
Portable packet processing modules for OS kernels ∗

Luigi Rizzo
Università di Pisa, Italy
rizzo@iet.unipi.it

This paper appears in IEEE Network, vol.28 issue 2, pg.6-11, March 2014

ABSTRACT
During the last fifteen years we have been involved in the
design and development of some extremely popular pieces of
open source software. Two of them, the dummynet network
emulator and the netmap framework, are available as kernel
components for popular operating systems, and are widely
used in several research and commercial projects.

In this paper we will briefly describe the internals of
the two systems, discuss the challenges in building kernel
components that run on multiple Operating Systems, and
analyse the difficulties in developing and maintaining open
source software as part of one’s academic activity.

1. INTRODUCTION
For a long time now we have designed, developed, dis-

tributed and supported several opensource software systems.
Some of them have been developed as a standalone projects;
others, including the two described here, were soon inte-
grated in the FreeBSD Operating System and hence had to
abide to the standards of the parent project.

Even for those systems directly related to our research
work, a good part of the development effort has occurred
well after the original research was completed, and has been
supported mostly by personal interest and enjoyment in this
activity.

Several of our systems, including the dummynet network
emulator [2] and the netmap [13] high speed packet process-
ing framework, have become extremely popular and widely
used. Others, such as the erasure code in [11] and the
PGMCC multicast congestion control scheme [14] have seen
a slightly different fate, with a decline in popularity after
some time.

In this paper we will present dummynet and netmap, which
are kernel components supporting different Operating Sys-
tems. In addition to technical issues (features, performance)
we will discuss the choices that (in our opinion) made them
popular, and comment on how developing opensource soft-
ware relates to academic activity.

2. DUMMYNET
The dummynet network emulator [2] saw the light in late

1995 when doing research on TCP congestion control. As it
often happens in networking research, we needed to study

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.287581
- OPENLAB.

the behaviour of a complex system, including applications,
user libraries, in-kernel protocol implementations and device
drivers, in a network environment that is not easily available
or reproducible.

Two extreme approaches are used in these cases. One
is recourse to full simulation, where every piece of the sys-
tem (including traffic sources and sinks) is modeled so that
their behaviour can be reproduced together with that of the
network. The NS2 [1] simulator and similar tools include
good models for physical layer and protocols. However ap-
plication libraries, traffic sources and sinks normally must
be (re)implemented by the user on a case by case basis.

The alternative is to try and reproduce the desired net-
work conditions in a real testbed, sparing the modeling effort
involved in simulation (often a monumental one, especially
for the endpoints if one wants to reproduce them with rea-
sonable fidelity). At the time, these experiments were often
run borrowing computer accounts from fellow researchers at
other institutions; more recently, platforms such as Planet-
Lab [5] have simplified the setup of the experiments. Either
way, network conditions in these testbeds are hard to control
or reproduce.

Dummynet is a network emulator, and its goal is to mix
the good features of simulation (better reproducibility and
no need to own/use a potentially expensive network infras-
tructure) and real experiments (no need to model all pieces
of a system; ability to study black boxes that are part of the
system under test).

Network emulators act on live traffic and actual protocol
implementations. They simulate the effect of the commu-
nication links by intercepting traffic (either within the OS,
or in the network itself), and delay/drop packets as if they
were flowing through a communication channel with given
features (bandwidth, propagation delay, queue size). These
parameters are used to configure the object that emulates a
communication link, called a “pipe” in dummynet’s termi-
nology (Figure 1).

2.1 Dummynet’s operation
As shown in Figure 2, dummynet intercepts packets

within the Operating System’s kernel (at the IP or Ether-
net layer, depending on the configuration) and inserts them
in a queue which is part of the pipe. Each packet is then
scheduled to emerge from the pipe after a delay

∆T =
(Qi + Li)

B
+ tPD

where Qi is the queue occupation before packet i is en-
queued, Li is the length of the packet, B is the bandwidth



Figure 1: Top: a basic dummynet pipe and its pa-
rameters. Bottom: the emulated link can be driven
by a packet scheduler serving multiple queues with
different weights/priorities.

of the channel and tPD is the propagation delay (length of
the link divided by the speed of light in the medium).

The delay can be easily computed in the emulator, which
then only needs to hold the packet in memory and schedule
an event after ∆T to complete the delivery to the network
card or to the rest of the protocol stack. This way, applica-
tions whose traffic is flowing through the pipe will experi-
ence an effective bandwidth and delay in the communication
equal to the values configured for the pipe. This happens
without any modification to the application or the OS.

Emulation also takes care of dropping packets when the
queue attached to the pipe is full, same as it would occur on
a real communication link. This is called congestion-related
packet loss, and is one of the inputs to congestion control
schemes such as the ones used in TCP. Dummynet can also
emulate random packet drops, which is useful to test the
response of a system to losses not related to congestion.

2.2 Traffic selection
Reproducing the behaviour of a link is only part of the

operation of an emulator. Equally important is the se-
lection of traffic that should be subject to emulation: a
PC/workstation normally sends and receives plenty of traf-
fic that is not part of the experiment, and should not be
affected by the emulator. Most ad-hoc emulators are ex-
tremely inflexible in their filtering abilities, and tend to force
researchers to adapt the experiment to the tool, rather than
the other way around.

In dummynet, traffic selection (see Figure 2) is done by the
system’s firewall, ipfw, which has been extended to provide
a simple yet powerful configuration mechanism. We can
define multiple pipes with independent configurations, and
use ipfw’s packet matching options to send traffic to specific
pipes. With relatively simple and intuitive configuration
commands we can model asymmetric links, multiple paths,
and pass traffic through a sequence of queues/pipes, allowing
the emulation of complex network topologies with multiple
bottlenecks and inputs/outputs.

As an example of the simplicity of configuration, the com-
mands below create two pipes to model an asymmetric link,

ipfw pipe 10 config bw 256 Kbit/s delay 20ms
ipfw pipe 11 config bw 4 Mbit/s delay 5ms

and another couple of ipfw rules suffice to pass traffic of
interest (e.g. for a given port range) to one or the other
pipe, depending on the direction

Figure 2: The placement of the emulator within the
system. The ipfw classifier selects traffic for the
various pipes, while multiple pipes emulate queues,
schedulers and links.

ipfw add 100 pipe 10 out dst-port 2000-3000
ipfw add 200 pipe 11 in src-port 2000-3000

and finally, one more rule is used to bypass the emulator for
all other traffic

ipfw add 300 allow ip from any to any

2.3 Traffic scheduling
When we started some research on packet scheduling [4],

dummynet became a useful tool for evaluating the perfor-
mance of our algorithms. To help our research, we added
support for configurable packet schedulers (in the form of
loadable kernel modules) in front of a pipe, and extended
ipfw so that pipes, schedulers and traffic classes could be
created very easily.

The configuration scheme was carefully designed so that
a small amount of commands could produce very complex
and flexible settings. As an example, below we show how
to build a traffic shaper that gives independent 1 Mbit/s
pipes to every /24 subnet connected to it, and implements
fair queueing within each subnet with two different traffic
classes per host.

We start by creating a set of pipes with the desired band-
width (the parameter mask src-ip 0xffffff00 creates one
pipe for each /24 source subnet), each driven by a QFQ [4]
scheduler.

ipfw pipe 5 config sched qfq mask src-ip 0xffffff00 bw 1 Mbit/s

We then define two traffic classes (“queues” in dummynet
terminology) with different weights (i.e., receiving different
fractions of the available bandwidth). Again, the mask ...

parameter causes the creation of multiple queues, in this
case one per source IP. Queues are connected to the sched-
uler/pipes according to the masks: eventually, each pipe
(representing a /24 network) will be driven by up to two
queues (with different weights) per source IP.

ipfw queue 1 config pipe 5 weight 10 mask src-ip 0xffffffff
ipfw queue 2 config pipe 5 weight 4 mask src-ip 0xffffffff

The final step of the configuration is to send traffic to one
or the other (set of) queues as desired. In this example we
send ssh and DNS to the queue with higher weight, and all
remaining traffic to another one with a lower weight.

ipfw add 100 queue 1 in dst-port 22,53
ipfw add 200 queue 2 in dst-port any



2.4 Additional features
As network technologies evolved, the basic pipe model of

dummynet was further extended to model additional link
features, such as the effect of multiple paths between end-
points, or wireless links, where the effect of link arbitration
and competing stations on the throughput and delay is not
adequately represented by the basic pipe model. The so-
lution we adopted for dummynet was simple but effective:
each pipe can be further configured with an empirical “delay
profile”, which determines, in a probabilistic way, the time
that the channel is unavailable between packet transmissions
to arbitrate requests from competing stations.

While developing dummynet extensions, we also refac-
tored the ipfw classifier to make it more efficient and easier
to extend. In addition to the basic selection options based
on individual packet fields, we and others also introduced a
number of options to deal with metadata, or efficiently han-
dle sets of addresses and ports. To date, the combined man-
ual page for ipfw and dummynet is over 2000 lines of text,
witnessing the large set of features that have been made
available over time.

2.5 Performance and limitations
Knowing the limitations of a live emulation system is

fundamental to perform significant experiments. In our
case, since the emulation modifies the delivery time of each
packet, the two important parameters are the granularity of
timers, and the processing time spent on each packet.

The granularity issue comes from the way the system op-
erates. Packets need to be stored and dispatched at a later
time, and because scheduling an event to dispatch the packet
is moderately expensive (and it was even more so in the sys-
tems of 15 years ago), dummynet rounds all times to a mul-
tiple of the period of the system’s timer (default to 1 ms,
but configurable; we have successfully run dummynet on
modern CPUs with 25..50 µs granularity). This limits the
number of events to schedule, and largely reduces the cost
of emulation.

The rounding of times does not affect the precision of
emulation (bandwidth can be configured with a resolution
of 1 bit/s), but may cause some burstiness at high data rates
and/or with small packets. As an example, a 1500-byte
packet on 1 Gbit/s links consumes approximately 12 µs, so
we can expect some burstiness compared to a real 1 Gbit/s
link. Note that it is not obvious that the result will be
different for the receiving application, as normally network
cards limit the maximum interrupt rates and this also causes
the delivery of packets to the software in similar bursts.

In terms of performance and scalability, packet process-
ing costs in dummynet are either constant or logarithmic in
the number of active pipes. We also modified extensively the
ipfw classifier to reduce the algorithmic complexity (and ab-
solute cost) of traffic selection. Detailed measurements are
reported in [3, Table 1]; as a reference, a modern system
can easily sustain around 500 K packets per second (pps)
through a pipe and, as discussed in Section 3.3, dummynet
and ipfw are not the performance bottleneck.

2.6 Porting to different platforms
Dummynet was originally developed on FreeBSD (and im-

ported in OSX together with the rest of FreeBSD). Being
part of a widely used OS kernel means that the code had
to abide to strict constraints on quality, performance, back-

ward compatibility, even style. All this was significantly
time consuming at the beginnig, but definitely helped to
keep the code alive and maintainable for over 15 years.

Since the very beginning, we received numerous requests
to port dummynet to other OSes (Linux and Windows; OSX
became automatically supported when Apple decided to use
the FreeBSD kernel as the basis for its operating system).
However these requests were not backed by any type of sup-
port to help the development work. The Linux (and later
Windows) ports were only possible a few years ago thanks
to an EU-funded research project called ONELAB2. Within
ONELAB2, we extended the PlanetLab testbed with emula-
tion capabilities based on dummynet, and this prompted the
development of a Linux version of dummynet, soon followed
up by a Windows version.

Adapting a kernel component to different OSes is an inter-
esting challenge, because OSes differ in internal data repre-
sentations and software interfaces. Fortunately, dummynet
and ipfw only interacts with a limited set of the kernel’s
interfaces and data structures (mostly, packet representa-
tion: mbufs on FreeBSD, skbufs on Linux, NDISPacket in
Windows). This enabled us to use a technique that proved
useful in other subsequent projects: we built wrappers to
map FreeBSD data structures and kernel APIs into equiv-
alent functions for the target operating systems. As a re-
sult, subsequent enhancements to dummynet and ipfw were
immediately available with little or no effort to all other
supported OSes.

2.7 Distribution and support
To date, dummynet is widely used both in research (over

a thousand citations according to Google Scholar) and in
operations. As an example, it is the emulation engine used
by the Emulab [19] testbed, and a lot of large and small IT
companies use it in their testing labs.

Features and flexibility helped but were not sufficient to
achieve this popularity. We needed to gain user confidence
(especially critical when dealing with kernel components),
minimize deployment costs (as an example, this is an issue
if the tool is not available for your platform, or requires time-
consuming installations), and avoid a steep learning curve
(which could happen when the tool is complex to use even
for simple tasks).

The first two issues were addressed by distributing [9] a
fully bootable, standalone image of a complete FreeBSD sys-
tem which could be run on a PC without any persistent
installation on the hard disk. A build system called “pi-
cobsd” let us store all the required components (including
an ssh client and server) within a single floppy disk image
(1.44 MBytes). This way, one could quickly repurpose an
inexpensive PC as a transparent bridge acting as a flexible
network emulator, something also called “bump in the wire”
(Figure 3). This was back in 1998-1999, before the concept
of “virtual appliances” became widespread, and similar sys-
tems were either expensive appliances or available on high
end workstations.

The integration of dummynet within standard distribu-
tions of FreeBSD (and later of OSX) also contributed to its
popularity, because users would find the tool already avail-
able on their system without any need to modify the kernel.

Regarding the learning experience, we tried hard to make
sure that the basic features in dummynet were usable with-
out having to read a long manual. A two-line configuration



Figure 3: A picobsd emulator acting as a “bump
in the wire”. The emulator acts as a transparent
bridge, so there is no change required in the host
or network configuration to add emulation within
a network. Emulab and many other testbeds use
exactly this principle, using dummynet to emulate
a complex network with the desired features.

is all is needed to have a useful emulation environment, and
the short examples presented earlier can be considered com-
plex configurations.

It should be noted that while these decisions had a signifi-
cant impact on making the system popular, they also placed
a significant burden on us. Especially in the early years,
support and performance and stability fixes sometimes re-
quired massive work both on the emulator and on the host
operating system.

3. NETMAP
The second system we discuss is the netmap frame-

work [12, 13], a recent effort to make commodity operating
systems cope with the ever increasing speed of network in-
terfaces.

The problem addressed by netmap is that network pro-
tocol stacks, designed 20-30 years ago, have a hard time
keeping up with packet rates that have increased by 3-4 or-
ders of magnitude in the meantime. A 10 Gbit/s interface
may have to deal with up to 14.88 million packets per second
(Mpps), whereas the typical operating system has normally
troubles handling more than 1-2 Mpps per core. In contrast
with this speed mismatch, there is an increasing demand for
high speed software packet processing solutions, triggered
by the growing popularity of software defined networking
(SDN) and virtual machines (VMs).

As a partial remedy to the problem, modern network in-
terface cards (NICs) expose multiple transmit and receive
queues, to achieve better scalability with multicore CPUs.
On the software side, some vendors addressed the prob-
lem with user-space protocol implementations that bypass
the operating system and directly access the hardware (So-
larflare’s OpenOnLoad [18], Intel’s DPDK [8]). Similar ap-
proaches, restricted to a single card or OS, have been im-
plemented by Deri [6] and the packetshader I/O library [7].

Considering that all existing solutions had significant
hardware or software restrictions, we explored the problem
of raw packet I/O, trying to design an architecture as much
as possible independent from the specific device or OS, yet
able to deal with line rate at 10 Gbit/s without consum-
ing an inordinate amount of CPU cycles, and exploiting the
protection and synchronization mechanisms that OSes make
available.

The main cost factors in packet processing include system
calls, memory management (allocations and copies), and the
many software layers that a packet has to traverse in order
for the kernel to implement the various features it provides.

indexflags len

ring_size

cur

buf_ofs

flags

avail

num_rings

ring_ofs[]
pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap rings

phy_addr
len

NIC ring

Figure 4: Data structures used by netmap

Our design thus tried to remove or amortize many of these
operations in order to improve performance.

3.1 Architecture
From a user’s point of view, netmap introduces a new

API to send and receive raw packets from userspace (Fig-
ure 4). Applications see a ring of buffer descriptors and
packet buffers, shared with the kernel, and synchronize with
the latter through system calls operating on a file descrip-
tor. Data transfers occur in batches, whose size is chosen
by the user; this amortizes system call costs in a very nice
way (as the load grows, batches tend to be larger, and the
system becomes more efficient). Data copies are eliminated
because buffers are directly visible to the network interface,
making true zero-copy operation possible (one should not
forget, however, that a significant amount of memory band-
width is still consumed by just reading data, or having the
NIC read/write packets to buffers in main memory). In
netmap, memory allocations (a major cost component in
network I/O) only occur when the file descriptor is opened
and not on every packet.

We provide non-blocking ioctl()’s, as well as block-
ing calls (select() or poll()) that return when there are
buffers available.

Non blocking I/O is useful for applications that want min-
imal interference (and delay) from the operating system in
doing I/O. It is also a common choice for many “OS by-
pass” systems, as it saves the effort of implementing support
to synchronize device I/O with the operating system. The
downside of this approach is that it consumes all of the CPU
time spinning for events.

The blocking file descriptor supported by netmap is a
rather unique feature among high performance network I/O
frameworks, and one that permits very efficient resource us-
age. Also, this design choice proves incredibly useful when it
comes to adapt existing applications to the new API. In fact,
many packet processing systems already rely on select-able
file descriptors, handled within event loops, to determine
when I/O can be performed. Thanks to the same interface,
we were able to build an extremely simple libpcap wrapper
on top of the netmap API, and this let us run unmodified
binary applications on our library with sometimes large per-
formance improvements.

3.2 Implementation
Netmap is implemented as a kernel module, and is made of

two parts: generic code handles the user API (ioctls, mem-



ory mapping, synchronization), while device-specific back-
ends interact with the hardware. These backends extend
the existing device drivers by adding and a small number
of functions to send and receive packets using the netmap-
specific data representation.

Once again, a big difference between netmap and other
systems with a similar goal is that we reuse most of the
existing device drivers’ code. Our extensions are limited to
4-500 lines per driver (compared to the 3..10 K lines of code
that typically make up a device driver), and mostly affect
the transmit and receive routines, which are generally easy
to understand and debug.

To date, netmap is available for FreeBSD (in which is
part of standard distributions) and Linux (as an external
kernel module), and supports 7 different cards from four
manufacturers (Intel, Realtek, nvidia, and partly Mellanox).

3.3 Performance
For the tasks it has been designed for (generic packet pro-

cessing, routers, traffic sources, monitors) netmap achieves
fantastic speedups, 10..40 times faster than native OS func-
tions for the same purpose. Detailed performance results
are presented in [13]; the most impressive result is the abil-
ity to send or receive minimum sized packets at line rate on
a 10 Gbit/s interface (14.88 Mpps) using one core at less
than 1 GHz. This matches the efficiency of the best state of
the art solutions, while at the same time providing a much
higher flexibility of use (both in terms of user interface and
HW/OS independency).

It is worth mentioning that as a proof of concept we mod-
ified ipfw and dummynet to run in user space on top of
netmap (using an approach similar to the one used for the
Linux and Windows port), reaching a filtering speed of over
6 Mpps for the firewall, and over 2 Mpps for packets going
through dummynet.

The netmap API supports an easy and efficient emula-
tion of the very popular PCAP API, which means that pro-
grams using that API can run on top of netmap without
even recompiling and with huge performance improvements
– between 4 and 10 times, depending on the application [15].

3.4 Extensions
Since its initial version, we have extended netmap in sev-

eral ways. A port from the original FreeBSD version to
Linux was done with techniques similar to those used for
dummynet. We used the netmap API to design and build a
high performance virtual ethernet switch called VALE [16],
meant as an interconnect between virtual machines, but also
useful to test netmap-based applications without requiring
high speed cards. VALE can forward up to 20 Mpps per
core with small packets, with a total throughput only lim-
ited by the memory bandwidth of the system (current mea-
surements indicate up to 120 Gbit/s, but the value depends
on how the memory bus is used by other parts of the sys-
tem). Finally, we worked on the QEMU/KVM hypervisor
to exploit the speed made available by VALE. Our current
prototype [17] supports over 5 Mpps between two virtual
machines, several times larger than the original version.

3.5 Distribution and support
Despite being only two years old, netmap is gaining a lot

of interest in the research community, and also in the com-
mercial world (basing on interactions we had with companies

and developers. Our code is distributed with a two-clause
BSD license, so companies using netmap in a product are
in no obligation of advertising its use in documentation, or
contributing back modifications).

The strategy to improve popularity was the same used for
dummynet: we imported the code in FreeBSD distributions,
and made available [10] pre-built system images with a few
sample programs to ease experimenting with the tool. In
fact, our netmap image became a popular replacement for
expensive 10 Gbit/s traffic sources and sinks. Full avail-
ability of source code compatible with many different Linux
distributions also helped increase the use of our framework.
Once again, especially in the initial period, there was a sig-
nificant support effort to answer many questions and address
bugs and compatibility problems.

4. ACADEMIC RECOGNITION OF OPEN-
SOURCE WORK

Both dummynet and netmap have been extremely suc-
cessful and widely used. We attribute at least part of this
success to the extensive effort we put in refining and sup-
porting our software, making it easy to use and reliable. Our
code is normally distributed under a BSD license, and some
of it has been included even in commercial, closed source
products.

As discussed in Sections 2.7 and 3.5, the move from a
proof-of-concept to a “production quality” system required
very specific and time-consuming actions. This is hardly sur-
prising: making software (and kernel components in partic-
ular) useful requires quality standards much closer to com-
mercial products than to research prototypes. The amount
of work needed for “productization” (full development, test-
ing, documentation, distribution, support) is massive and
very different from what is needed for a simplified evalua-
tion of research ideas.

In terms of personal satisfaction, building these (and
other) open source systems and tools for networking research
has been extremely rewarding, and we feel that our work has
and will contribute to support further research.

It is however unfortunate, and very frustrating, that in our
experience (both as authors and as reviewers for top confer-
ences in the area), the networking academic community does
not seem to give adequate recognition to this type of activity.
Papers describing software tools or protocol/application im-
plementations are often rejected, on the grounds that most
of their contributions are on engineering the system or com-
bining known ideas and algorithms – and as such they do
not qualify as research. Funding agencies, both public and
private, often use similar metrics (and perhaps the same re-
viewers!), preferring more ambitious but often more risky
and abstract research proposals to those aimed at develop-
ing tools (which include most opensource work). In fact,
the vast majority of support for open source systems (such
as Linux, FreeBSD, Qemu/KVM) comes from commercial
companies rather than from research funding.

Ironically, we often received (or read, related to other pa-
pers) rejection reviews containing the statement “... but I
am very interested to use this tool for my research.” The
latter does indeed happen, suggesting that such allegedly
“non-research” contributions are actually valuable, do con-
tribute to the achievement of further research results, and
their existence avoids replication of efforts and makes for a



more efficient use of researchers’ time and skills.
We strongly believe that the networking research commu-

nity and funding agencies should give more adequate recog-
nition to experimental/practical work that results in the de-
velopment of (good quality) tools and systems. Not doing so
has unhealthy consequences, including depriving researchers
of useful means for validating their results, underestimating
or ignoring fundamental engineering issues, and generally
increasing the disconnect between academia and industry,
making them evolve on diverging paths.

5. REFERENCES
[1] The ns-2 Network Simulator.

http://nsnam.isi.edu/nsnam/.

[2] M. Carbone and L. Rizzo. Dummynet revisited. ACM
SIGCOMM Computer Communication Review,
40(2):12–20, Apr. 2010.

[3] M. Carbone and L. Rizzo. An emulation tool for
planetlab. Computer Communications,
34(16):1980–1990, Oct. 2011.

[4] F. Checconi, P. Valente, and L. Rizzo. QFQ: Efficient
Packet Scheduling with Tight Bandwidth Distribution
Guarantees. IEEE/ACM Transactions on Networking,
21(3), 2013.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an
overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[6] L. Deri. PFRING DNA page.
http://www.ntop.org/products/pf ring/dna/.

[7] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. ACM SIGCOMM
Computer Communication Review, 40(4):195–206,
2010.

[8] Intel. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378, 2012.

[9] L. Rizzo. Dummynet home page.
http://info.iet.unipi.it/∼luigi/dummynet/.

[10] L. Rizzo. The netmap project.
http://info.iet.unipi.it/∼luigi/netmap/.

[11] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. ACM SIGCOMM Computer
Communication Review, 27(2):24–36, 1997.

[12] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/O. In USENIX ATC’12, Boston, MA. USENIX
Association, 2012.

[13] L. Rizzo. Revisiting network I/O APIs: the netmap
framework. Communications of the ACM, 55(3):45–51,
Mar. 2012.

[14] L. Rizzo. pgmcc: a tcp-friendly single-rate multicast
congestion control scheme. In ACM SIGCOMM 2000.
ACM, Stockolm, Aug-Sep. 2000.

[15] L. Rizzo, M. Carbone, and G. Catalli. Transparent
acceleration of software packet forwarding using
netmap. In Infocom 2012. IEEE, Orlando, FL, March
2012.

[16] L. Rizzo and G. Lettieri. VALE, a switched ethernet
for virtual machines. In Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, CoNEXT ’12, pages
61–72. ACM, Nice, Dec. 2012.

[17] L. Rizzo, G. Lettieri, and V. Maffione. Speeding up
Packet I/O in Virtual Machines. In ANCS 2013.
IEEE, San Jose, Oct.2013.

[18] Solarflare. Openonload. http://www.openonload.org/,
2008.

[19] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, Dec.
2002. USENIX Association.


