colon). The exact same
address can be written several ways. For example, 0012:0034 and 0015:0004 are
the same address, even though they are written differently.

51

EXPLORING THE IBM PCjr

another subroutine, which happens a lot, how does the computer keep track of
who called whom, so that it can find its way back to the very first program?

The solution to all these problems, and others that are closely related, lies
in the use of a stack.

A stack is a part of the computer’s memory that is set aside for use in a
special way. Any part of memory can be used as a stack; what is special is not the
section of memory, but the way that it is used.

A stack gets its name from its (conceptual) resemblance to the spring-
loaded plate holders that are often used in cafeterias. In a cafeteria, clean plates
are put on the top of the stack of plates, and the stack is pushed down. When
we need a plate, we take it off the stack, and the spring pops the rest of the
plates up. The special thing about this kind of stack is that the plates are used
in reverse order. The last plate to be put onto the stack is the first one to be
taken off—a stack doesn’t work like a queue of people waiting in line, where
it’s first come, first served. Instead, with this kind of stack, the last one in is the
first one out (technically called L/IFO).

When work in a computer is put on hold, the computer must keep track of
what is happening so that it can return to the most recent task first. Afterall, if 1
am a subroutine, when I have finished my work, I need to return control of the
computer to the program that called me, and not to some previous program. For
this to happen, the computer’s holding file needs to work on a LIFO basis, and
it must act like the plate holder in a cafeteria.

To accomplish this, a special mechanism was designed into micro-
processors like our 8088 that makes it possible for them to have a working stack.
A section of memory is set aside to be used as a stack and a record is kept of
where the “top” of the stack is. Since the 8088 uses segmented addresses,
naturally there is a segment register set aside just to control the location of the
stack; this is the SS, or stack segment register. To keep track of the top of the
stack, there is an offset register called the SP, or stack pointer register.

In a stack of plates, all the plates physically move when plates are added or
taken off. In our computer’ stack, the contents of the stack don’t move when
other information is pushed onto the stack or popped off. Instead, the stack stays
put, and it is the location of the top of the stack that moves. The SP register
indicates where the top of the stack is, and its value changes when informa-
tion is pushed onto or popped off the stack. In Figure 5-2, 4, 4, and ¢, show how
this works.

In Figure 5-2a4, we see a stack before we start using it. If we need to save
some information, we use the PUSH instruction. The information is stored at
the top location, indicated by the SP register, and the SP value is changed to
show the new top of the stack. Figure 5-24 shows how the stack looks after we
have pushed some information onto it. When we need the information back,
we use a POP instruction. The data are copied from the stack to wherever we

60

5: A Look at Memory and Registers

program and creates a good-sized stack for it. From that point on, everything
uses the same stack. The program uses it, and when the program calls on the
services of DOS or the service routines built into the ROM-BIOS, the same
stack is used. DOS and the ROM-BIOS can share the program’s stack with no
difficulty at all.

63

6: Elementary Education: The ROM-BIOS

PC or XT; or a revised PCjr, the same routines might be located in slightly
different places. It would be foolish to write programs that depended on
specific locations.

Using interrupts to invoke the ROM-BIOS services solves this problem by
making the calling program completely uninterested in where the interrupt
service routine is. As long as the meaning of each interrupt number is under-
stood—for example, that interrupt 5 performs the print-screen operation—
and as long as the interrupt vector table has been set up properly, then any
program can use any ROM-BIOS interrupt service freely and reliably.

The second important reason why interrupts are used to invoke the ROM-
BIOS services is so that the interrupts can be overridden. It may become
important to change a service: Perhaps an improved way to do the same
operation is found, or perhaps we want to add something special. By using in-
terrupts, we can always replace one interrupt-handling program with another.

How can this be done? Well, we can’t actually replace the programs in the
ROM-BIOQOS; after all, ROM is read only memory, so we can’t write changes
into it. But we can putan equivalent service program in another part of memory
(RAM), and then change the interrupt vector table to point to the new pro-
gram. If an interrupt vector points to our new program rather than into the
ROM-BIOS, then that interrupt will automatically be rerouted to our program.

So, all the ROM-BIOS service routines begin with interrupts. As we
mentioned, each basic service area (diskette operations, display screen opera-
tions, and so forth) has its own individual interrupt. Within each area, separate
subservices are given service numbers, starting with service number 0.

For all the services, the service number is placed in the AH register. If the
operation being invoked returns a status code indicating what happened, or
how things might have gone wrong, AH is usually, though not always, used.
(The services are not rigorously consistent in this regard— by nature they have
to vary from one to another.)

The 8088’s status flags are also used as a quick and efficient way for the
ROM-BIOS services to return a success/failure signal. Most commonly the
carry flag, CF, is used; if carry is set (CF = 1) then an error has occurred. The
zero flag, ZF, is also used for some signals passed back to the calling routine.

Whenever the services need to pass values in or out, they use the AX, BX,
CX and DX registers. For example, when the computer reads from the key-
board, it passes the results back to the AX register; when it writes to the printer,
it uses AX to indicate the character to be printed and DX to indicate which
printer (since there can be more than one).

It is customary for the printer service to use AX and DX, and leave BX and
CX alone as much as possible. The register most likely to be left unchanged is
BX, and the next most likely is CX. This is of no consequence if we are using
these services in connection with high-level language programming; but if we

69

6: Elementary Education: The ROM-BIOS

a small number of keyboard characters, in case our programs can’t read and use
each character before another is keyed in.

There are some interesting things to explore in the ROM-BIOS, as well as
in other parts of the ROM. In the next chapter, we are going to learn how to use
the DEBUG tool, which is a part of DOS, to snoop around. In the process, we
will also learn some assembly language.

71

EXPLORING THE IBM PCjr

varying amounts of hex data here. The first instruction that will appear, FB,
takes only one byte; eight lines down, another instruction, 803E000001, is five
bytes long.

After the hex form of the instruction, we see the disassembled, symbolic
form of the instruction; this is the part that can be read and understood by those
who are familiar with 8088 assembly language. Each instruction starts with its
name, which is the operation to be performed, such as STI (set interrupt flag),
PUSH, and MOV (short for move). These names represent the machine-
language instructions, commonly called opcodes (for operation codes), that
actually perform the operations.

Some instructions, like STI, stand by themselves, but most need one or
more parameters, or operands. For example, in the instruction PUSH DS, the
DS register is the operand. Many instructions take two operands; MOV, which
moves (actually copies) data from one place to another, is one of these.
According to assembly-language convention, an action takes place from right to
left, so that MOV AX,BX moves, or rather copies, the contents of the BX
register into the AX register, and not the other way around. Likewise, ADD
AX,BX would add the contents of BX into AX, leaving the sum there, in AX,
rather than the other way around.

With this brief introduction to reading assembly listings, we can now dive
in and see what is going on. If you are new at this, don’t be put off—just
following along, even if you don’t understand a lot of the material, will teach
you a great deal about 8088 machine language and about how assembly
language is written.

We begin the process by loading DOS into the PCjr. When DOS gives us its
A> prompt, we start up DEBUG by typing the command:

A>

DEBUG will tell us when it is ready for a command by giving us its very terse
prompt, a hyphen:

We then give it a disassemble command:
-U FO00:FFS4 L 77

Unless you are already familiar with DEBUG, this command will be quite
cryptic to you. Let’s go over it piece by piece. The letter U is the command to
Unassemble (D for disassemble couldn’t be used because DEBUG uses D for
something else). The F000: FF54 part tells DEBUG the segmented address in
memory where we want it to begin disassembling. We found out where this
address was by looking in the Zechnical Reference manual, but we could also have

78

EXPLORING THE IBM PCjr

moves the SP (stack pointer) register along, ready for the next item to be
pushed. Here are the contents of five registers being pushed onto the stack:

FO00:FFS5 1E PUSH DS
F000:FF56 50 PUSH AX
FO000:FF57 53 PUSH BX
FO000:FF58 51 PUSH CX
F000:FF59 52 PUSH DX

All programs follow certain rules about which registers can be used freely
and which ones must be safeguarded, either by being left alone or by being
preserved on (and later restored from) the stack. We don’t know the complete
rules used in the ROM-BIOS programs, but we shouldn’t be surprised to see
this program saving the contents of a bunch of registers. In this case, the values
in the four general-purpose registers, AX through DX, and in the DS (data
segment) register are being saved. This is interesting and suggests that the
program will monkey around with the DS register; we’ll watch for it.

Moving on, we find two instructions that set up a new DS register value:

FO000:FF5A B85000 Mov AX,0050
F000:FFSD 8ED8 MoV DS, AX

The hex number 50 (80 in decimal) is moved to the AX registerand then passed
on to the DS register. A number must be put into the DS register in this indirect
way because there is no instruction to move a constant into the segment
registers. (It is not a common operation.) So these two instructions are used to
do what we really want, which would (if it were possible) be an instruction such
as MOV DS, 0050.

Why is the program putting hex 50 into the DS register? Knowing how the
8088 works, we can partly answer that question right away: This program will
be working with some data located in the vicinity of segment paragraph hex 50
or absolute memory location hex 500 in low memory.

Studying the Zéchnical Reference manual reveals that the ROM-BIOS uses
some space at segment paragraph hex 40 for most of its working storage. But,
for no reason that I know of, the print-screen routine happens to use one byte
located at segment paragraph hex 50 for its working storage. So, the basic
answer to why hex 50 is being loaded into the DS register is that this program
locates its data there. If you ask, “Why there?” the answer is that the designers
of the IBM personal computers chose that location.

What is the print-screen routine using this data area for? If we needed to,
we could study the program in detail and probably figure it out; that’s the sort of
thing you do if you are disassembling a program without a listing to guide you.
But fortunately we aren’t flying blind—we have the comments in the Zechnical
Reference manual to tell us that this print-screen program uses one byte located

80

7: Using Whar We Know to Go Exploring

atsegment paragraph hex 50 to signal the status of screen printing. If the byte is
0, nothing is going on; if it is set to 1, a print-screen routine is already in prog-
ress; if the byte’s value is 255 (hex FF), there has been an error of some kind.

So what has the program done so far? It has turned interrupts back on,
saved the values from five registers in the stack so that it can safely modify the
registers, and set up the DS register to point to where its data are.

Now the routine is ready to proceed to the next step, which is to check
whetheritis in the middle of a previous print-screen routine. If so, the program
assumes that a nudgy person is sitting at the keyboard and has pressed Fn-P, or
PrtSc, twice. In that case, the program ighores the new request. How does it do
this? It compares (CMP) the hex 50 data byte value to 1:

FO000:FFSF 803E000001 CcMpP BYTE PTR [00001,01

(The part that reads BYTE PTR [0000] is just assembler technical talk that
says we are comparing one byte located at an offset of 0.)

After comparing that byte with the value 1, the computer jumps to another
part of the program if the comparison is equal (JZ means jump if equal or zero):

FO000:FFG4 745F JZ FFCS

All that this disassembly tells us is that the jump is to location FFCS. Later,
we’ll learn that this is the location of the finishing steps of this program. So
these two instructions logically translate into, “If the control byte is 1 (meaning
that printing is already in progress) then jump to the exit steps.”

If printing was not already in progress, the program needs to indicate that it
is now. So the next instruction is to move a 1 into the hex 50 data byte:

F000:FF66 C606000001 MoV BYTE PTR [00001,01

Now the program is going to read everything off the screen and copy it to
the printer. To read the screen, it needs to know what the size of the screen is,
since our PCjr could show either 40 or 80 columns of information, depending
on its screen format. So the next step is to call one of the screen services to get
the screen mode. Video service 15 (hex F) requests the screen mode and
interrupt 16 (hex 10) activates the video services, so service number hex F is
requested like this:

F000:FF6B B40F Mov AH, OF

and interrupt hex 10 is generated like this:

FO000:FFGD CD10 INT 10

81

EXPLORING THE IBM PCjr

This puts the number of screen columns (40 or 80) into the AH register. (H
and L, remember are the high and low halves of each full X register.) The value
in AH is then moved to the CL register:

F000:FFGF 8ACC mov CL,AH

and the number of rows on the screen, which is always 25 (hex 19) rows, is
moved into the CH register:

FO000:FF71 BS19 mMov CH,19

There is still some more preparation to do. This program has a subroutine
that is used at the end of each line to give the printer the proper end-of-line
signals, which are a carriage-return signal followed by a line-feed signal.
(Those two together are the standard end-of-line signals.) I happened to learn
what that subroutine does by looking it up in the Zechnical Reference manual;
but, if we had to, we could discover what it does by using the U command to
disassemble it. The next instruction in our print-screen disassembly calls that
subroutine:

FO00:FF73 EBESFA CALL FASF

Next, there is still more preparation. While the computer is reading the
information off the screen, it is moving the cursor around. It needs to save the
current cursor position, so that it can be restored when the program is done.
This is the sort of attention to detail that separates good programs from bad.
The program does it this way: First, it saves the row and column numbers that
were stored in the CL and CH halves of the CX register, because even though
you do not see it yet, CX will be disturbed by the service that reports the
cursor’s position:

FO000:FF76 51 PUSH CX

After saving CX on the stack, it prepares to request video service number 3,
which reports the cursor position:

FO000:FF77 B403 MOV AH,03
and generates a video interrupt hex 10:
FO00:FF79 CD10 INT 10
It then recovers the CX value from the stack:
FO00:FF7B 59 POP cX

and pushes the cursor position, which was placed into the DX register by the

82

7: Using What We Know to Go Exploring

video service, onto the stack to save it:
FO00:FF7C 52 PUSH DX

Now there is only one more small bit of preparation left. The computer is
going to loop through the entire screen, every column in every row, reading all
the information written there. Naturally, it has to start at the top, so the
program moves the cursor there. The top of the screen is row 0, column 0; so
the DX register is set to 0, using the old programmer’s trick for zeroing a register
by exclusive-ORing it to itself:

FO000:FF7D 33D2 XOR DX,DX

This instruction is the same as moving 0 into DX, but is a more compact way of
doing it.

Now, at last, everything is ready for the main part of the work. The
computer will be looping through the entire screen, moving the cursor to the
next position, reading what is stored at that position, sending it to the printer,
and then moving the cursor on to the next position, until it has covered the
entire screen. :

So, the program begins its main working loop. How do we know that the
next step is the start of a loop? We would not know from what we have seen so
far, although we would discover it later when the program jumps back to this
‘point. Again, looking at the remarks in the PCjr Technical Reference manual helps
us realize that this is the beginning of the loop.

The first working action is to move the cursor to its next location. The first
time the computer comes to this instruction, that location would be row 0 and
column 0, which has already been set; later, when the loop is repeated, the
cursor position will be the next position on the screen. To move the cursor, the
program prepares to request video service number 2:

FO00:FF7F B402 mov AH,02
and generates the video interrupt hex 10:
FO000:FF81 CD10 INT 10

Next, another video service is called upon. This one, service number 8,
asks that a character be read off the screen. Service number 8 is moved into the
AH register:

F000:FF83 B408 mov AH,08
and another video interrupt is generated:

FO00:FF85 CD10 © INT 10

83

EXPLORING THE IBM PCjr

Again, even though you do not see it happen, this service loads the character
from the screen into register AL, which is where the program will look for it.

Now, the screen might have any kind of information on it. If nothing is in
the present cursor position, the fact will be reported as a hex 0 character. In that
case, we want the printer to print a blank space corresponding to the space on
the screen. But the printer won’t print a hex 0 character as a space, so the next
thing our program does is check for a hex 0, and changes it to a blank space
(which is coded in ASCII as hex 20). First it tests the character loaded into the
AL register with an OR (which amounts to a kind of true/false test to see if the
character equals 0):

FO00:FF87 0ACO OR AL, AL

Then, if the character is not hex 0, the program jumps over the next instruction
(JNZ means jump if not zero):

FO000:FF89 7502 JNZ FF8D

If the character 7s hex 0, the next instruction moves a hex 20, a blank space, into
register AL:

FO000:FF8B B020 mov AL,20

Next, the computer needs to send the screen character out to the printer.
This involves a little setup work. As before, the cursor row and column position
in the DX register is saved on the stack, since the DX register will be used
while printing:

F000:FF8D 52 PUSH DX

Then, the program indicates that we want the regular printer by setting the DX
register to 0:

FO000:FF8E 33D2 XOR DX ,DX

Next, printer service number 0, the service to print one character, is requested
by setting the AH register to 0:

FO00:FF90 32E4 XOR AH,AH

and the printer service is activated with an interrupt 23 (hex 17), which is
similar to the video interrupt, but another interrupt number:

FO000:FF92 CD17 INT 17

After the character is printed, the cursor row and column position, which

84

7: Using What We Know to Go Exploring

was saved on the stack, is moved back into register DX:
FO000:FF94 5A POP DX

At this point, though, the program doesn’t really know whether all went
well with the printer. Since the printer services return an error code to the AH
register, the returned code is tested against a masé, which blanks out every-
thing except the bits of the return code that the program is interested in. The
right mask for this test—although you and I don’t have any way of knowing it at
this point—happens to be hex 29.

FO000:FF95S FeC429 TEST AH,29

If all the bits the program can see are zero, then all has gone well and the
character has been printed. If they are not all zero, the computer jumps (JNZ or
jump if not zero) to another part of the program, which turns out to be an error-
handling routine:

F000:FF98 7521 JNZ FFBB

However, if there is no error, the program proceeds to the next position on the
screen. The screen column number in the DL register is incremented by one:

FO000:FF9A FEC2 INC DL

and the incremented value is compared to the maximum number of columns in
the row (the value we are holding in the CL register):

FO000:FF9OC 3ACA CMP CL,DL

If we haven’t come to the end of this row, the program jumps back to the
beginning of its working loop:

F000:FFOE 75DF JNZ FF7F

This jump-if-not-zero jumps to location FF7F. You will see, if you look back,
that this is the location of the top of the loop.

On the other hand, if we have come to the last column of a row, the
computer needs to skip down to the beginning of the next row. First, the
column number in the DL register is reset to 0:

FO00:FFAO 32D2 XOR DL,DL
and AH is also set to 0 (I'm not sure why, but we’ll ignore it for now):
FO000:FFA2 8AE2 Mov AH,DL

In addition, since we’ve come to the end of a line, the computer needs to

85

EXPLORING THE IBM PCjr

send an end-of-line signal to the printer. The cursor position in the DX register
is temporarily saved on the stack:

FO000:FFA4 52 PUSH DX

and the program calls the subroutine that, as we already mentioned, is used for
end-of-line:

F000:FFAS E8BB7FA CALL FASF
It finishes by restoring the DX value from the stack:
FO00:FFA8 5A POP DX

Since it is starting a new line, the program has to increment the screen row
number stored in the DH register (just as we did before with the column):

F000:FFA9 FEC6 INC DH

and it then tests the incremented row against the value stored in the CH
register to see if it has come to the end of the screen (again, just as we did for the
column):

F000:FFAB 3AEE CMP CH,DH
If it is not at the end, it jumps back to the top of the loop:
F000:FFAD 75D0 JNZ FF7F

And on it goes, around and around, until it has covered the entire screen. At
the point when the program doesn’t jump back, itis at the end of its duties. Itis
time to clean up after itself. Recall that the original cursor location was saved on
the stack. This location is now recovered into the DX register so that the cursor
can be repositioned at its place on the screen at the start of the program:

FO000:FFAF 5A POP DX

We prepare to ask for video service number 2, which moves the cursor:
F000:FFBO B402 MoV AH,02

and we then invoke the video interrupt, hex 10:
F000:FFB2 CD10 INT 10

For the next piece of housekeeping, the program needs to set the control
byte at segment paragraph hex 50 to indicate that the print-screen routine is
finished. Recall that at the beginning of the program, this byte was set to 1.
Now, it is reset to 0:

86

7: Using What We Know 0 Go Exploring

F000:FFB4 C606000000 mov BYTE PTR [00001,00

Next, the program jumps over some instructions that will turn out to be the
error handler for printer errors:

FO000:FFB9 EBOA JMP FFCS

Remember that while going through its loop, the program tested for a
printer-error code and if there was one, jumped to location FFBB. This is the
location of the next instruction. First the cursor position is recovered from the
stack just as before:

FO000:FFBB 5A POP DX
FO000:FFBC B402 mov AH,02
FO00:FFBE CD10 INT 10

and then the control byte is set to the error code, hex FF:
FO00:FFCO C6060000FF mMov BYTE PTR [00001],FF

Next comes the program’s exit routine. This is the routine that the program
jumped to at the very beginning if it found that a print-screen was already in
progress. Itis also the place it jumped to when skipping over the error handler.
This exit routine has the job of restoring the registers that were saved at the
very beginning of the program. When the contents of the five registers were
pushed onto the stack, it didn’t matter what order they were pushed in; any
order would have saved them equally well. Now that it is time to restore the
registers, they have to be popped back in exactly the reverse order, since the
stack works on a last-in, first-out basis. So the program does five pops, like the
five pushes:

F000:FFCS SA POP DX
FO000:FFC6 59 POP CX
FO00:FFC7 SB POP BX
F000:FFC8 58 POP AX
FO00:FFC9O 1F PoP DS

Finally, as the very last step of the routine, the program returns the
computer to whatever it was doing before the print-screen interrupt was
requested. This is done with a special interrupt-return instruction:

FO00:FFCA CF IRET

and that completes the work of the print-screen program.

Going over this program has taken some time, butit should give you quite a
bit of insight into what assembly-language coding is like and how registers
work. As you have seen, the details can be very tedious, and this is why
assembly language is usually avoided unless really necessary. You have also had

87

7: Using What We Know to Go Exploring

and then ask it to display data from the beginning of the ROM-BASIC, like
this:

-D F600:0000

it will show us the contents of the first location where ROM-BASIC is stored. If
we repeatedly key in the D command, DEBUG will show us succeeding
chunks of memory, without our having to specify the addresses we want to see.
If we keep at it for a while, we’ll run across the error messages that are
incorporated into BASIC. While knowing about these messages isn’t particu-
larly useful, it still is interesting to poke around and explore them. The skills
that we acquire this way come in handy later if we have to do some patching or
advanced debugging of programs.

89

8: Connecting With the Cartridges

the computer’s start-up process. Here is how it works. When the computer is
started up, or ‘booted,” the bootstrap program in the ROM-BIOS checks the
cartridge address locations for the cartridge signature. If a cartridge is found,
then the ROM-BIOS uses the CALL instruction to pass control to the car-
tridge, so that the cartridge can do any #nitialization it wants to do.

The cartridge could do any of several things. One is that it could ignore the
opportunity, and immediately return control, using the RET instruction, to the
ROM-BIOS. Another possibility is that the cartridge could immediately take
charge of the computer, and never return control to the ROM-BIOS; this
approach can be used by game cartridges that control the computer directly,
without the help of DOS. The third thing a cartridge might do is perform some
initialization and then return control to the ROM-BIOS, which would then
carry on with the bootstrap operation. The BASIC cartridge works this way fora
very simple reason. When we boot our computers, if there is nothing to take
charge of the computer, such as a DOS diskette or a game cartridge, the
bootstrap program activates the ROM-BASIC program by using interrupt 24
(hex 18). This is all fine, except that when we have the BASIC cartridge
plugged in, we’d rather use the cartridge BASIC, with all its features, instead of
the ROM-BASIC, which has fewer features. To make this possible, the BASIC
cartridge does one simple bit of initialization when it is given the opportunity:
It replaces the interrupt hex 18 vector (which normally points to the ROM-
BASIC), to point to the address of the BASIC inside the cartridge. This makes
it possible for the BASIC cartridge to put itself in the place of the ROM-
BASIC, and yet not interfere with the bootstrap process.

So, the reason why each cartridge has a 3-byte jump instruction at its
beginning is to make these tricks possible. The jump instruction just passes
control to whatever location inside the cartridge is the actual initialization
program. Putting the jump at the beginning of the cartridge gives the bootstrap
program a standard place to pass control, no matter where the actual working
initialization program is.

By the way, recall that the PCjr is automatically restarted, or booted,
whenever we insert or remove a cartridge. This makes sure that the computer
has a chance to respond to any change in the cartridges, and that every cartridge
gets a chance to do its initialization.

After these six beginning bytes comes a zable of the DOS command programs
on the cartridge. The table is very simple: There are as many entries as are
needed, and there is no fixed limit to its size. The end of the table is marked by
a zero byte after the last entry. Each entry in the table consists of one byte
indicating the length of the name of the program, followed by the name of the
program, which contains as many bytes as the length byte specified. The last
part of the table entry is a 2-byte word that shows the offset of the command

93

EXPLORING THE IBM PCjr

which slot we plug a cartridge into; the information inside the cartridge will
appear in the same place in the computer’s memory.

The coding of the cartridge’s contents, which we just looked at, has
nothing to do with specifying the cartridge’s memory location. That is done
with the hardware circuitry inside the cartridge. The PCjr’s cartridges are
designed to plug into any one of six different memory locations.

We mentioned when we covered Junior’s memory that 128K of memory has
been set aside for use by the cartridges, the combination of the two 64K blocks
that are located at segment addresses D000 and E000. Just above that area is
the 64K block, at segment address F000, where the PCjr's ROM-BIOS is
located. The circuitry in Junior’s cartridges is designed so that it can plug into
memory at either the beginning or the middle of any of these three blocks. In
the area that is set aside for ordinary cartridge use, the addresses would be any
of these four:

D000 (beginning of D-block)
D800 (2nd half of D-block)
E000 (beginning of E-block)
E800 (2nd half of E-block)

As an example, the PCjr's BASIC language cartridge plugs into the E800
memory address, the highest of these four addresses.

Those four locations are where cartridges are normally supposed to appear.
But a cartridge can also be addressed into the ROM-BIOS area, at either FO00
or F800. When a cartridge is addressed into this ROM-BIOS area, it overrides
the ROM-BIOS that is built into the computer. This makes it possible for a
cartridge to change the computer’s most fundamental programming, tem-
porarily. The ordinary software cartridges that we buy for our PCjrs don’t do
this—they use the D and E memory addresses that are intended for software
cartridges. But it is possible for a cartridge to use the ROM-BIOS’s F-block of
memory as well.

In the overall design of the IBM personal computers, the 128K of memory
in the D and E address areas is set aside for cartridges, to be used in any way
that is desired. While our Junior’s specific circuit design only allows ordinary
cartridges to appear at the four memory locations listed above, the general
design for all the IBM personal computers is more flexible. The software that
searches through memory to see if a cartridge is actually plugged in looks at
other locations besides these four. In the next section, we’ll show you a
program that searches for cartridges; we will have it check more memory
locations, to illustrate the idea.

96

EXPLORING THE IBM PCjr

identifying signatures of any BASIC programs. We set the offset we are going to
use for our next PEEK instruction past the signature and other header bytes to
the seventh byte (which, since we address the bytes starting with offset 0, is
offset 6), where the length of the command name is stored. We then set a
counter, LIST.COUNT, to 0 so that we can use it to count the number of
commands in this particular cartridge’s command table.

3160 OFFSET = 6
3170 LIST.COUNT = 0
3180 PRINT "These commands are on this cartridge:"

and then we start searching. The table (even if there is nothing in it) ends with
a zero byte, so our search will be a WHILE loop checking for that end mark:

3190 WHILE PEEK COFFSET) > 0

Then we take a look at the byte at offset 6 to get the length of the name of
the command and set the variable NAME.LENGTH equal to the value of that
byte. We also increment LIST.COUNT.

3200 NAME.LENGTH = PEEK COFFSET)
3210 OFFSET = OFFSET + 1
3220 LIST.COUNT = LIST.COUNT + 1

For safety, we test for a reasonable length. In this case, a command name 20
bytes or longer would be considered unreasonable and would cause the pro-
gram to return to line 1150 and start looking for another cartridge.

3230 ‘ if ok, skip over error handling

3240 IF NAME.LENGTH < 20 THEN 3270

3250 PRINT "Cartridge not coded as expected."
3260 RETURN

If the name length is reasonable, the name of the command is printed one
characterata time and the jump instruction then moves the program to the next
entry in the table.

3270 PRINT "'

3280 WHILE NAME.LENGTH > 0

3290 PRINT CHR$ (PEEK (OFFSET));
3300 OFFSET = OFFSET + 1

3310 NAME.LENGTH = NAME.LENGTH - 1

3320 WEND
3330 PRINT
3340 OFFSET = OFFSET + 3 ! skip past jump

When the end-of-table zero byte is encountered, the program exits the

102

9: Higher Education: Fundamentals of DOS

them in great detail, since this book is about the IBM PCjr itself, rather than a
technical book on the inner workings of DOS. What we will do here is give you
a good idea of the nature of the services that DOS provides, partly to give you a
better understanding of how the PCjr works with DOS, and partly to show you
what services are available to your programs if you should need them. To learn
more about the DOS services in detail look to the /IBM Disk Operating System
(DOS 2.10) Technical Reference manual.

Before we tantalize you with some of the power of the DOS services, you
should be aware that most programming languages don’t give you direct access
to these services. Just as you need an assembly-language interface routine to
make the connection between a programming language, such as BASIC or
Pascal, and the ROM-BIOS, you need assembly-language connections to the
DOS services. In addition, such interface routines usually have to be custom-
written for the exact needs of both the particular DOS service and the program-
ming language that is being used. However, most programming languages
provide us with features that are equivalent to many of the DOS services—
after all, the programming languages build their features out of the services
that DOS provides. In broad general terms, then, direct use of these DOS
services is only for sophisticated, assembly-language programmers who under-
stand quite a bit about the inner workings of DOS.

The DOS services are divided, somewhat arbitrarily, into three groups.
The first group includes the DOS interrupts, each of which is invoked by its own
interrupt number. The second and third groups both include the DOS functions,
which are all invoked by a common interrupt number, 33 (hex 21). This
interrupt number is combined with a distinct service code to indicate which
DOS function is desired. (The mechanism is very much like that used by the
ROM-BIOS, where an interrupt is used to invoke a range of services and a
service code indicates which one is wanted.)

We ought to pause for a second to get our terminology straight. In the IBM
DOS manual, and in other DOS literature, you will find the terms DOS inter-
rupt and DOS function or function call used. For our convenience, in this book
we use the general term DOS services to refer to both interrupts and functions.

The two groups of DOS functions are the #raditional and the extended.
When DOS was first created, it was designed and organized in a certain way.
With experience, a better way was found to make DOS work and to organize
the DOS functions. All versions of DOS include the traditional services. The
level-2 versions, such as DOS 2.00 and DOS 2.10, also have the extended
functions which, among other things, look forward to the needs of faster
versions of IBM personal computers and more sophisticated operating systems.
The importance of the extended services is that they help guarantee a solid
future for the IBM personal computer family, for DOS, and for the programs we

115

10: Exploring the Diskettes

the diskette may not be written on, and when we leave the notch open the
diskette can be written on.

There are myriad ways to store data on diskettes. Diskettes can be 4ard
sectored, meaning that their format is fixed. Hard-sectored diskettes are not
used by the IBM personal computer family. Instead, our PCjr uses diskettes
that are sof? sectored, which means that they can be formatted in various ways.
Soft-sectored diskettes offer flexibility but require that we run the FORMAT
program each time we use a new, blank diskette. Our soft-sectored diskettes
have just one index hole. In contrast, a hard-sectored diskette has a separate
index hole for each sector around the circumference of the diskette.

The term sector refers to the actual space occupied by data records stored
on the diskette. The number of sectors on a track and the size of the sectors can
vary, depending on the standards established by an operating system. Our
DOS uses only one sector size, 512 bytes, or /2K, in each sector. The number of
sectors on each track can be eight or nine. Eight sectors per track—which gives
us 4K bytes of data on each track—was the standard with DOS-1 versions, and
nine sectors—or 4¥2K bytes per track—is the standard with DOS-2 versions.
On any particular diskette, all the tracks will be either eight- or nine-sector
format, and our DOS 2.10 can work with either format.

Our diskettes are double density, which means that they are recorded with
the tracks spaced at 48 to the inch. There are 40 tracks to a diskette, so all our
data are stored within a band less than an inch wide, just under 21 millimeters.

The magnetic, read-write Aeads of the diskette drive move in and out to go
from track to track. The rate at which they move is under software control, so it
varies with the performance of the drive. Our PCjr’s heads take 6 milliseconds
per track, so the longest they would take to move from one part of the diskette
to another is about a quarter of a second. The diskette itself spins at 300 rpm, so
it takes one-fifth of a second for a complete revolution. In practice, the
computer has to wait an average of one-tenth of a second for the desired part of
the diskette to rotate into place.

A diskette drive can have recording heads on one or both sides; that is, it
can be single or double sided. Our PCjr’s drive is double sided, so it can use either
single- or double-sided diskettes. Since the original PC came with only single-
sided drives, most programs are distributed on single-sided diskettes to ensure
that any IBM personal computer can use them. (A single-sided drive cannot
work with a double-sided diskette, since it can’t see half of what is recorded on
the disk.) In fact, though, most IBM personal computers, including our Junior,
now come with double-sided drives.

Incidentally, there is a reversible, or flippy, variety of diskette that is
recorded on both sides, but it is not recorded like a double-sided diskette.
Instead, a flippy diskette is used as if it were two separate, single-sided
diskettes. To use the second side, you turn the diskette over. To make this kind

121

EXPLORING THE IBM PCjr

special, hidden file was created under the name BADTRACK and the unus-
able clusters were allocated to it.

The way that the FAT is organized—with each file’s space allocated in a
chain of FAT entries—makes the FAT vulnerable to several kinds of mishaps.
Although it doesn’t happen often, a disk’s FAT can become scrambled. For-
tunately for us, there is a DOS command called CHKDSK that will test for any
errors, and repair them (as much as possible).

What could go wrong with a FAT? Mainly three things: First, a space
allocation chain could double back on itself, and repeat forever, without end.
Second, two different files could have their allocation chains point to the
same FAT entry—this is called cross-linking. And third, a cluster, or chain of
clusters, might not be marked as available space (FAT value 0), and yet also
might not belong to any file—becoming, in effect, orphans.

While these exotic FAT errors are rare, they can occur. You can use
CHKDSK to test for them, and you can use DiskLook (described in Appendix
C) to give you a diagram of what is wrong,.

When a file is erased, its space is deallocated. The FAT entries are reset to
zero to indicate that they are available for use, and the directory entry for the
file is marked as erased by replacing the first byte of the file name with hex ES.
All the data in the file are still stored where they were on the diskette sectors
and all the information about the file is still in the directory, including the
starting cluster number, which points to the beginning of what was the file’s
space allocation chain in the FAT.

Eventually, when other data are written to the diskette, the erased file’s
data will be overwritten and the directory entry will be reused, wiping out the
remaining traces of the erased file. However, before that happens it is possible
to recover an erased file completely. All that is needed is first, to restore the first
byte of the file’s name (the easy part) and second, to discover which sectors
used to belong to the file and to reallocate them (the tricky part). A clever
program can make this possible; for example, UnErase™ (see Appendix C).

There are two reasons why we have covered what happens when a file is
erased: The first is to provide a better understanding of how Junior’s diskettes
work; the other is more practical. One of the common horrors in personal
computing is accidentally erasing some important files; it happens too easily
and much too often. If you have not yet inadvertently erased a file, consider
yourself blessed. Of all the handy programs you should probably buy for your
PCjr, some sort of unerase program ought to be one of the first on your list.

I have delayed talking about two interesting special features of diskettes:
diskette volume labels (volume as in book, not volume as in capacity), and
subdirectories. Labels are a very useful item on diskettes, and all PCjr owners
ought to know about them and use them. Subdirectories, on the other hand,
are mostly used with large, high-capacity, hard-disk systems like the one on the

130

EXPLORING THE IBM PCjr

reading. (They happen to be stored on my computer’s disk in a text file named
CHAPTER 10.)

Text files are the most universal file format for personal computers. They
are used for many, many purposes. Text-editor programs, including the
EDLIN program that comes with DOS, use the text file format; so do many
word processors. When we write programs that will be compiled or assembled,
the program source code has to be stored in text file format. When we create
batch-processing files with the extension name BAT to be carried out by DOS,
they are also in text file format.

Text file format starts out very simply. First, the data consist of letters of the
alphabet, digits, and punctuation just like the text you are reading. The data
are coded by the computer using the ASCII coding scheme. Each character of
the text occupies one byte and is coded numerically; for example, the capital
letter A has the byte value 65, or CHR$(65). To mark the end of the text file, a
special code, CHR$(26), is used. (This code is also called Ctrl-Z, since that is
one way it can be typed in on the keyboard.)

Text file format divides the text into lines. At the end of each line are two
characters known as carriage return, which is CHR$(13), and line feed, which is
CHR$(10). If there were a special end-of-line character, like the end-of-file
character, then a single character would do the job. Butsince there really is no
end-of-line character per se, these two print-formatting characters are used. On
a printer or typewriter, a carriage return and a line feed end one line and begin
another, so they are used in text files as the standard end-of-line marking.

Since the end of a line is marked by these two special characters, a line
could, in theory, be very, very long. However, many programs that work with
text files set limits on how long lines can be: Most set a limit of 255 bytes; a
few limit lines to the width that can be shown on the display screen—40 or
80 characters.

There are actually quite a few formatting characters in the ASCII coding
scheme, including one, CHR$(12), to mark the end of a page. A text file may
include these page markings and other formatting codes as well. Word pro-
cessors usually need special codes to indicate such things as where a word can
be hyphenated, which words are to be underlined, and which lines can be
changed when a paragraph is reformatted. There are no universal standards for
how these things are done.

Lack of uniformity can cause quite a bit of trouble if we try to transfer
files between a word processor that uses lots of special markings and programs
that expect very ordinary data, such as a compiler. To avoid putting yourself
through some real grief, test for compatibility before you invest lots of effort.
It would be awful to spend the time needed to write a large program, only to
discover that your compiler won’t accept the format used by your text editor
or word processor.

136

11: An Introduction to Video Displays

While the monochrome adapter can show only text, the color/graphics
adapter has many operating modes. Two of these modes work exactly like the
monochrome display, except that color replaces underlining. The color/graph-
ics modes also provide several different ways to display text information, as
well as several ways to display graphic drawings (which can be combined with
written text, as we’ll see later).

With the minor exception of underlining, the monochrome adapter gives
PC and XT users just a subset of what the color/graphics adapter gives them.
Thus, systems with only the color/graphics adapter can still use the same
software, and do the same things that monochrome systems do. So, while many
business and professional computer users are willing to forgo the dramatic
capabilities of color systems for the clearer, easier-to-read monochrome display;,
anyone who wants the full, rich range of possible uses for the IBM personal
computers should seriously consider getting a color/graphics adapter, or using
our nice little PCjr.

As I have said, IBM designed the PCjr with a color/graphics adapter built
right into it. From the point of view of an old PC and XT user, our Junior’s color
capabilities are right at home with those our programs are accustomed to using.
But actually, our PCjr’s video system is quite special and gives us some very
interesting features that the others do not.

Obviously, the first thing that’s special about the PCjr’s adapter is that it is
built-in; with the PC and XT you have to pay extra to buy a video adapter.

The next special thing about Junior is the fact that it has three video
outputs. With the PC’s color/graphics adapter, there are two outputs providing
two kinds of connections to display screens. One is the RGB output, with
separate signals for the red, green, and blue parts of the color picture, and the
other is the composite video signal in which these colors are combined. A
special RGB monitor can be connected to the RGB output; an ordinary color
monitor, or an inexpensive monochrome monitor, can be connected to the
composite video output. Our PCjr has these two outputs, plus one more.

With the PC, if you want to connect a home TV to the color/graphics
adapter, it has to be connected to a special RF (radio-frequency) modulator that
is plugged into the composite video output. So, to use your TV with the color/-
graphics adapter, you have to buy an RF modulator as a converter. The PCjr’s
adapter cable for TV sets includes an RF modulator. With the PCjr, then, we
can also use a TV as a monitor, without any special adapter. As an extra benefit,
the sounds that Junior generates are fed right into our TVs as well.

In addition, the PCjr’s video system adds some extra features that the color/-
graphics adapter for the PC and XT doesn’t have. As I've mentioned, there are
both text and graphics modes of operation for these displays. The PCjrenriches
the modes available on the PC and XT by adding three new, enhanced,
graphics drawing modes.

147

EXPLORING THE IBM PCjr

blocks of memory dedicated solely for this purpose. The PCjr adds an extra
trick; it works differently, but at the same time closely mimics the way the
others operate. In order to understand the difference, let’s look at both types of
memory mapping—the original (PC and XT) and the unique (PCjr).

In the original PC design, two separate areas of memory are used—one for
the monochrome adapter and another for the color/graphics adapter—to make
it possible for the computer to have both types of display at the same time.
Each of these reserved areas of memory is 32K in size, although not that much
is needed. The monochrome adapter needs only 4,000 bytes, or a little less
than 4K, and the color/graphics adapter needs just 16K. Each of these memory
spaces is located in the BOOO memory block; the monochrome adapter uses the
first half, from segment address B000, and the color/graphics adapter uses the
second half, from B800.

Each of the display adapters used by the PC and XT comes with the
memory needed by the display. While logically this memory is a part of the
computer’s total 1,024K memory space, physically the display memory is
located on the display adapter board, separate from all the other memory.
Electronically, there is one thing special about this memory—there are two
electronic doorways into it so that both the computer and the display screen can
be working with the memory simultaneously, without getting in each other’s
way as they pass information through the doorways.

When the PC or the XT needs to write something on the display screen, it
simply stores the information in the appropriate memory locations for the
display. If a program finds that it needs to read information from the display
screen, it can simply look at what is stored in the shared display memory.

Now, so far we have described the memory-mapping magic of the PC and
the XT, which is closely related to the PCjr’s own magic. How is its display
different?

First, Junior has no dedicated memory for its display screen; this is one of
the many ways that its cost has been held down to make it so inexpensive
compared with its bigger brothers. Instead of using special dedicated memory,
the PCjr uses part of its 64K or 128K of main working memory.

Second, there is no fixed amount of memory used, nor even a fixed location
for the memory given to the display. While the monochrome adapter places its
display memory at the fixed location of paragraph hex B000, and the color/-
graphics adapter puts its memory at paragraph B800, our Junior varies in the
memory location it uses. The display memory is always at the highest end of
the RAM storage, but the address varies depending upon how much memory
there is, 64K or 128K, and how much is set aside for the display. The amount of
display memory needed varies with the video mode, as shown in Figure 11-4.

One thing that we lose on our PCjrs is the dual-path memory of the PC and
XT. In the PCjr, both the computer and the display are competing for the use

152

12: Fundamentals of Text Video

request the mode change from the ROM-BIOS services. Whether we use
BASIC or any other language, in the end it is the ROM-BIOS that actually
switches the mode.

What is special about the text mode for our video display is that the data in
the memory-mapped storage consist of the actual ASCII codes for each charac-
ter that we want displayed. The display circuitry in our PCjr does the work of
making the characters that the codes represent appear on the screen. This is
another way of saying that the display circuitry has a built-in character generator:
The character generator has the job of determining what each character should
look like.

When we are in text mode, the character generator is active, building our
display characters. If we want to display characters when we are in graphics
mode, there has to be a drawing of the character in memory in order to have the
character appear on the screen. In graphics mode, the character generator
can take a break while the display shows a direct image of the picture stored
in memory.

No matter what mode our video display is in, the information on the display
screen is controlled by the data stored in the memory map. The data stored
in memory specify two things: what is to be displayed, and how it is to be
displayed. In text mode, the whar is the codes of the characters that are to be
displayed; the 4ow is the colors that are to be used and whether the characters
are to blink.

For each character position on the screen, there are two bytes in the
memory map. The first, the character byte, gives the ASCII code for the
character to be displayed; the second, the color attribute byte, gives the color
attributes for the character. Thus, every single position has an independently
controlled color and if we need to, we can give each of our program’s messages
(or even each character of each message) its own distinctive color. This can be
very useful for making error messages stand out, or for adding emphasis in the
same way books use italics or typewriters use underlining.

Later in this chapter, we will learn how these two bytes work, but for a little
fun right now, you might want to try the short program shown in Figure 12-2. It
will quickly run through all the color possibilities, at the top corner of your
PCjr’s display screen. For such a simple program, the appearance of so many
colors is quite dramatic.

This program runs through all the color attributes. If you would like to see
the same action, but with all the possible characters that can be displayed, just
change one line of the program. In line 200, set OFFSET = 0, instead of 1.
Don’t worry if the logic of this change is a little unclear to you right now; I’ll
explain it later on. For now, just watch the program change the characters
displayed, instead of the color attributes of the characters. The result will look
a bit like a dancing chorus line.

159

EXPLORING THE IBM PCjr

In text mode, our programs display characters by placing ASCII character
codes into memory and using the display circuitry’s character generator to
produce the shapes of the characters on the screen. But in graphics mode, our
programs produce drawings by setting bits in memory that correspond to dots
on the screen. Each individual dot is controlled by manipulating data stored in
the memory that are mapped to the display screen. As we’ve mentioned be-
fore, graphics mode can easily display characters on the screen, butit does so by
producing drawings of the characters.

The color/graphics adapter for the original PC has exactly 16K of display
memory on it, so the number of display-image pages is fixed. Each of the
graphics modes for the PC and XT uses 16K, so these models have only one
graphics display page. Our PCjr is more flexible, since we can choose how
much memory to dedicate to display support. So, for our PCjr, there can be
more than one graphics page, just as there can be more than one text page.
That’s something new that the PC didn’t have. On the other hand, memory is
in somewhat short supply in the PCjr, so we aren’t likely to use multiple
graphics pages much.

While the text screen is made up of 25 rows of either 40 or 80 character
positions, the graphics screen is made up of dot positions, called picture
elements, pixels, or pels, arranged in 200 rows of 160, 320, or 640 dots. There
are six distinct graphics modes: Three are common to the PCjr, the PC, and the
XT, and three are newly introduced with the PCjr.

In text mode, each screen position holds a character with two parts: the
character itself, called the foreground, and the space around the character,
called the background. The foreground is one color and the background
another. In graphics mode, though, each pixel is complete in and of itself. It is
fully shown in one color or another, so there is no foreground or background
specification for graphics modes. You may be perplexed by that last statement,
because the BASIC manual clearly states that there is a foreground and a
background in the graphics modes. The confusion stems from two different
approaches to the screen.

As the screen actually works, each pixel is set to display a particular color,
and it is fully that color—no foreground, no background. This is the true
nature of graphics mode. But when we work with graphics mode, we don’t
normally set the color of each dot on the screen separately—that would not
only be extremely tedious, it would also obscure what we are really doing.
When we work with graphics mode, we usually treat the screen like a piece of
paper on which we are drawing things; and from this point of view, there is a
background (the paper) and a foreground (our drawing). To work this way, our
programs simply set all the pixel dots to the “background” color first, and then
draw in the desired “foreground” dots.

BASIC talks in terms of foreground and background in graphics mode to

178

13: Fundamentals of Graphics Video

uses the highest locations at the end of the 64K or 128K installed memory. The
amount of memory set aside for the display can be varied, but the usual, default
amount is 16K, the same amount as in the PC’s original color/graphics adapter.
The actual display memory can be reached either by calculating its true address
location or by referring to the paragraph location hex B800 used by the color/-
graphics adapter. In every way, Junior’s graphics mode, like the text mode,
produces a convincing simulation of the color/graphics adapter used by the PC
and XT.

The various text modes use the same memory locations but the locations
are interpreted according to the different needs of each mode. The same holds
true for the various graphics modes. The use of the display memory in graphics
mode resembles its use in text mode, but many of the details are quite
different. Let’s look at these differences now.

The memory used for the very first scan line of the screen begins with the
first byte of the display memory and proceeds through memory for however
many bytes are needed—so far, the procedure is no different from text mode.
However, the next memory locations are not for the second scan line, but for
the third or the fifth line, depending on which graphics mode is being used. For
graphics modes 4, 5, 6, and the new PCjr mode 8, every other line is stored
first; for the other two new modes, 9 and 10, every fourth line is stored first. So
it goes like this: For modes 4, 5, 6, and 8, it begins with line number 0 (the first
line), followed by 2, 4, and so on through line 198. Then come lines 1, 3, 5, and
on to the very last line, 199. The same idea applies for modes 9 and 10, except
that the lines are divided into four groups, like this:

Firstwe have 0,4, 8, ... i vttt i i ettt e 196
Then 1, 5, O, ittt e e e e e e e e 197
then 2, 6, 10, ..ottt it it e e e e e 198
finally 3, 7, 11, . ..o e 199

Why is mapping done this way? You will recall that display screens are
scanned every other line at a time; so this memory-map format matches the
actual order in which the display screen uses the data. As a moment’s thought
will show, mapping the graphics memory in this order, rather than with the
lines in numeric order, is a trade-off between convenience for the programsand -
convenience for the hardware. It would be tedious for you or me to calculate
the right memory location for the beginning of any line, but in assembly
language itis very quick and easy—in fact, it takes only three instructions (two
shifts and an add or a test, a jump, and an add). It is therefore more practical to
make the programs do the work than to make the display circuitry smart
enough to skip every other line in memory when it is scanning.

From line to line, the memory locations are used one byte after the other,
just as in text mode. However, there is a gap between the two or four blocks of

183

13: Fundamentals of Graphics Video

the odd byte provides the lower order bit needed for the pixel’s color specifica-
tion, as shown in Figure 13-3.

The reason for this unusual setup has to do with electronic hardware. Since
the focus of this book is on understanding how the PCjr works, from the point
of view of computer users like you and me, what we really want to discuss is
functions—the things that make it possible for the software to go. While the
details of how the hardware works are very interesting, those details are not
functional in the sense of using and writing software. Here, though, since
we’ve bumped our heads on the hardware, let’s pause to understand what is
going on.

Computer memory takes a certain amount of time to work and the speed of
the memory is one of two main factors limiting the overall speed of the
computer. (The other is the speed of the microprocessor.) There is, though, an
interesting trick that can make computer memory work faster than it sup-
posedly can: Many computer operations work with data located in adjacent
memory locations; for example, the operation of reading out the bits that
control the graphics display screen.

The computer’s memory does not all have to be controlled by the same
circuitry; there can be multiple sets of circuits operating in parallel (that is, at
the same time). These multiple circuits don’t control widely separated blocks
of memory. Instead, they separate out and control adjacent memory locations
by a technique known as interleaving. In the case of a PCjr with 128K of
memory, the odd bytes are controlled by one circuit and the even bytes by the
other. This allows the computer to use two adjacent bytes (each controlled by
different circuits) much faster. Expensive mainframe computers use this inter-
leaving idea, sometimes with many parallel circuits, not just the two that our
PCjr has.

Even though interleaved memory is a fancy feature for top-of-the-line
computers, our little Junior has interleaved memory when 128K is installed.
With 64K, the PCjr has one memory circuit that is used in the ordinary way.
But with 128K, it has two memory circuits that are used as two-way, inter-
leaved memory.

This is remarkable for a home computer—not even the PC and XT use
interleaved memory. The PCjr, though, has two special demands placed on its
memory that the PC and XT don’t. One is simply that the same memory is
used for both program operation and display support, so the memory is
exercised much more and needs to work faster. The other has to do with
graphics mode 10. (See? We’ve come full circle, back to graphics.) To make it
more practical to pull out all the data needed for mode 10, the bits are
interleaved into even- and odd-byte pairs. The circuitry has to work very hard
to produce the high-resolution colors that mode 10 gives us, and splitting each
pixel’s two bits onto separate bytes helps out.

185

EXPLORING THE IBM PCjr

First, these drawings have to exist somewhere. The PCjr handles this inan
interesting way. The complete 256-character set makes up a table of drawings
divided into two parts: The first half is the 128 ordinary ASCII characters, and
the second half is the 128 extra characters created by IBM. For the ASCII
characters, the table of drawings is stored in the ROM in our PCjr and in the
other IBM personal computer models. We can’t change this table, and we can’t
change the pointer to the table, so these characters are fixed and protected from
tampering.

The second half of the table of character drawings is more complicated and
interesting. You'll recall from the last chapter, that the second half of our
character set, from CHR$(128) through CHR$(255), is intended to add all sorts
of special characters to the ordinary ASCII characters. In the original design of
the IBM personal computers, these other characters were intended for use by
the monochrome display, which doesn’t have the graphics drawing abilities of
our PCjr.

As originally set up, the PC’s color/graphics adapter (on which our PCjr
models itself) did not provide a character drawing table for these special
characters. In text mode all the characters worked, but in graphics mode, only
the ASCII half of the set of characters was provided. In our PCjr, though, IBM
has added a table of drawings for the upper half of the characters set. This
means that programs on our PCjr can freely use all the 256 characters, in
graphics mode as well as in text mode; but it also means that if we write
programs that use the special characters in graphics mode, they won’t work on
an ordinary PC.

In the original design, IBM provided a way for us to create a drawing table
for these special characters. When our programs write characters in graphics
mode, the ROM-BIOS service programs test whether these characters are
ordinary (CHR$(127) and below) or special (CHR$(128) and above). For the
ordinary characters, the computer’s built-in and unchangeable drawing table is
used. For the special characters, the ROM-BIOS looks to the interrupt vector
table, takes the address for interrupt 31 (hex 1F), and uses it to provide the
location of the drawing table for these characters. (You’ll recall from our
discussion of interrupts that three entries in the interrupt vector table were set
aside for special uses that really had nothing to do with interrupts; this is one of
those uses.)

Our PCjr has a character drawing table built into it, and the address in the
interrupt vector table normally points to it. The original PC does not have this
drawing table, and so the address for the interrupt vector is just set to zero, as a
way of indicating that there is no drawing table.

The most interesting thing about the drawing table for these special
characters is that we can create our own, if we want to. All we have to do is set
up a drawing table somewhere in memory and then plug its address into the

188

EXPLORING THE IBM PCjr

I believe, though, that most people don’t understand the real significance of
the personal computer revolution.

Many people think that the significance of this revolution comes from
people having their own computers, computers dedicated to serving the needs
of one person at a time. Isolated, unconnected, private computing is what most
people consider personal computing to be. When you or I buy a personal
computer, such as the IBM PCjr, we get computing power on tap, for our
exclusive use. There is a great benefit to having our own source of computing
power; by itself, though, it can only enhance the things that we might be doing
ourselves—it does not enhance our connection with the rest of the world.

This part of the impact of personal computers is very important, but it is
only the first half of the real revolution. The other half of the personal computer
revolution is the connection of our own computing power to other computers.
When we can talk to other systems with our PCjr, then we are plugged into both
halves of the personal computer revolution—the revolution of private comput-
ing, and the revolution of computer connections.

In this chapter, we will cover the communications skills of the PCjr.
Whether or not you plan to make use of Junior’s ability to communicate over
telephone lines, it is important to know about this half of the computer
revolution.

The connection of our computer with others can take many forms; here are
what I think are the three most important. First, there is talking “socially” to
other personal computers. This is usually done on a basis of friend-to-friend,
hobbyist-to-hobbyist, and it might, for example, involve sharing programs and
data or using an electronic bulletin board for messages and the spreading of
information.

Second, there is talking to other computers for work purposes. This might
involve working at home and communicating with your employer’s computers
in what is called zelecommuting—commuting to work by computer connection.
Or using the computer connection for work can involve tapping into remote
computer services; for example, an independent insurance agent might con-
nect with a service that can quote insurance rates.

The third very important form of computer connection involves the use of
information services, such as THE SOURCE and CompuServe, which let us
connect into vast libraries that provide information ranging from ball scores and
stock quotations to airline schedules.

Whatever form your use of communications on the PCjr might take, it is
communications that fulfills and rounds out your computer’s enormous
potential.

Communications is a very complicated specialty subject all by itself. Since
this book is about the workings of the IBM PCjr, we can’t go into the details of
communications, other than very superficially. There are places you can turn to

192

14: Communications and the Modem

This smart modem is not fast. While data traffic on telephone lines can
move at speeds of 1200, 4800, or 9600 baud, our modem’s native speed is a
modest 300 baud—modest, but no slower than that used most commonly for
personal computers.

We talk to the smart modem in ordinary ASCII character codes, so it is
relatively easy for us to issue commands, and it is also easy for us to understand
any messages that the modem has for us. Normally we use a special commu-
nications program to supervise the modem. One such program is included in
the BASIC cartridge as the TERM command; another is the popular PC-Talk
program. We can enter modem commands directly from the keyboard or we can
use our communications programs to send commands to the modem.

When we want to send a command to the modem, we begin with a special
character, CHR$(14), which can be keyed in simply as Ctrl-N. From the
keyboard, Ctrl-N is the easiest way to begin the command; from a BASIC
program, CHR$(14) is the easiest way to generate the special character. When-
ever the modem is receiving data from us, it continually looks for this special
code. When it finds it, the modem expects commands to follow, and it inter-
prets any data that follow this character as modem commands.

Modem commands are given in a line beginning with CHR$(14) and
ending with a carriage return, CHR$(13). Anything between those two charac-
ters is taken by the modem as a set of commands. The command data are not
acted on immediately as they come in. Instead, the modem stores the data until
the command line is complete. After the carriage-return character, CHR$(13),
is encountered, the modem carries out the commands it has been given.

Several different commands, separated by commas, can be given in a single
command line; Ctrl-N is not needed for each command, since this character
really marks the beginning of a line of commands, and not the beginning of

individual commands.
Each modem command begins with a single letter of the alphabet. Al-

though the commands have full, descriptive names, such as Answer, to help us
keep track of them, only the first letter of the command matters to the smart
modem, and Answer and Abracadabra would both be interpreted as the same
command. So each command begins with a letter that identifies it; if it needs
any parameters, they follow, separated by spaces. For example, to get the
modem to dial a number, we would give it a command line like:

<Cul-N> DIAL 213-399-3948 <Carriage Return>

The modem would dial that number, reaching my office in Venice, California.
The hyphens in the telephone number are for our convenience; the smart
modem is smart enough to ignore them.

As another example of how we might use modem commands, let’s suppose
that we have our telephone line connected both to our PCjr’s smart modem and

197

14: Communications and the Modem

If anything was needed to convince you that communications is a compli-
cated, specialty subject, these status codes should do the job. One main reason
why communications is so messy is because it is vulnerable and exposed.
Within the guts of a computer, the designers are fully in charge, and any
operating errors can usually be hidden from civilians like you and me. With
communications, it’s a different game. Communications goes on in the outside
world, over cables and telephone lines that aren’t under the control of our
computer’s designers. Worse than that, telephone lines are more vulnerable to
all sorts of problems, from electrical surges to bird droppings, than the inside of
a computer. You’ll rarely have a thunderstorm or bird droppings inside your
PCjr, but the same can’t be said for the telephone system.

All this adds up to the fact that the messy details of communications can’t
be swept under the covers as easily as details of computer design and operation,
and that explains why the communications status codes are so complicated.

203

EXPLORING THE IBM PCjr

of the bits in this byte has a special meaning to the timer and when the
combination of bits necessary to prepare it is set, the value of the byte is 182.)
Then we send the divisor itself to port 66, but we send it in two parts: the low-
order byte of the divisor (calculated in line 270), then the high-order byte
(calculated in line 290). Sending these two parts of the divisor completes the
three steps of loading the timer, and the timer begins generating the frequency
we asked for. Here is how we would do this in BASIC:

240 ‘calculate the full divisor
250 DIVISOR = 1193180! / 440

260 ’ calculate the low-order byte
270 LO.DIVISOR = DIVISOR MOD 256
280 ‘ calculate the high-order byte
290 HI.DIVISOR = DIVISOR / 256

300

310 ’ send the values out

320

330 OUT 67, 182 ‘ preparatory signal
340 OUT 66, LO.DIVISOR ’ low-order byte

350 OUT 66, HI.DIVISOR ’ high-order byte

Once the timer is loaded and a frequency is generated, we can turn the
sound on and off by setting the speaker bits. To make use of the timer
frequency, we have to set both of the speaker bits on. While line 150 in our
earlier program (Figure 15-2) adds 2 to set just bit 1 on, we now need to add 3
to set both bits on (because the binary values of bit 0 and bit 1 are 1 and 2,
respectively).

360 OUT 97, CINP (97) \ 4) * 4 + 3

For a trick example, we mimic lines 100 through 180 of Figure 15-2, but this
time, instead of pulsing the speaker with each OUT statement, we'll be
activating and deactivating the use of the timer frequency. These new program
lines, combined with lines 240 through 350 above, will do the trick:

400 * switch the timer frequency on and off
410 *

420 OLD.PORT = INP (97)

430 *

440 FREQUENCY.ON = (OLD PORT \ 4) * 4

450 FREQUENCY.OFF = FREQUENCY.ON + 3

460 OUT 97, FREQUENCY.ON

470 FOR I = 1 TO 128 : NEXT I ’ kill some time
480 OUT 97, FREQUENCY.OFF
490 FOR I = 1 TO 128 : NEXT I ‘ kill some time

500 GOTO 460

210

15: Super Sound

adds a special twist to the process. In order to be able to play music more pre-
cisely, BASIC needs to receive clock-tick interrupts faster than 18.2 times a
second. So BASIC changes the clock programming to produce ticks four times
as fast as normal. But, since the ROM-BIOS expects to keep track of time with
the ordinary clock rate, BASIC filters out three out of four ticks, so that the
ROM-BIOS experiences clock interrupts at the normal rate.

In the usual mode of operation, the original clock interrupt is handled by
the ROM-BIOS which, in turn, hands clock-tick interrupts to any program that
wants them. BASIC turns the process around. Since the clock interrupt is
occurring four times as often as usual, BASIC sets the interrupt vectors so that
the clock interrupt comes to BASIC first. Then, on one of every four clock
interrupts, BASIC passes control to the ROM-BIOS, just as if the BIOS had
received the interrupt in the first place. The ROM-BIOS does its job of adding
one to the count of clock ticks, and then generates the clock-tick interrupt.
Programs like BASIC are supposed to work in response to the clock-tick in-
terrupt, but BASIC is clever enough to reverse the process, with no harm done.

In case you are confused by any of this, let’s diagram it for more clarity.
First, here is the normal way things happen:

1. The clock runs at 1,193,180 cycles each second.

2. Based on a controlling count, the clock generates a clock interrupt,
interrupt number 8, 18.2 times a second.

3. The ROM-BIOS receives the clock interrupt (number 8), increments
its tick count, and then generates a clock-tick interrupt, interrupt number 28,
hex 1C.

4a. If no program has asked to use the clock-tick interrupt (by setting an
interrupt vector), control returns to the ROM-BIOS, which returns control to
whatever was happening before the original interrupt 8.

4b. 1f a program has set the clock-tick interrupt vector, then control passes
to that part of the program, which will do whatever needs to be done. If BASIC
operated this way (as described above), BASIC would check to see if a note had
played long enough. When the program’s tick subroutine is done, control is
returned just as described in item 4a.

Now, that is what normally happens. But when BASIC is running music-in-
the-background, here is how it goes:

1. The clock still runs at 1,193,180 cycles each second. No change.

2. Based on a controlling count that is four times as fast, the clock
generates a clock interrupt, interrupt number 8, 72.8 times a second.

215

EXPLORING THE IBM PCjr

3a. BASIC receives control of the clock interrupt, simply because BASIC
has reset the interrupt vector for interrupt 8. BASIC now does its own work
(checking if a note is finished, etc.) and then, for every fourth clock cycle,
passes control to the ROM-BIOS just as if the interrupt number 8 had led
directly there.

3b6. The ROM-BIOS receives control as if from interrupt 8, increments its
tick count, and then generates a clock-tick interrupt, interrupt number 28 (hex
1C). The ROM-BIOS has no way of knowing that BASIC is running, and that
there is no need for a clock-tick interrupt 28.

4. There is no special interrupt vector set for the clock-tick interrupt, so
control immediately returns to the ROM-BIOS, which returns control to
whatever was happening before the original interrupt 8—which is the regular
part of the BASIC program.

All this fancy footwork allows BASIC to operate with a faster clock so thatit
can play music for more accurate lengths of time. This is a trick that we are very
unlikely to use ourselves, but learning about it gives us more insight into what
* can be done with sophisticated programming for the IBM personal computers.

216

16: Pounding on the Keyboard

The PCjr’s keyboard has 21 fewer keys than the PC’s, but 22 PC keys are
actually missing. The new Fn key adds one to the PCjr’s key count:

(83 PC keys) — (22 missing) + (1 added) = (62 PCjr keys)

The 22 extra keys on the PC keyboard are: 10 dedicated function keys, labeled
F1 through F10; another 10 keys on a numeric keypad (also containing a few
special keys, like Home and End); and finally, two keys with special, rarely
used characters (vertical bar and backslash on one, reverse quote and tilde on
the other).

The PCjr’s Alt shift key and special Fn key are used in combination with
other keys to serve the same purpose as most of the missing keys. For the F1 to
F10 function keys, Fn is pressed, followed by one of the digit keys. (The zero
key, naturally, serves for F10.) Twelve other Fn combinations, used to replace
parts of missing keys, are shown in Figure 16-5.

Five special Alt combinations give us the four rarely used, special charac-
ters from the two rarely used character keys, plus the second asterisk that
appears with PrtSc on the PC keyboard. These combinations are shown in
Figure 16-6.

Three of these special key combinations are strange, because they mimic
duplicate keys on the PC keyboard. The PC keyboard has two asterisks, two

Figure16-4. The PC keyboard: 22 unique keys

227

EXPLORING THE IBM PCjr

To support the light pen, there is a single ROM-BIOS service, one of the
group of video services invoked with interrupt 16 (hex 10). For the light pen,
service 4 indicates if the pen is triggered and, if it is, returns the row and
column position of the pen.

As for everything else in the PCjr, the BASIC language provides the means
to use the light pen, with the PEN function and statement. If we are program-
ming in BASIC we can use these features of the language; otherwise, we must
use an assembly-language connection to get access to the ROM-BIOS service
for the pen.

240

EXPLORING THE IBM PCjr

computers, these after-market manufacturers were responding even better
than IBM to the changing needs for options and add-on boards.

Possibly because of this, IBM initially created only one use for the PCjr’s
I/O connector bus, the parallel printer adapter. In effect, IBM has left the uses
and extensions of Junior’s I/O channel connector to the ingenuity of all the
suppliers of IBM personal computer equipment.

So, IBM hasn’t defined what the further connections for the PCjr will be.
Instead it has left the way open for outside suppliers to define the shape Junior
will take. The possibilities are as unlimited for the PCjr as they are for the PC
and X'T—it all depends upon the needs of PCjr owners.

What we do know is that the PCjr’s open bus, in the form of the I/O channel
connector, makes it possible to add any number of new parts and options.
These can take the same form as Junior’s parallel printer adapter, which plugs
into the I/O channel connector and passes access to the connector on to the
next piece of equipment. Or, they can also take the form, used by the PC and
XT, of an expansion cabinet that would plug into the I/O channel connector
and would contain slots for expansion boards. Each of these expansion slots
would be electronically connected to the PCjr’s I/O channel. Both of these
approaches to adding new options to the PCjr are functionally the same—they
are just two ways of wrapping the operation up. Options that work like the
parallel printer adapter have to have their own cabinet parts to contain them,
while an expansion cabinet provides a single enclosure that can be used by
several naked option boards.

Whatever form additions to the PCjr take, they will use the I/O channel
connector as a bus connection to Junior’s main circuitry. And the PCjr’s bus
places no limits on the wonders that we can add to our computers.

246

20: Getting Program Access

In fact, with some intelligence and pluck, you can build your own interface
routines successfully, even if you don’t know any 8088 assembly language.

I know that this is true from my own experience. When I first started using
the IBM Macro Assembler, I knew nothing about 8088 assembly language and
had not learned half as much as this chapter is teaching you. Yet, my first
assembly-language interface routine (which was intended to let Pascal pro-
grams read specific parts of a diskette) worked on my third try, and the whole
process took no more than 45 minutes. That is how easy it can be, even for a
beginner at assembly language.

Now, to work. Let’s start with the overhead outline of the assembler source
code, with no working program parts. Here it is, with the assembler code in
CAPITALS and comments in lowercase:

INTERFACE SEGMENT “CODE’

this defines an assembler
SEGMENT, and marks it as CODE,
so it will be linked with other
programs. The name INTERFACE
is arbitrary.

e we we ve we

PUBLIC MEMSIZE this makes the subroutine
(MEMSIZE) that follows
visible, or public, to the
world. Without it, LINK could
not connect the subroutine to
its users. Our name, MEMSIZE

is arbitrary

Ve ve ve ve ve we we

MEMSIZE PROC FAR this begins a procedure, a
subroutine itself. FAR or NEAR
should be specified—recall

that your programming language
may require you to use one or
the other. MEMSIZE is the name
of the subroutine; it could be

any name your language can use

Ve we ve we e we ve v

; the body of the program would fit in here

MEMSIZE ENDP ; this tells the assembler we’re
; at the end of the MEMSIZE
; subroutine

INTERFACE ENDS ;s this tells the assembler we’re
; at the end of the INTERFACE
; segment

265

EXPLORING THE IBM PCjr

END ; this tells the assembler we’re
; done, entirely

That is the assembler overhead, for the most part. The segment can
contain as many subroutines as we want, each enclosed in PROC-ENDP
statements.

Be sure to make each PROC either NEAR or FAR according to your lan-
guage requirements. The exact coding on the SEGMENT statement depends
on the conventions used by the programming language. We can usually
find this out by studying how the language categorizes object modules (which
are the form programs take after they have been compiled or assembled,
but before they have been linked). We can usually learn what we need to
know either from the language’s documentation, or by poring over the map
that is produced when we link a program. The SEGMENT statement we
showed here applies to Pascal. For C, you need to include a GROUP state-
ment, something like this:

PGROUP GROUP PROG
INTERFACE SEGMENT BYTE PUBLIC ‘PROG’

All of that is needed, but the noticeable difference from Pascal is that the
named type is PROG, instead of CODE. Check the examples in your own
programming-language manual to get this sort of thing straight; that’s where
I’ve always found out about these details, and that’s where you should look,
t00.

There is one more bit of overhead we ought to mention. Although our
example here will not involve any logic and branching, others might. Many of
the ROM-BIOS services indicate success or failure with a flag, such as the CF
flag, and our assembly-language routines will need to test that flag and branch
on it. Even though these branches don’t need or use the CS segment register,
the assembler insists on knowing about the CS value. So to solve this problem,
we insert an innocuous statement, following the SEGMENT statement, like this:

ASSUME CS: INTERFACE

So far, what we have seen is the assembler overhead, which generates no
machine code at all. Next we’ll look at the program overhead —the part of the
program that takes care of beginning and ending, but not the part that does our
specific work. Here is the standard code for that:

PUSH BP ; we save the caller’s BP—this is important to
; the caller; we’re about to create our own BP

266

20: Getting Program Access

mMov BP,SP; we move the current stack pointer, SP, into
; the base pointer, BP, so that we can look at
; our parameters on the stack

; our working instructions would be here
POP BP ; now we restore our caller’s BP

now we return to our caller; the assembler
automatically makes this a NEAR or FAR
return. If we are to take parameters off
the stack, we replace the "0" with the
number of bytes—usually two for each
parameter (check in your case). For no
parameters, or for the C language, we use
zero

RET 0

~ve ve ve ve ve ve e ve

The setting of BP is what enables us to get at the part of the stack holding
our parameters. We’ll come to that shortly. First, let’s complete one subroutine
by asking it to perform the simplest kind of ROM-BIOS interface—a straight-
forward interrupt service with no parameters. Interrupt 18 (hex 12), which gives
us the size of memory, will serve nicely. To get this service, we just do this:

INT 12H ; request interrupt hex 12—memory size

This one short instruction is the working body of our subroutine. As it turns
out, this ROM-BIOS service returns its value, the size of memory, in the AX
register. This is the standard place to return it to our caller, so we don’t need
any more code at all.

In case you’ve lost track of any of the pieces, look at Figure 20-1 to putitall
together.

One of the most complicated things we have to consider in our interface
routine is how to get our hands on parameters. The BP is set to the current
location in the stack, above which will be our parameters. But we need a little
help to know what is there. The stack will have our parameters on it, probably
with two bytes for each. (Even 1-byte parameters take up two bytes on the
stack. Usually, only a segmented address from Pascal takes up more than two
bytes.) The stack will also have the return address of the caller, which will be
two bytes fora NEAR PROC and four fora FAR PROC. Finally, it will have the
BP value we originally pushed. Figure 20-2 is a diagram of the stack contents,
in the case of a FAR subroutine with 2-byte parameters. For a NEAR sub-
routine, each parameter would be two bytes closer to BP.

267

20: Getting Program Access

the time-of-day tick count. Before invoking this service, which is service code
1, interrupt 26 (hex 1A), we would have to hand it the parameters—the tick
count. This ROM-BIOS service expects to get the parameters in registers CX
and DX. We can move them there from the stack, like this:

Mov DX,[BP + 8] ; move the second parameter into DX
MoV CX,[BP + 101 ; move the first parameter into CX

The expression [BP + 8] means this: Take the value in BP, add 8 to it, and
then, as indicated by the brackets, take the resulting value as a relative offset
address to find and grab a value from memory. And that value is the one that the
instruction moves into the DX register. Next, we would invoke the ROM-
BIOS service, like this:

MoV AH,1 ; service code 1: set the clock
INT 1AH ; invoke interrupt hex 1A

Now, the way we grabbed the parameters assumed that the values them-
selves were on the stack. Suppose that their addresses were on the stack
instead, as they are in BASIC and can be with Pascal and C. Here is what we
would do to get them:

Mov DX,[BP + 8] ; move the address into DX
MoV DX,[DX1 ; move the value that DX points to

The same maneuver would load the CX register.

Mov CX, [BP + 101
mov Cx, [CX]

If we are modifying a parameter, the process is reversed. Suppose that,
instead of using the ROM-BIOS service that sets the tick count, we used the
service (interrupt hex 1A, service code 0) that tells us the tick count. After we
got it, we would want to pass it back to our parameters. We would do thatin a
way similar to the way we set the tick count, but with the movement reversed:

MoV AH,0 ; service code 0: read the clock
INT 1AH ; invoke interrupt hex 1A

MoV AX,[BP + 8] ; move the address into AX

MoV [AX]1,DX ; move the value from DX to memory
MOV AX,[BP + 10] ; move the address into AX

269

EXPLORING THE IBM PCjr

MoV [AX],CX ; move the value from CX to memory

Before, we performed the trick of using CX and DX to hold first an address
and then a value; here, we need some other place to hold the address, and so we
use AX, which is conveniently available.

We’ve now covered all the main points of writing a working, assembly-
language interface to the BIOS, but there are still two more small items to
cover: saving more registers and branching on the flags.

Some of the ROM-BIOS services that we might use call for setting segment
registers, which should be preserved. If we have to save any registers, we do it
on the stack, with some PUSH instructions. Just for illustration, here is what
we would do to save both DS and ES:

PUSH DS
PUSH ES

This would be done just after the two start-up instructions:

PUSH BP
mov BP,SP

When we are through, we need to restore the registers. This has to be done
in the reverse order, so we would finish with instructions like this:

POP ES
POP DS
POP BP

with the return instruction, RET, immediately following.

Also, as we have mentioned, some of the ROM-BIOS services use flags to
signal success or failure. Our high-level languages can’t see these flags, so we
need to translate them into visible values—for example, a 1 in AX for success,
and a 0 in AX for failure.

For a specific example, let’s use the diskette services: the carry flag (CF) is
0 on success, and 1 on failure. We cannot just move the CF flag into AX, but we
can branch on it, like this:

mov AX,0 set to failure code,
for the moment
if carry flag is set, skip over

JC RETURN ;
; success code

mMov AX,1 set to success code
RETURN: label for jump-if-carry
; instruction
RET ; return to caller

With all that, you now have all the parts and examples that you need to
build your own, custom interface routines. To finish up, we will look at the

270

EXPLORING THE IBM PCjr

is made to assembly-language interface routines. Here are the particulars on
how to connect Pascal to an assembler interface.

Pascal is set up to use both NEAR and FAR calls, but all external rou-
tines—including assembly interfaces—are treated as FAR. As with BASIC,
parameters are pushed in the order written, so an interface routine should look
for them in reverse order. Again as with BASIC, the subroutine must clear
parameters off the stack with its RET instruction.

Either parameter values or their addresses may be placed on the stack. We
can also choose whether the addresses are relative to the DS register or are
complete segmented addresses. When a subroutine is declared in Pascal, its
parameters are declared, either with or without the VAR option. With VAR, the
subroutine is given the address of the parameter, so that it can be changed. In
this case, VAR places the address of a variable on the stack. If an S is added,
making the option VARS, Pascal passes a segmented address, instead of just a
relative offset address. For each VARS parameter, four bytes are placed on the
stack: the segment paragraph first, then the relative offset.

When VAR is not specified in Pascal, we are telling Pascal to protect our
data from change. This means that Pascal must make a copy of the data and let
the subroutine have access to the copy. When the parameter value is a byte ora
word—normal for routines interfacing with the ROM-BOS—the value itself is
placed on the stack. With a longer or more complex parameter, Pascal copies
the value to somewhere in memory, and then passes the address of the copy as a
parameter on the stack. This is obviously inefficient and adds unnecessary
overhead to the program.

Pascal expects the results of word or byte functions to come back in the AX
or AL registers, so our subroutines can freely use them to return values. For
more than one value, or longer values, pass the information back to your Pascal
program through a VAR parameter.

For an example of the Pascal side of the connection with assembly lan-
guage, here is how we would declare and use the MEMSIZE routine we
developed above:

FUNCTION MEMSIZE : WORD;
EXTERNAL ;

X := MEMSIZE;
WRITELN (’The size of memory is ’, X, ’ K-bytes’);

A routine named READ_TICKS, which reads the tick count, might be
declared like this:

PROCEDURE READ_TICKS (VAR LOW_COUNT, HIGH_COUNT : WORD);

272

EXPLORING THE IBM PCjr

IBM PC Assembly Language by Leo Scanlan (Brady, 1983). To learn 8088 assem-
bly language, though, do not look to the manual that comes with the IBM
Macro Assembler. The assembler manual is a reference book, not an explana-
tory tutorial.

To understand the inner workings of the other smart chips in the IBM PCjr,
scout a technical book store for any of the electronics “cookbooks” that cover
the chips you are interested in. Itis here you will find information on such chips
as the Texas Instruments SN76489A sound generator, which provides Junior’s
rich sound-making capabilities.

To understand more of the workings of the DOS operating system, turn to
the appendices in the IBM DOS manual.

Finally, for a treatment similar to this book, but covering information
specific to the original IBM Personal Computer, see my book Inside the IBM PC
(Brady, 1983).

302

