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INTRODUCTION

Computer programmers are among the great innovators of our times. Unhap-
pily, among their most enduring accomplishments are several new techniques for
wasting time. There is no shortage of horror stories about programs that took
twenty times as long to debug as they did to “write.”And one hears again and again
about programs that had to be started over several times because they were not
well thought through the first time around. But much less is said of what may be
the most successfully mastered time-wasting technique among students of program-
ming: finding information about the machine. Spending hours trying to locate a
single, simple fact is a veritable rite of passage for new programmers—as is ripping
up reference books in a red-eyed frenzy.

A typical programmer’s morning after is CRT eye strain, a six foot pile of crum-
pled printouts, and two dozen reference books all over the floor. Among these
books are hardware tech reference manuals, DOS tech reference manuals, language
reference manuals, spec sheets on particular chips, hardware manuals for printers
and boards, plus a dozen or so computer books, each possessing some prized bit of
information required at 3 AM by a particularly intricate bit of code.

Because not many of us have photographic memories (working with computers
would make you lose it, anyway), all these books are really needed, since the same
old things have to be looked up again and again. The first time through it may
require an hour just to zero in on the information. Once found, it still may take
untold ages to extract what you need from a lengthy beginner’s presentation; or, if
your misfortune is to be using a manual written entirely in Swahili, half the after-
noon may go into a translation. What is wanted is one big book, with as much as
can possibly be packed into it, unencumbered by information not useful for pro-
gramming, written entirely at intermediate level, covering all IBM micros, and
organized in a way that makes the information easy to find. Now where can one
find a book like that?

And so I've put together this reference-book-that-is-also-an-instruction-book for
all who aspire to write extraordinary programs, but who haven’t oodles of time to
waste (or $600-800 to spend on all those other manuals and books). The material is
organized in two ways. First, the chapters are divided by hardware types, subdi-
vided by features of the hardware, and then set into short entries that each address
a particular programming task. For example, one section of the video chapter con-
cerns the cursor, and there the various entries show how to position the cursor,
change its shape, turn it on and off, etc.

Second, each discussion is divided into four parts (sometimes fewer). First comes
a paragraph or two giving fundamentals. Then the problem at hand is discussed
from the viewpoint of programming in a high-level language, programming in the
middle-level BIOS and DOS interrupts, and programming at low-level directly
upon the auxiliary chips that support the microprocessor. In addition, each of the
three or four sections that comprise a chapter begins with a page or two giving the
background required to understand the section. These summaries are intended for
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review, but you could probably use them to fake your way through the first.time
around.

The discussions of high-level programming show the task written in an advanced
programming language. While the concepts could as well apply to Pascal or C, the
examples are given in BASIC. BASIC was chosen in part because it is the Latin of
computerdom, in part because everybody who owns an IBM microcomputer owns
BASIC, and in part because Microsoft BASIC makes more extensive use of IBM
hardware than any other programming language. Even beginning students of
BASIC should be able to use many of these discussions. To extend the capabilities
of BASIC, a number of machine language subroutines are provided, and there is an
appendix showing how to integrate them into your programs. You can do all sorts
of neat things using these routines, such as reprogramming the keyboard or adding
paging to the monochrome card.

Middle-level programming shows how a programming task is accomplished
using the interrupts provided by the operating system. These are powerful little
routines that do the drudge work of any computer, like moving the cursor, or read-
ing a disk directory. They are the mainstay of assembly language programming,
and the examples given at middle level are written in assembly language. But more
and more compilers for high-level languages are allowing access to interrupts, let-
ting the savvy programmer pull off things that the language itself cannot, like read-
ing absolute disk sectors. And so the middle level information is of wider interest
than it might at first seem. Only PC-DOS (MS-DOS) is discussed; if you're writing
for CPM-86 or the UCSD p-system, you'll need to find documentation elsewhere.

Finally, the low-level programming examples show how the particular task is
carried out at chip level. All of the microcomputers in the IBM family basically
share the same architecture, since all are based on the same Intel family of inte-
grated circuits. The chips are accessed through 170 ports, which are at your dis-
posal in virtually any language, BASIC included. All of the chips important to pro-
grammers are discussed, including the timer chip, the peripheral interface, the
interrupt controller, the CRT controller, the floppy disk controller, and the chips
that manage serial and parallel ports. While IBM discourages programmers from
programming at this level (out of concern that programs won't run on future
machines), again and again one discovers capabilities of the machines that can not
be reached any other way.

Not all tasks are shown at all three levels. Some are simply impossible in BASIC.
Others are not provided for in the operating system. And some are so complicated
at low level (many of the disk operations, for example) that they can not be treated
here—nor is there much point, since the authors of DOS have already done the
work and done it well. In most cases, however, all three levels are shown. By com-
paring the levels, you can see how a high-level language reaches down to the
interrupts and how the interrupts, in turn, operate on the chips that are the heart of
the computer.

This book could look awfully intimidating to those who are familiar only with
high-level languages like BASIC or Pascal. This is because the middle- and low-
level sections are written in assembly language, bestowing upon the pages the aura
of the Rosetta Stone. And indeed the book would make an ideal companion for
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those studying assembler. But don't feel that only a third of the book is at your dis-
posal if you don’t know assembly and don't intend to learn it. For one thing, a
number of compilers will let you set up and use the operating system functions
shown at middle-level, such as Turbo Pascal and Lattice C. And many of the low-
level procedures can, in fact, be performed by high-level languages. To enable you
to decode what is going on in the assembly language examples, a brief introduction
is given in Appendix D. Even if you never use the lower level material, by keeping
an inquiring eye on what is going on you will gain a much deeper appreciation of
how your high-level language works and of why it sometimes runs into trouble.

Nearly every sub-subsection has its own sample of code. Many are only a few
trivial lines. Others are the stripped-down beginnings of an elaborate routine. Very
few are stand-alone programs. Rather than fill the book with cutesy examples, I've
left just the fragment of code you'd need when you turn to the book for help. By no
means is every example intended to be the finest possible rendition. Indeed, in
many cases the code has purposely been written inefficiently so that you can better
follow it. The idea behind the samples is not so much to provide a source book of
program modules as it is to point the way and to start you thinking about the vari-
ous implications of what you are about to do. But if you like, you can enter a sam-
ple as is into a program to provide a functioning starting point and then expand it
until it is just as baroque as your heart desires. Since all of the examples have been
tested, they should also act as a reference to help weed out those really dumb mis-
takes that tend to crop up when long hours of programming have pummeled your
mind into a sub-zero IQ.

The prose is this book is dense, to say the least. But I've tried to avoid jargon as
much as possible, and there is a glossary of essential Computerese at the end.
Except for some highly specialized information, practically every programming-
related bit of information available from IBM documentation has been packed in.
While it would have been nice to cover absolutely everything, the book would
have reached 1000 pages, and the forest might have disappeared among the trees.
And so for really unusual programming needs—say, to extensively program the
floppy disk controller, or to reprogram the AT keyboard—you will have to get
hold of the IBM tech reference manuals or the spec sheets from the chip manufac-
turers. But 99% of programs ought to require no more information about IBM
hardware than you will find here. The many different ways of doing the same thing
are gone over in the same place, with comparisons of strengths and weaknesses.
I've included all of the usual tables of ASCII codes, instruction times, and the like
so that this single volume can take care of all of your ordinary reference needs.

There is also a good deal of information here that provides details that the IBM
documentation leaves out, such as which control codes are interpreted by which
screen-output routines or how various disk functions format files. Some entries
give the how-to for common programming tasks that are not inherent in the hard-
ware, but that make heavy use of hardware features, such as real-time operations or
horizontal scrolling. Space is also given to programmer’s tricks that, while not
exactly blessed by the Powers Above, can help one get out of a programming tight
spot. As things stand now, every programmer has to figure these things out for
himself (usually more than once). How ironic it is that the high priests of the Infor-

xi
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mation Age spend so much time re-inventing the wheel, as in the days before papy-
rus made everything so easy.

The entries also contain information about differences between the various IBM
machines. The discussion is based on the standard PC. When the PCjr, XT, or AT
differs, individual attention is given to that machine. One line that had to be drawn
is that those features of the AT and DOS 3.0 that are directed towards multiuser
systems are not covered. This would be a book in itself. With a few noted excep-
tions, the many examples of code are for a standard PC; but unless stated other-
wise, they should run just fine on any of the IBM micros. There is an important
limitation, however. Every word of this book assumes the use of PC-DOS version
2.1 or later and the accompanying version of advanced BASIC. Users who won't
update to 2.1 don't deserve your innovative programs anyway.

If this book has anything, it has facts—zillions of them—and I do ever so sin-
cerely hope that they are all correct. There also are several hundred program exam-
ples, and for these too I have been praying for perfection. But if you think it is easy
to keep so much information out of harm’s way during multiple edits and revisions,
give it a try. If you find something awful, please take a deep breath and think how
much worse it could have been using those nasty books written by the competition.
Then, sit down and write me a note (care of Brady Co., Simon & Schuster, General
Reference Group, 1230 Avenue of the Americas, New York, NY 108020). If you do,
the world will be a better place for programmers to live in when this book comes
out in a second edition, updated for IBM’s latest creations.

Prosperous programming!
Robert Jourdain

xii



Numeric Conventions Used In This Book

Assembly programmers will find nothing unusual in the way numbers and
addresses are expressed in these pages. But many high-level programmers are shel-
tered from addressing systems and non-decimal numbers, and they may be a little
confused at first. If you find yourself in that category, don't be put off! This book
can serve as a fairly painless way of acquiring a familiarity with this
gobbledygook, and your education as a programmer will remain severely con-
strained without it. Two appendices have been provided to help you along. Appen-
dix A discusses binary and hexadecimal numbers, and how the latter are applied to
memory addresses. Appendix B covers more about binary numbers and how they
are used in bit-operations. Even if you have no need for this help, do be aware of
the following:

1.

In deference to less advanced programmers, all numbers are decimal unless
followed by an H (for hexadecimal) or a B (for binary). Sometimes the B is
omitted after binary numbers when the values obviously refer to bit
patterns.

. Another exception is the eight-digit numbers in the form ¢000:0000. These

are hexadecimal numbers giving the segment and offset of a memory
address. Appendix A explains the meaning of all this.

. Bits are numbered from @ to 7 (or @ to 15), where bit 0 is the least significant

bit (that is, when set, bit ® =1 and bit 7 =128).

. An expression such as “ASCII 5" refers to character number 5 of the ASCII

set. That is, it refers to a single byte with the value of 5, and not to the
ASCII code for the symbol 5, or to a two-byte integer representation of the
value 5.

Numbers that are placed in brackets and that look something like [2.1.3] are
crossreferences to other entries in the book. This one stands for “Chapter 2,
Section 1, Entry 3”. [2.1.0] refers to the review discussion that begins Section
1 of Chapter 2. You'll find hundreds of these numbers scattered throughout
the text. They refer to the place in the book where you can find information
of the topic just mentioned. These are only to help the novice. If you under-
stand the discussion, ignore the crossreferences.

. When working program code is embedded in text, it is always written in

bold face.
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1
System Resources

Section 1: Assess the System Resources

When a program is loaded, its first job should be to find out where it is: what
kind of IBM microcomputer is it running in?...under what DOS version?...how
much memory does it have to work with?...are all the required peripherals present?
There are three ways to go about finding out this information. Least elegant is sim-
ply to prompt the program user for the information (will he or she know the
answers?). A far better approach is to take as much information as possible from
the dip switch settings on the system board. But these settings are not always ade-
quate. And so the third option is to make direct access to the hardware in question
or to try to find the information in the BIOS data area. Since the dip switch settings
are the best place to begin looking for information, this section begins with a dis-
cussion of the chip where this information is found: the 8255 peripheral interface.

A program can access hardware in only two ways. It can read from and write to
any of the port addresses to which hardware happens to be connected (only a small
fraction of the 65535 possible port addresses are used). Or the program can read
from and write to any of the million-plus addresses in the random-access-memory
address space. A comparative summary of port addresses is found at [7.3.0]. Figure
1-1 shows how the operating system and programs are distributed in memory.
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Figure 1-1. Use of the one-megabyte memory address space.




Access the 8255 peripheral interface 1.1.1

1.1.1 Access the 8255 peripheral interface

The Intel 8255 peripheral interface chip is the best place to begin looking for
information about what peripherals are present. The chip is dedicated to a variety
of uses. It reports the settings of the dip switches on the system board. It receives
the computer’s input from the keyboard. And it controls a number of peripherals,
including the 8253 timer chip. Among the IBM microcomputers, the AT alone does
not use an 8255; instead it stores its configuration information along with a real-
time clock on a special battery-powered chip. However, the AT does use the same
8255 port addresses for keyboard operations and to control the timer chip.

The 8255 has three one-byte registers, referred to as Ports A through C. They are
located respectively at port address 60H-62H. All three ports may be read, but only
Port B may be written to. On a PC, setting bit 7 of Port B to 1 changes the informa-
tion that Port A holds. Similarly, on a PC, setting bit 2 determines the contents of
the low four bits of Port C, and setting bit 3 on an XT does the same. The contents
of the registers are as follows:

Port A (60H)
hen Port Bbit 7=0:
bits®-7 PC,XT,PCjr,AT: eight-bit scan codes from keyboard
When Port Bbit 7=1onPC:
bit® PC:@=nodiskettedrives
1 PC: unused
2-3  PC: banks of RAMon system board
4-5 PC: typeofdisplay

(11=monochrome, 10=8@x25 color,@1=4Bx25 color)

i
q

PC: number of diskettedrives

Port B (61H)
bit PC,XT,PCjr: controls gate of 8253 timer chip channel 2

PC,XT,PCjr: output to speaker

PC: select contents of Port C

PCjr: 1=alpha modes, @=graphics modes

PC,PCjr: 1=cassette motor off ’

XT: select contents of Port C

PC,XT: @=enable RAM

PCjr: 1=disable beeper and cassette motor

PC,XT: @=enable expansion slot error signals

PC,XT: 1=enable keyboard clock signal

PCjr: select sound source

wn
1
~ oown » W NS

PC: select contents of Port A, keyboard acknowledge
XT: keyboard acknowledge

Port C (62H)
hen Port Bbit 2=1 on PC or Port Bbit 3=1 on XT:
bits B-3 PC: bottom half of configuration switch2
(RAM in expansion slots)
@ PCjr:1=incoming keystroke lLost
1 XT: 1=maths coprocessor installed
PCjr: @=modem card instal led
2 PCjr:@=diskette card installed
2-3  XT: banks of RAM on system board
3 PCjr: 0=128K RAM
4 PC,PCjr: input fromcassette
XT: unused

(00=8253 chip, @1=cassette, 10=1/0, 11=76496 chip)
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5 PC,XT,PCjr: output of 8253 channel 2

6 PC,XT: 1=expansion slot error check
PCjr: 1=keyboard data

7 PC,XT:1=parityerror check
PCjr: @=keyboard cable connected

When Port Bbit 2=@ on PC or Port Bbit 3=@ on XT:
bits @-3 PC: top half of configuration switch 2 (unused)
2-1 XT: display type

(11=monochrome, 10=80x25 color,@1=40x25 color)

2-3  XT: number diskettedrives (00=1, etc.)
4-7 PC,XT: sameas if port Bbit 2=1

Note that a @ in one of the register bits corresponds to an “off” setting of a dip
switch.

The AT keeps its configuration settings on a Motorola MC146818 chip, along
with the real-time clock. The AT has no 8255 chip as such, although the same port
addresses are used to control the timer chip and to receive data from the keyboard.
The chip has 64 registers, numbered from 00-3FH. To read a register, first send its
number to port address 70H and then read it from 71H. The various configuration
settings are discussed in the pages that follow. Here is an overview:

Register Number Use
10H floppy diskette drive type
12 fixed disk drive type
14 peripherals
15 system board memory (low byte)
16 system board memory (high byte)
17 total expansion memory (low byte)
18 total expansion memory (high byte)
30 expansion memory above 1 megabyte (low byte)
31 expansion memory above 1 megabyte (high byte)

High Level

There are a number of examples in this volume where these ports are accessed.
Here a BASIC program finds the number of disk drives installed in a PC. Before
reading the two high bits of Port A, bit 7 of Port B must be set to 1. It is essential
that you change the bit back to @ before proceeding or the keyboard will be locked
out and the machine will need to be turned off to recover. BASIC does not allow
the binary representation of numbers, which makes analyzing bit patterns trouble-
some. A simple subroutine can change an integer up to 255 (the largest value a port
can deliver) into an eight-character binary string. Then a string function like MID$
plucks out the relevant bits for analysis. See Appendix B for the fundamentals of
bit operations in BASIC.

100 A=INP(&H61) 'get the value inPortB
110 A=AOR 128 'turnonbit?
120 OUT &H61,A 'put the byte back inPort B
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130 B=INP(&H60) 'now get the value in Port A

140 A=A AND 127 'turnoffbit?

150 OUT &Hé61,A 'restore original value to Port B
160 GOSUB 1000 'convert it to abinary string

170 NUMDISK$=RIGHT$(BS$,1) 'get bit @

180 IF D$="1"" THEN NUMDISK=@:GOTO 230 "no disk system

190 C$=LEFT$(B$,2) 'take the two top bits of the string
200 TALLEY=0 'keep talley of number of disks

210 IF RIGHT$(C$,1)=""1" THEN TALLEY = 2 'figure highbit
220 IF LEFT$(C$,1)="1" THEN TALLEY=TALLEY+1 'add low bit
230 TALLEY=TALLEY+1 'count from1, not
'...and now you have the number of drives

1000 ' ' 'Subroutine to convert byte to binary string

1010 Bg=""" 'B$ is the string
1020 FOR N=7 TO @ STEP -1 'keep testing smaller powers of 2
1030 z=B-2~N 'subtract from the value of the byte
1040 IF Z>=0 THEN B=Z:B$=B$+'"1"" ELSE B$=B$+"Q" 'assemble string
1050 NEXT 'repeat for eachbit
1060 RETURN 'all done

Low Level

An assembler program finds the number of disk drives in the same way as the
example above, but more easily. Again, be sure to restore the original value of
Port B.

IN AL,61H ;get the value inPort B

OR  AL,100002008 ;forcebit7 to1

OUT 61H,AL ;replace the byte

IN  AL,60H ;get the value inPort A

MOV CL,é6 ;set up toshift AL right

SHR AL,CL ;shift top2bits sixplaces right
INC AL ;count from1, not from@

MOV NUM DRIVES,AL ;and now you have the number of drives
IN AL,61H ;prepare to restore Port 8

AND AL,21111111B sturnoffbit 7

OUT 61H,AL ;replace the byte
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1.1.2 Find out the type of IBM microcomputer

There are compatibility problems among the various IBM microcomputers. For a
program to run on any of the IBM machines and make full use of their capabilities,
it must be able to determine the type of machine into which it has been loaded.
This information is found in the second from last byte of memory space, at address
FFFFE in the BIOS ROM, using the following code numbers:

Computer Code
PC FF
XT FE
PCjr FD
AT FC

High Level
In BASIC, simply use PEEK to read the value:

100 DEF SEG=&HF000 'point to top 64K of memory
110 X=PEEK(&HFFFE) 'get second from last byte
120 IF X=&HFD THEN... '...thenit'saPCjr

Low Level

In assembly language:
;-——FIND THE COMPUTER TYPE:

MOV AX,QF@00H ;point ES to ROMs
MOV ES,AX ;

MOV AL,ES:[@FFFEH] ;get the byte
CMP AL,OFDH ;isitaPCjr?

JE INITIALIZE JR ;ifso, gotoinitialization code
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1.1.3 Determine the PC-DOS version

As PC-DOS evolves, it adds new functions, many of which make it far easier to
create some kinds of code than did earlier versions. To ensure that software will
run with any DOS version, a program would need to be limited to only the func-
tions available in DOS 1.0. DOS provides an interrupt that returns the DOS ver-
sion number. The number can be used to check the compatibility of your software.
Minimally, a program can issue an error message at startup, alerting the user to the
need for a different version.

Middle Level

Function 30H of INT 21H returns the DOS function number. The “major version
number” (the 2 of 2.10) is returned in AL, and the “minor version number” (the 10
of 2.10) is returned in AH (note that a .1 minor version is reported as AH, not as
1H). AL may contain @, which indicates a pre-DOS 2.0 version. This interrupt
destroys the contents of BX and CX, which return with the value 0.

;———FIND DOS VERSION:

MOV  AH,30H ; function number to get DOS version
INT 21H ;get the function number
CMP AL,2 ;check for version2.x

JL  WRONG_DOS ;if less than2, issue message
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1.1.4 Find out the number and type of video adaptors

A program may need to find out whether it is running on a monochrome card, a
color graphics card, or an EGA, and whether a second adaptor is present. [4.1.6]
explains how to switch control from one adaptor to another. The equipment status
byte kept in the BIOS data area at 0040:0010 gives the settings on dip switch 1 that
tell which card is active. Ideally, bits 5-4 would be 11 if the monochrome card is in
control, 10 for 80x25 on the color card, 01 for 40x25 on the color card, and 00 for
the EGA. If an EGA is present, however, it may set the bits to a value other than
00, depending on how its own dip switches are set. So you must first use some
other means to determine whether an EGA is present, and if not, then the BIOS
data will indicate whether the active adaptor is the monochrome card or color
card. To check for an EGA, test the byte at 0040:0087. If it equals @, there is no
EGA. If it is nonzero, when bit 3 is @ the EGA is the active adaptor, and when it is
1, a second adaptor is in control.

When an EGA is present, search for a monochrome or color adaptor by writing a
value to the cursor address register on their 6845 chips [4.1.1] and then read the
value back to see if it matches. For the monochrome card, send @FH to port 3B4H
in order to index the cursor register, and then read and write the cursor address
from port 3BSH. The corresponding ports on the color card are 3D4H and 3DSH.
When no card is present, the ports return @FFH; but since this number could be
held by the register, it is not enough just to test for that value.

There are two other questions you may need answered about the EGA: how
much memory is present, and what kind of monitor is it connected to? To find the
type of display, test bit 1 at 0040:0087; when it is 1 the monochrome display is
attached, and when it is @ a color display is attached. If your program uses the
350-line color mode, it will need to figure out whether the color display is IRGB or
R'G'B'RGB, where the latter corresponds to the IBM Enhanced Color Display. This
is told by the settings of the four dip switches on the EGA itself. These settings are
returned in CL when function 12H of INT 10H is called. The pattern of the low
four bits will be 0110 for the Enhanced Color Display. This same function reports
the amount of memory on the EGA. On return, BL contains @ for 64K, 1 for 128, 2
for 192K and 3 for the full 256K of video RAM.

High Level

These code fragments check the current monitor type and mode, and they find
out what kinds of video adaptors are present in the machine:

100 '' ' find what adaptor is incontrol:

110 DEF SEG=8H40 'point to start of BIOS data area
120 X=PEEK (&H87) ‘check for EGA

13@ IF X=0 THEN 200 'there is no EGA, jump ahead

14@ IF X AND 8=0 THEN... 'then the EGA is in control

200 X=PEEK(&H10) 'get equipment status byte

210 Y=X AND 48 'get combined value of bits 4 and 5
220 IF Y=48 THEN... '...then monochrome (00110000
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230 IF Y=32 THEN... '...then 80x25 graphics (00100000)
240 IF Y=16 THEN... '...then 40x25 graphics (00010000)

This example checks for the monochrome card when an EGA or color card is

active. The same code will search for the color card if you use port addresses
&H3D4 and &H3Ds5.

100 """ find out if monochrome card is present:

110 OUT &H3B4, &HF 'address the cursor register
120 X=INP(&H3B5) 'read it and save value
130 OUT &H3B5,100 'send arbitrary value to register
140 IF INP(&H3B5)<>100 THEN. .. '...then card present if returns same
150 OUT &H3B5, X 'restore value if card present

Low Level

These examples parallel the BASIC examples above.
;———FIND WHAT ADAPTOR IS IN CONTROL:

MOV AX,40H ;point ES to BIOS data area

MOV ES,AX ;

MOV  AL,ES:[87H] ;see if EGA is present

CMP AL,0 .

JE NO_EGA ;i1f 0040:0087 is @, no EGA

TEST AL,000010008 ;there is an EGA, now test bit 3

JNZ EGA_NOT_ACTIVE ;ifbit3=1, EGA is not active
EGA_NOT_ACTIVE: MOV AL,ES:[1@H] ;get the video status byte

AND AL,001100008 ;isolatebits 4 &5

CMP AL,48 ;is it monochrome card?

JE MONOCHROME ;jump if so

;else assume color card

Assuming a monochrome card was found, find out if a (non-active) color card is
installed:

;———IS NON-ACTIVE COLOR CARD INSTALLED?

MOV  DX,3D4H ;point to 6845 address register
MOV AL,@FH ;request cursor register

OUT DX,AL ;index the register

INC DX ;point todata register

IN AL, DX ;get current reading

XCHG AH,AL ;save the value

MOV AL,100 ;use 100 as test value

OUT DX,AL ;send it

IN AL,DX ;read it back

CMP AL,100 ;compare

JNE NO_CARD ;jump if no card

XCHG AH,AL ;else thereisacolorcard...
OUT DX,AL ;-..sorestoreinitial reading
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1.1.5 Find out the number and type of disk drives

On all machines but the AT (discussed below) the registers of the 8255 peripheral
interface chip contain information about how many floppy disk drives a machine
has. See the examples at [1.1.1] to get at this information. The information that
identifies the type of disk is kept in the disk’s file allocation table (FAT), which
keeps track of disk space and usage. The first byte in the FAT holds one of the fol-
lowing codes:

Code Disk Type

FF double-sided, 8-sector

FE single-sided, 8-sector

FD double-sided, 9-sector

EE single-sided, 9-sector

F9 double-sided, 15-sector (high density)
F8 fixed disk

A file allocation table is not itself a file. It can be read using the BIOS or DOS func-
tions that directly read particular disk sectors. [5.1.1] contains all of the informa-
tion you need to find the FAT and read it. Fortunately, the operating system pro-
vides a function that returns the identification byte for a disk.

The BIOS data does not indicate how many hard disks are in place, since the dip
switches are set only for floppies. However, you can use the operating system func-
tion given here to search for drives. Instead of one of the above codes, it returns
@CDH when no drive is present. Simply keep testing higher and higher drive num-
bers until this value occurs.

The AT is unique in that its configuration information tells what kind of disk
drives are used. This information is obtained from port address 71H after sending a
register number to 70H. For floppy diskettes the register number is 10H. Informa-
tion for the first diskette is held in bits 7-4 and for the second in bits 3-0. In both
cases, the bit pattern is 000 if no drive is present, 0001 for a double-sided (48
track-per-inch) drive, and @010 for the high capacity (96 track-per-inch) drive. The
fixed disk information is in register 12H. Again, bits 7-4 and 3-@ report for the first
and second drives. 0000 indicates that there is no drive. Fifteen other values are
possible, reflecting the size and construction of the drive. These codes are compli-
cated; should you need this information for some reason, consult the AT Technical
Reference Manual.

Middle Level

Function 1CH of INT 21H reports information about a specific drive. Place the
drive number in DL, where @ = default, 1= A, etc. On return DX holds the number
of clusters in the FAT, AL holds the number of sectors per cluster, and CX holds
the number of bytes in a sector. DS:BX points to a byte containing the disk identifi-
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cation code from the FAT, as in the table above. This example finds out the disk
type of drive A:

;———FIND THE DISK TYPE:

MOV AH,1CH ;function
MOV DL,1 ;selectdriveA
INT 21H ;get the information

MOV DL, [BX] ;get thedrive type
CMP DL,@FDH ;is it double-sided, 9-sector?
JE DBL 9 HEE -

The AT BIOS has a function that reports general drive parameters. This is func-
tion 8 of INT 13H. It returns the number of drives in DL, the largest number of
sides in a drive in DH, the maximum number of sectors in CL and tracks in CH,
and the disk error status code in AH (shown at [5.4.8]).

Another AT BIOS function returns disk type. This is function 15H of INT 13H,
which requires the drive number in DL. It returns a code in AH, where 0 = no disk,
1=diskette without change detection, 2= diskette with change detection, and
3 = fixed disk. If a fixed disk, CX:DX returns the number of 512-byte sectors.

11
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1.1.6 Find out the numbers and types of peripherals

At startup, BIOS checks what equipment is connected, and it puts together a sta-
tus register to report its findings. The register is two bytes long, beginning at
0040:0010. The following bit pattern applies to all machines, unless noted
otherwise:

bit 1f1, thendiskettedrives present

1 XT,AT: 1=math coprocessor present (PC,PCjr: unused)

2-3 11=64K base RAM (AT: unused)

4-5 Active video adaptor (11=80x25 monochrome card,
10=80x25 color card, @1=40x25 color card)

6-7 Number of diskettedrives (if bit @=1)

8 PCjr: @=DMA chip present (PC,XT,AT: unused)

9-11 Number of serial adaptors

12 1=game port attached (AT: unused)

13 PCjr: serial printer attached (PC,XT,AT: unused)

14-15 Number of parallel adaptors

Most of the information is straightforward. But note that the information about
the disk drives is divided between bits @ and 6-7. The value 0 in 6-7 indicates that
there is one disk drive; to determine that there are none, you must consult bit 0.

The number of serial ports attached can be found by looking into the BIOS data
area. BIOS allocates four two-byte fields to hold the base addresses of up to four
COM ports (DOS uses only two of these). A base address is the lowest number
port address of the group of ports that access the COM channel. The four fields
begin at 0040:0008. COML is at :0008 and COM2 at :800A. The fields contain @
when there is no corresponding serial port. Thus, if the word at :0808 is non-zero
and the word two bytes higher at :000A is zero, there is one serial port.

The AT keeps information about peripherals at register 14H of its configuration
chip. First write 14H out to port address 70H, then read the register at 71H. Here is
the bit pattern:

bits 7-6 @0=1 floppy drive, 81=2 floppy drives
5-4 @1=displaying in 40 columns on color card
10=displaying in 80 columns on color card
11=displaying on monochrome display

3-2 unused
1 1=math coprocessor instal led
1]} =no diskette drives, 1=drives installed

High Level

In BASIC, simply read the status bytes directly from the BIOS data area. Appen-
dix B explains how bit operations are performed in BASIC. This example checks to
see if there are any disk drives by ascertaining whether the low byte of the status
register is even or odd (even = no drives).

100 DEF SEG=0 'point to the bottom of memory

110 X=PEEK (&H410) 'get the low byte of the register

120 IF X MOD 2 =@ THEN 140 'if no remainder after /2, nodrives
130 PRINT"Disk drive(s) present 'else, there aredrives, give message
140 GOTO 160 ' jump over 2nd message

12
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15@ PRINT"Disk drive(s) absent 'nodrives, give message

160 ... 'continue...
To check for COM1:
100 DEG SEG=40H 'point to start of BIOS data area
11@ PORT=PEEK(@)+256*PEEK(1) 'get the word at offset 0
120 IF PORT = @ THEN ... '...then there is no COM1 adaptor

Middle Level

BIOS INT 11H returns the equipment status bytes in AX. There are no input reg-
isters. This example checks the number of disk drives.

;———GET THE NUMBER OF DISK DRIVES:

INT 11H ;get the status byte

TEST AL,0Q ;are there any drives?

JZ  NO_DRIVES ; jump ahead i f there are none
AND AL,11000008 ;isolatebits5and 6

MOV CL,5 ;prepare to shift register right
SHR AL,CL ;shift right fivebits

INC AL ;add 1, so count begins from1

;and now the number of drives is in AL

Low Level

Assembly programs work just like those shown above for BASIC. Here is an
example that reads configuration information on the AT, checking if the math
coprocessor chip is installed:

MOV AL,14H ;register number

OUT 70@H,AL ;send register request
IN AL,71H ;read the register
TEST AL,108 ;testbit1

Jz NO_COPROCESSOR ;if not set, no coprocessor

13
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1.1.7 Assess the amount of RAM

“How much RAM is there?” can mean three things. How much RAM is recorded
on the system board dip switchs? How many banks of RAM chips are really resi-
dent in the machine? And how much memory is actually unoccupied and available
for DOS to assign to your program? A machine might have ten banks of 64K, but
the dip switches could be set to 320K to set aside half for some special use. And of
the 320K “available,” how is your program to know what other software has been
loaded and kept resident at either the high or low ends of memory?

Each question is answered in a different way. On the PC and XT the dip switch
settings are simply read from Port B of the 8255 peripheral interface chip. See
[1.1.1] for how to do this. BIOS keeps a two-byte variable at 0040:0013 that
reports the number of K of usable memory. On the PCjr, bit 3 at port address 62H
(port C of the 8255 chip) equals @ when the machine has the 64K expansion option.
The AT gives especially good information about memory. On the chip that holds
configuration information, registers 15H (low) and 16H (high) tell how much mem-
ory is installed on the system board (there are only three valid sizes: 0160H for
256K, 0200H for 512K, and 0280H for 512K plus the 128K memory expansion
option). 1/0 channel memory on the AT is reported by registers 17H and 18H
(given in 512K increments). Memory positioned above the one-megabyte range is
available from 30H and 31H (again in 512K increments, up to 15 megabytes). If the
AT's 128K memory expansion option is installed, bit 7 is set to 1 in register 33. In
all cases, first send the register number to port address 70H, then read the register
value from 71H.

It is easy to write a routine that directly tests for the presence of RAM at regular
intervals in the memory space. Since RAM is installed minimally in 16K units, it is
only necessary to check one memory location in each 16K segment to be able to
infer that the whole 16K is there. When an address in the memory space is empty, it
will read as 233. An arbitrary number other than 233 is written into the location,
and the same address is immediately read to see if the number is there. If instead
233 turns up, the particular memory bank is nonexistent. Avoid this technique on
the AT, where built-in exception handling comes in to action when a write is made
to nonexistent RAM. The AT's diagnostics are so good that you can rely on the
system’s configuration information.

RAM is extensively occupied by parts of the operating system, device drivers,
resident interrupt handlers, and DOS memory control blocks. When checking for
the memory banks, you must not make any permanent changes in the contents of
memory. First save the contents of a (presumed) memory location, then check it,
and then restore the original contents.

There is one more problem. Should your routine momentarily happen to change
the very code that comprises it, a crash could result. Thus it is necessary to choose
a location in a 64K block that is away from the offset in which your routine resides.
Place the routine early in a program, and use as the offset in a block the same offset
as the code segment uses. For example, if the code segment register holds 13E2,
then the segment begins at offset 3E2 within the second 64K block of memory.
Since your routine is located somewhat beyond this address, it is safe to check the
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byte at 3E2 in each block. Disable interrupts [1.2.2] lest the code be changed for a
hardware interrupt that occurs while the check is made.

Finding out how much memory is actually available to DOS also requires a trick.
When a program first receives control, DOS gives it all available memory, includ-
ing the part of high memory that holds the transient part of DOS (which automati-
cally reloads if it has been overlaid). To run another program from within the cur-
rent program or to make a program fit for multiuser systems, the allocated memory
must be shrunk down to the required size. [1.3.1] explains how this change is made
using function 4AH of INT 21H.

The same function can also be used to expand allocated memory. Since all mem-
ory is allocated when a program is loaded, such expansion is impossible at startup.
If you attempt it, the carry flag is set to indicate an error condition, error code 8
appears in AX, and the maximum number of 16-byte ‘paragraphs available is
returned in BX. The latter is just the information needed. Simply place a request for
an impossibly large block in BX (say, FO@0H paragraphs), then execute the inter-
rupt. Be sure to execute the function first thing in a program while ES still holds its
initial value.

High Level

Interpreted BASIC uses only 64K (although PEEK and POKE can access memory
outside of the 64K). The amount of the 64K that is available is returned by the FRE
function. The function always takes a dummy argument, which may be either
numeric or string. BYTES =FRE(x) gives BYTES the number of bytes free.
BYTES = FRE(x$) does the same. But the string argument forces a “housecleaning”
of the data area before the byte count is returned. Note that if the size of the work
space is set using CLEAR, the amount reported by FRE will be 2.5 to 4 kbytes
smaller, owing to the requirements of the interpreter work area.

The IBM BASIC compiler does not impose the 64K restriction on code and data
combined. But the compiler itself is limited in how much memory it can use while it
compiles. If space is short, delete all unnecessary line numbers using the /N option
at compile time. Also, use shorter words as variable names.

Middle Level

BIOS interrupt 12H checks the dip switch settings and returns in AX the number
of kilobytes in the system. This value is calculated from the settings on the 8255
register settings or, in the AT, from the configuration/clock chip. There are no
input registers. Keep in mind that the dip switch settings may be incorrect, limiting
the reliability of this approach.

To find out how many 16-byte paragraphs are available to DOS, use function
4AH of INT 21H. ES must hold the value it has at startup:

;———FIND OUT NUMBER OF PARAGRAPHS AVAILABLE TO DOS:

MOV  AH,4AH ;use SETBLOCK function
MOV BX,@FFFFH ;request impossible al location
INT 21H ;now BX holds number of free paragraphs

15
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The AT uses function 88H of INT 15H to maké an extended memory check,

which seeks memory that is outside the address range of the CPU when it is in real

address mode. That is to say, it looks for memory above the one-megabyte mark.
The system board must be equipped with 512-640K for this function to operate.
The number of 1K blocks of extended memory is returned in AX.

Low Level

The first example checks the number of 64K memory banks in the first ten 64K
segments of memory. If you test within the higher six banks of memory space, keep
in mind that there are video buffers in the segment starting at B800:0000 (and pos-
sibly AG00:0000) and ROMs in the segment starting at F@00:0000 (and possibly

C000:0000).

;---TEST EACH MEMORY BANK:

CLI
MoV
AND
MOV
MoV
MOV
MOV
NEXT: MoV
MOV
Mov
mov
CcMP
JNE
INC
GO_AHEAD: MoV
ADD
MoV

AX,CS
AX,DFFFH
ES,AX
DI1,0
cX,10
BL,'X'
DL,ES:[0]
ES:[0]1,BL
DH,ES:[@]
ES:[0]1,DL
DH,'X'
GO_AHEAD
DI

AX,ES
AX,1000H
ES,AX

LOOP NEXT

STI
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;disable hardware interrupts

;get the segment value for the code
sturnoff top 4bits (set to bottom seg)
;place pointer inES

; let DI count the number of 64K banks
srepeat the check for 10 banks

;use 'X' as the replacement byte -
;save the byte at the sample address
;place 'X' at the sample address

;read the sample address

;replace theoriginal value of the byte
;does it match what was written?

;if not, don't include in the tally
;increment the tally of memory banks
;get ready to increment pointer

;point to address 64K higher

;set pointer back in ES

;do the next bank

;reenable interrupts

;and now the tally is in DI
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Section 2: Manage Interrupts

Interrupts are ready-made routines that the computer calls to perform a common
task. There are both hardware and software interrupts. A hardware interrupt is one
that is initiated by hardware, whether on the system board or from a card in an
17O channel. It may be brought about by a pulse of the timer chip, by a signal from
a printer, by pressing a key on the keyboard, or by a variety of other routes. Hard-
ware interrupts are not coordinated with the operation of software. When one is
called, the CPU stops what it is doing, performs the interrupt, and then picks up
where it left off. So as to be able to return to the exact place in the program that it
left off, the address of that place (CS:IP) is pushed on to the stack, as is the flag reg-
ister. Then the address in memory of the interrupt routine is loaded into CS:IP so
that the routine is given control. Interrupt routines are often referred to as “inter-
rupt handlers”. An interrupt handler always ends with an IRET instruction, which
undoes the process that started up the interrupt, replacing the original values for
CS:IP and the flags, so that the program continues along its way.

Software interrupts, on the other hand, do not really interrupt anything. They
are essentially no more than procedures that your programs call to perform mun-
dane tasks, like taking a keystroke or writing on the screen. These routines, how-
ever, are written within the operating system, not within your programs, and the
interrupt mechanism is the means of getting at them. Software interrupts may be
nested inside each other. For example, all DOS keyboard-input interrupts use the
BIOS keyboard-input interrupt to get a character from the keyboard buffer. Note
that a hardware interrupt can take control during a software interrupt. Confusion
does not arise from all this activity because each interrupt routine is carefully
designed to save all registers that it changes, restoring them at its conclusion so that
when it is finished it leaves no trace of its having occupied the CPU.

The addresses of interrupts are called vectors. Each vector is four bytes long. The
first word holds the value for IP and the second keeps CS. The bottommost 1024
bytes of memory hold interrupt vectors, so there is room for 256 vectors in all.
Taken together, they are referred to as the vector table. The vector for INT @ is at
0000:0000, INT 1 starts at 0000:0004, INT 2 is at 0000:0008, etc. If you were to
look at the four bytes starting at 0000:0020, which keeps the vector for INT 8H (the
time-of-day interrupt), you would find ASFEGOF0. Keeping in mind that the low
byte of each word comes first in memory, and that the order is IP:CS, the four-byte
value translates to FG@0:FEAS. This is the starting address in ROM for the routine
that performs INT 8. Figure 1-2 shows the path a program takes in executing INT
21H.
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1.2.1 Program the 8259 interrupt controller

The Intel 8259 programmable interrupt controller chip is used in all IBM micro-
computers to manage hardware interrupts. Because more than one request for an
interrupt can arrive at the same time, the chip has a priority arrangement. There
are eight levels of priority, except in the AT, which has 16, and calls to the levels
are referred to by the abbreviations IRQ@ to IRQ7 (IRQOQ to IRQ15), which stand
for “interrupt request.” Highest priority goes to level @. The extra eight levels on
the AT are handled by a second 8259 chip; this second series of levels takes prece-
dence between IRQ2 and IRQ3. Interrupt requests @-7 fit into the vectors for INT
8H-INT FH; on the AT interrupt requests 8-15 are serviced by INT 70H-INT 77H.
Here are the interrupt assignments:

Hardware Interrupts By Precedence

IRQO timer
i keyboard
2 170 channel

8 real-time clock (AT only)
9 software redirected to IRQ2 (AT only)

10 reserved
11 reserved
12 reserved

13 maths coprocessor (AT only)
14 fixed disk controller (AT only)
15 reserved i
COM1 (COM2 on the AT)
COM2 (modem on the PCjr, COM1 on the AT)
fixed disk (video vertical retrace on PCjr, LPT2 on AT)
diskette controller
LR

N Ok W

The time-of-day interrupt [2.1.0] is given highest priority because repeatedly miss-
ing it would throw off the time-of-day reading. The keyboard interrupt [3.1.0] is
invoked when a key is pressed or released; it brings about a chain of events that
usually ends in a key code being placed in the keyboard buffer (from there it is
retrieved by software interrupts).

The 8259 has three one-byte registers that control and monitor the eight hard-
ware interrupt lines. The interrupt request register (IRR) changes a bit to 1 when
the corresponding interrupt line signals a request. The chip then automatically
checks whether another interrupt is in progress. It consults the in service register
(ISR) for this information. Additional circuitry assures that the priority scheme is
enforced. Finally, before invoking the interrupt, the interrupt mask register (IMR)
is checked to see whether an interrupt of that level is currently allowed or not.
Ordinarily, programmers access only the interrupt mask register at port address
21H [1.2.2] and the interrupt command register at port address 20H [1.2.3].
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1.2.2 Allow/disallow particular hardware interrupts

Assembler programs can disable the hardware interrupts listed at [1.2.1]. These
are maskable interrupts; other hardware interrupts that intercept special errors
(such as divide-by-zero) cannot be masked out. There are two reasons to disable
hardware interrupts. In one case, all interrupts are blocked out so that a critical
piece of code can be completely executed before anything else takes place in the
machine. For example, interrupts are disabled while a hardware interrupt vector is
altered, lest the interrupt occur when the vector is only half changed.

In the second case, only selected hardware interrupts are masked out. This is
because those particular interrupts interfere with some time-critical activity. For
example, a precisely timed I/O routine could not afford to be waylaid by a lengthy
disk interrupt.

Low Level

Ultimately, the execution of all interrupts relies upon the interrupt flag (bit 9) of
the flag register. When it is @, it honors any interrupt request that the interrupt
mask register permits. When it is 1, no hardware interrupt can occur. To set the
flag to 1, disabling interrupts, use the CLI instruction. To clear the flag to 0,
reenabling interrupts, use STI. Avoid shutting off interrupts for long periods. The
time-of-day interrupt occurs 18.2 times per second, and if more than one request is
made for this interrupt while hardware interrupts are disabled, the extra requests
are discarded and the time-of-day count falls behind.

Be aware that the machine automatically disables hardware interrupts when a
software interrupt is invoked and it automatically reenables them on return. When
you write your own software interrupts, you may start the routine with STI if there
is reason to keep the hardware interrupts moving. Note also that failing to follow
CLI with STI can freeze up the machine, since input from the keyboard is shut out.

To mask out particular hardware interrupts, simply send the appropriate bit pat-
tern to port address 21H, which is the address of the interrupt mask register (IMR).
The mask register on the second 8259 chip in the AT (IRQ8-15) is at A1H. Set to 1
those bits that correspond to the numbers of the interrupts you wish to mask. The
register is write-only. The example below blocks out the disk interrupt. Be sure to
clear the register with zeros at the end of a program or the settings will continue
after a program is terminated.

;———-MASK OUT BIT 6 IN THE INTERRUPT MASK REGISTER:

MOV AL,010000008 ;mask out bit 6 (diskette interrupt)
OUT 21H,AL ;send to the interrupt mask register
MOV AL,Q ;clear IMR at end of program

OuUT 21H,AL
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1.2.3 Write your own interrupt

There are several reasons for writing your own interrupts. First, most of the
ready-made interrupts provided by the operating system are nothing more than
common procedures available to all programs, and you may wish to add to this
library. For example, many of your programs might use a routine that writes
strings on the screen vertically. Rather than link the routine into each program as a
procedure, you could set it up as an interrupt that is written as a program that
stays resident in memory after termination [1.3.4]. Thus, instead of CALL
WRITE_VERTICALLY you might have INT 80H (keep in mind that calling an
interrupt is slightly slower than calling a procedure).

A second reason to write interrupts is to make use of some special hardware
interrupts. These interrupts are automatically invoked by some occurence within
the computer hardware. In some cases BIOS initializes the vectors for these inter-
rupts to point to a routine that does nothing at all (it contains only an IRET state-
ment). You can write your own routine and change the interrupt vector to point to
it. Then, whenever the hardware interrupt occurs your routine is executed. One
such routine is the time-of-day interrupt [2.1.0], which is invoked automatically
18.2 times a second. Ordinarily this interrupt only updates the time-of-day clock,
but you can add any code you like to the interrupt. If your code checks the clock
setting and swings into action at designated times, real-time operations are made
possible. Other uses include programming a routine for Ctrl-Break [3.2.8], for
PrtSc [3.2.9], and for error conditions [7.2.5)]. Printer interrupts [6.3.1] and com-
munications interrupts [7.1.8] allow the computer to rapidly switch back and forth
between 1/0 operations and other processing.

Finally, you may wish to write an interrupt that entirely replaces one of the oper-
ating system routines, tailoring it to your program'’s needs. [1.2.4] shows how to
write an interrupt within an interrupt that lets you modify existing routines.

Middle Level

Function 25H of INT 21H sets an interrupt vector to a specified address. The
addresses are two words long. The high word holds the segment value (for CS),
and the low word holds the offset (for IP). To set a vector to point to one of your
routines, simply place the segment for the routine in DS and the offset of the rou-
tine in DX (follow the order in the example below). Then place the interrupt num-
ber in AL and call the function. Any interrupt routine must end with IRET rather
than the usual RET instruction. (IRET pops three words off the stack—the flag reg-
ister is included—whereas RET pushes only two. If you attempt to test the routine
as an ordinary procedure, but as one ending with IRET, the stack will be thrown
off kilter.) Note that function 25H automatically disables hardware interrupts when
it changes the vector, so there is no danger that midway a hardware interrupt could
occur that would make use of the vector.

;—==TO SET UP THE INTERRUPT:

PUSH DS ;save DS
MOV DX,OFFSET ROUTINE ;offset of the interrupt routine in DX
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MOV AX,SEG ROUTINE ;segment of the interrupt routine
MOV DS,AX ;place in DS
MOV  AH,25H ; function to set up a vector
MOV  AL,68H ;the vector number (INT 60H)
INT 21H ;change the interrupt
POP DS ;restore DS
;———-THE INTERRUPT ROUTINE:

ROUTINE PROC FAR .
PUSH AX ;save all changed registers
POP AX ;restore all changed registers
MOV AL,20H ;use these two Lines for
OUT 20H,AL ;hardware interrupts only
IRET

ROUTINE ENDP

Place the following two lines of code at the end of any hardware interrupts you
write:

MOV AL,20H
OUT 20H,AL

It is coincidental that the numbers (20H) are the same in the two lines. If a hard-
ware interrupt does not end with this code, the 8259 chip will not clear its in service
register so that it reenables interrupts at lower levels than the one just completed.
Failure to add the code can easily crash the program; since the keyboard interrupt
is likely to be shut out, even Ctrl-Alt-Del will be useless. Note that this code is not
required by those interrupt vectors that add extensions to existing interrupts, such
as INT 1CH, which adds code to the time-of-day interrupt [2.1.7].

When a program ends, the original interrupt vectors should be restored. Other-
wise a subsequent program may call the interrupt and jump to a place in memory
where your routine no longer resides. Function 35 of INT 21H returns the current
value of a vector, placing the segment value in ES and the offset in BX. Before set-
ting up your own interrupt, get the current value using this function, save the
value, and then restore it using function 25H (as above) just before terminating
your program. For example:

;—=—IN THE DATA SEGMENT:

KEEP_CS ow @ ;holds segment for replaced interrupt
KEEP_IP bW 0 sholds offset for replaced interrupt
;——-AT THE BEGINNING OF THE PROGRAM:
MOV AH,25H ; function number to get INT address
MOV AL,1CH ;number of the vector (the timer INT)
INT 21H ;now segment is in ES, offset in BX
MOV  KEEP_IP,BX ;store offset
MOV KEEP_CS,ES ;store segment
;——=AT THE END OF THE PROGRAM:
CLI
PUSH DS ;DS is destroyed
MOV  DX,KEEP_IP ;prepare to restore offset
MOV  AX,KEEP_CS ;
MOV DS,AX ;prepare to restore segment
MOV AH,25H ;function to set an interrupt vector
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MOV AL,1CH snumber of the vector

INT 21H ;now the interrupt is reset
POP DS ;restore DS

STI

There are a couple of pitfalls to look out for when you write an interrupt. If the
new interrupt routine needs to access data variables within, take care that DS is
properly set (ordinarily the interrupt can use the stack provided by the calling pro-
gram). Another consideration is that programs that end via Ctrl-Break will fail to
restore interrupt vectors that have been changed unless the Ctrl-Break interrupt
itself is programmed to see to it that the job is done [3.2.8].

Low Level

The DOS functions discussed above do nothing more than retrieve or change
two words at the low end of memory. The offset of a vector is obtained simply by
multiplying the number of the vector by 4. To place the address of INT 16H in
ES:BX, for example:

;==—GET THE ADDRESS OF INT 16H:

SUB AX,AX ;set extra segment to bottom of memory
MOV ES,AX ;

MOV DI,16H sput INT number (INT 16H) in DI

SHL DI,1 smultiply by 2

SHL 0I,1 ;multiply by 2 again

MOV BX,ES:[DI] ;put Low byte in BX

MOV AX,ES:[DI]+2 ;put high byte in ES

MOV ES,AX ;

It is inadvisable to go around the DOS functions and set interrupt vectors directly.
In particular, in a multitasking environment the operating system may support a
number of interrupt vector tables, and the actual physical location of the table may
be known only to DOS.
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1.2.4 Make additions to existing interrupts

Although unusual, sometimes it is useful to add features to an existing in-
terrupt. As an example, consider the software utilities that convert single key-
strokes into long user-defined strings of characters (keyboard macros). These
utilities may exploit the fact that all standard keyboard input arrives via func-
tion @ of BIOS interrupt 16H [3.1.3]. The basic DOS keyboard-input interrupts
call the BIOS interrupt to take a character from the keyboard buffer. Thus one
need only modify INT 16H so that it acts as a gateway for the macros, and then
any program will receive the macro no matter what keyboard-input interrupt
it uses. (Sophisticated keyboard macro programs completely replace the key-
board interrupt, INT 9.)

At this time only BIOS interrupts may be modified. DOS interrupts are non-
reentrant. A BIOS interrupt, however, can not be internally modified because
it is on ROM. But you can write a subroutine that precedes and/or follows a
BIOS interrupt, and this subroutine will be invoked every time the interrupt
is called. In the case of INT 16H, for example, you need only write a routine
and point to it the interrupt vector for INT 16H. The original vector for INT 16H
meanwhile is transferred to some unused vector, say 60H. The new routine
simply calls INT 60H to make use of the original 16H interrupt; that is, when
a program calls INT 16H, control is transferred to the special routine, which
then calls the original 16H interrupt, which returns to the special routine when
it is finished, and the new routine in turn returns to the place in the program
that made the call for 16H. Once this is set up, special coding can be placed
within the new routine before or after INT 60H is called. Figure 1-3 diagrams
this procedure. In summary:

. Set up the new routine, at some point calling INT 60H.

. Transfer the interrupt vector for 16H to 60H.

. Change the 16H vector to point to the new routine.

. Terminate the program, leaving it resident in memory [1.3.4].

W N
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Section 3: Manage Programs

Most programs are loaded into memory, run, and then abandoned by DOS
when the program terminates. High level languages like BASIC ordinarily leave no
alternatives. But other options are available to assembly programmers, and this
section demonstrates them. Some programs operate as device drivers or interrupt
handlers, and their code must be kept in memory (“kept resident”) even after other
programs have been loaded (interrupt vectors provide the means by which subse-
quent programs find their way to the resident routines). And sometimes one pro-
gram may need to run another program from within itself. In fact, DOS allows a
program to load a second copy of COMMAND.COM into memory, and the sec-
ond copy can be used for its usual user-interface facilities, such as the COPY or
DIR commands.

Programs may be in two formats, .EXE and .COM. The former allows programs
to be larger than 64K, but it requires that DOS do some processing as it loads the
program into memory. COM programs, on the other hand, already exist in the
image that memory requires. COM programs are especially useful for short utili-
ties. In either case, the code that comprises a program is preceded in memory by a
program segment prefix (PSP). This is an area 100H bytes large that holds special
information DOS requires to operate the program; the PSP provides space for file
1/0 operations as well [5.3.5]. When an EXE file is loaded, both DS and ES point
to the PSP. For COM files, CS also initially points to the PSP. Note that DOS 3.0
has a function that returns the PSP segment number. This is number 62H of INT
21H; there are no input registers, and the paragraph number is returned in BX.

One reason the PSP location is of concern is that its first word contains the num-
ber of the DOS interrupt that will terminate the program. When the final RET
statement of a program is executed, the values left at the top of the stack direct the
instruction pointer (the IP register) to the start of the PSP, so that the termination
code is executed as the next instruction of the program. There is more discussion of
this feature at [1.3.4] and at [1.3.6].
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For reference, here is a map of the PSP fields:

Offset Field Size

oH DW

2 DW

4 DW

6 DD

A DD

E DD
12 DD
16 22 bytes
2C DW
2E 46 bytes
5C 16 bytes
6C 20 bytes

Use

number of DOS function used to terminate program
memory size in paragraphs

reserved

long call to DOS function dispatcher

terminate address (IP,CS)

ctrl-break exit address (IP,CS)

critical error exit address (IP,CX)

reserved

paragraph number of the program’s environment string
reserved

parameter area 1 (formatted as unopened FCB)
parameter area 2 (formatted as unopened FCB)

80 128 bytes default disk transfer area/receives command line data
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1.3.1 Allocate/deallocate memory

When PC-DOS loads a program, the program is placed at the low end of mem-
ory, just above COMMAND.COM and any installed device drivers or other utili-
ties that have been left resident. At this time, all of memory above the program
itself is allocated to the program. If the program needs some memory to set up a
data area, it can figure out approximately where in memory its own code ends, and
then it is free to place the data area anywhere above that. To calculate the end of a
program, place a “pseudo segment” at the end of the program, such as:

2ZSEG  SEGMENT

i
ZSEG ENDS

On the IBM assembler, ZSEG will be made the last because segments are arranged
in alphabetical order. With other assemblers, actually place it at the end of the
source code. In the program itself, simply write MOV AX,ZSEG, and AX will then
point to the first free segment in memory following the program.

This approach works so long as the program does not assume the existence of
memory that is not actually there. Nor does it work in a multiuser environment
where several programs may be sharing the same range of memory addresses. As a
solution to these problems DOS is able to keep track of 640K of memory in the sys-
tem, and to allocate memory blocks of any size a program demands. A memory
block is simply a continuous section of memory; it can be as large as there is mem-
ory available; in particular, it can be larger than one segment (64K). If too large a
block is requested, DOS returns an error message. Any possibility of overlapping
blocks is ruled out. In addition, DOS can deallocate, shrink, or expand existing
blocks. While a program is not forced to use these means, it is both prudent and
convenient to do so. And certain DOS functions require that the DOS memory
management tools be used, such as when a program is loaded and then left resident
[1.3.4] or when one program is run from within another [1.3.2].

Before any memory allocation can be made, the existing block (all of memory
from the beginning of the program on up) must be shrunk down to the size of the
program. Thereafter, whenever a block is created, DOS sets up a 16-byte memory
control block that immediately precedes the block in memory. The first five bytes
of this field are significant, as follows:

byte ASCII 9@ if the last block in the chain,
otherwise ASCII 77

bytes 1-2 @ if the block has been deallocated

bytes 3-4 size of the block in (16-byte) paragraphs

DOS references the blocks as a chain. The address of the first block is kept in an
internal variable. The variable enables DOS to locate the memory control block of
the first allocated block, and from the information contained there it can find the
next block, and so on, as shown in Figure 1-4. Once you start using the DOS mem-
ory allocation system, you must stick with it. If a program subsequently overwrites
areas containing control blocks, the chain will be broken, and DOS will begin
returning error messages.
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Figure 1-4. Memory Control Block Linkage.

DOS provides three memory allocation functions, numbers 48H-4AH of INT
21H. Function 48H allocates memory, and 49H deallocates memory. The third
function (“SETBLOCK") changes the size of memory currently allocated to a pro-
gram; this is the function that must be executed before the others can be used. Then
blocks may be allocated and deallocated freely. A program must deallocate all of
the blocks it has allocated before terminating. Otherwise memory will be seques-
tered away from subsequent uses.

Middle Level

All three memory allocation functions of INT 21H use a 16-bit starting address
for the memory block they operate upon. This address represents the segment in
which the block begins (the block always starts at offset @ in that segment). Thus
the actual block starting location is at the memory address represented by this
value multiplied by 16. Also, in all three functions, BX contains the number of 16-
byte sections of memory (“paragraphs”) that are to be allocated or freed. If the
function fails, the carry flag is set and AX returns an error code explaining why.
The three relevant codes are:

7 memory control blocks have been destroyed
8 there is insufficient memory available
9 the memory block address is invalid

The allocation function uses codes 7 & 8, the deallocation function uses codes 7 &
9, and the function that changes the allocation uses all three codes. The following
code first allocates a 1024-byte block, saving its starting address in the variable
BLOCK__SEG. BX holds the number of 16-byte paragraphs requested, and upon
return the start address is found as AX:0 (that is, as a @ offset within the segment
value contained in AX). The second part of the code deallocates the same block, as
is required when a program terminates. In this case, the value returned in AX is
placed in ES. DOS keeps track of the block size and knows how many paragraphs
to deallocate.

i———ALLOCATE A 1024-BYTE AREA:

MOV AH,48H ; function number
MOV BX,64 ;request 64 16-byte paragraphs
INT 21H ;attempt the allocation

29



1.3.1 Allocate/deallocate memory

JC  ERROR ;g0 to error handling routine if carry
MOV BLOCK_SEG,AX ;else, AX holds block segment, save it

;———DEALLOCATE THE SAME AREA:
MOV AX,BLOCK SEG  ;retrieve start address of the block

MOV ES,AX ;place it inES
MOV AH,49H ; function number to deal locate
INT 21H :make the deallocation

Finally, here is an example of function 4AH. ES holds the segment value of the
program segment prefix, that is, of the very first byte in memory at which the pro-
gram is loaded. ES is initialized to this value at startup. To use SETBLOCK, either
call the function at the very beginning of a program (before ES is changed) or else
store the initial value of ES for later use.

BX holds the desired block size in 16-byte paragraphs. To calculate the size, place
an extra, fake segment in the program that will reside at the end of the source code.
On the IBM Macro Assembler, the segments are laid out in alphabetical order, and
so this dummy segment can be placed anywhere in the source code so long as it has
a name like “ZSEG”. On other assemblers, place the dummy segment at the actual
end of the source code. The program can read the position of this segment and
compare it with its own starting segment, giving the amount of memory required
by the program. At the time that the program is loaded, both ES and DS hold the
paragraph number for the very beginning of the program at the program segment
prefix; in COM files CS also points to this position, but in EXE files it does not.

;=——REALLOCATE A PROGRAM'S MEMORY (ES HOLDS SAME VALUE AS AT LOAD-TIME):

MOV BX,ZSEG ;get paragraph # of end of program + 1
MOV AX,ES ;9et paragraph # of start of program
SUB BX,AX ;calculate program size in paragraphs
MOV  AH,4AH ; function number
INT 21H ;make the reallocation
JC  MEMORY_ERROR ;check for errors, etc...
;———THE DUMMY SEGMENT:
ZSEG SEGMENT
2SEG ENDS
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1.3.2 Run one program from within another

DOS provides the EXEC function (number 4B of INT 21H) to run one program
from within another. The first program is called the “parent,” and the one that is
loaded and run is called the “child.”

High Level

BASIC 3.0 introduces the SHELL command. With considerable limitations, it lets
a BASIC program load and run another program. The format is SHELL command-
string. The command string may be just the name of a program, or it can be the
name plus the parameters that would ordinarily follow the program name on the
command line. If no command-string is named, a copy of COMMAND.COM is
loaded and the DOS prompt appears. Any DOS commands may be used, and,
when finished, typing EXIT returns control to the BASIC program.

There are a number of restrictions of the use of SHELL. If the program that is
loaded changes the screen mode, for example, the change will not be automatically
remedied on return. All files must be closed before the program is loaded, and it
must not be a program that stays resident after termination. See the BASIC manual
for a discussion of several other problems.

Middle Level

Function 4BH is more complicated than most, requiring four preparatory steps:

(1) Make space available in memory for the program.
(3) Create a parameter block.

(2) Build a drive, path, and program name string.

(4) Save the SS and SP registers in variables.

Space must be made in memory because DOS assigns the whole of memory to a
program when it is loaded. Without freeing some memory there would be no where
to load the second program. [1.3.1] explains how it is done using the SETBLOCK
function. Once memory is freed, you need merely place in BX the required number
of 16-byte paragraphs of memory space, put 4AH in AH, and execute INT 21H to
shrink down the memory allocation so that only the number of paragraphs
requested is available to the program.

The parameter block, to which ES:BX must point, is a 14-byte block of memory
in which you must place the following four pieces of information:

DW  segment address of environment string
DD  segment/offset of command line

DD  segment/offset of first file control block
DD  segment/offset of second file control block

An environment string is a string of one or more specifications that DOS follows
when it executes a program. The elements of an environment string are the same as
those that would be found in a CONFIG.SYS file on disk. For example,
VERIFY = ON could be placed in the string. Simply begin the string with the first
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element, end the element with the ASCII @ character, write the next, and so on. The
last element must be followed by two ASCII @ characters. The string must begin on
a paragraph boundary (that is, its address MOD 16 must be 0). This is because the
entry in the parameter block that points to the string holds only a two-byte seg-
ment value. All of this may be avoided if the new program can operate with the
same environment string as the one that loads it. In that case, simply place ASCII 0
in the first two bytes of the parameter block.

The next four bytes of the parameter block point to a command line for the pro-
gram being loaded. A “command line” is the string that invokes a program. Load-
ing a program from DOS, it might be something like EDITOR A:CHAPTER1
\NOTES.MS. Here, the editor is called and given the name of a file in a
subdirectory of drive A to open immediately. When you set up a command line for
EXEC, include only the latter information, not the name of the program to be
loaded. Precede the command line with one byte that holds the number of charac-
ters in the string, and end the string with a carriage return byte, which is ASCII 13.

The last eight bytes of the parameter block point to file control blocks (FCBs).
The FCBs hold information for the one or two files named in the command line. If
there are no files to be opened, fill the eight bytes with ASCII 0. [5.3.5] explains
how FCBs operate. Since the advent of DOS version 2.0, FCBs have been essen-
tially obsolete, and you may avoid including the FCB information by instead using
the DOS 2.0 file handle conventions, which access a file by a code number rather
than by a control block (also discussed at [5.3.5]).

Finally, you must build a drive, path, and file name string. This is the string that
names the program to be loaded. DS:DX points to the string when EXEC is exe-
cuted. The string is a standard “ASCII Z string,” which is nothing more than a
drive specifier, a tree directory path, and the file name and extension, ending with
an ASCII 0 byte. For example, the string might be B: \ NEWDATA \ FILER.EXEQ,
where 0 is ASCII 0.

Once all of the above information is set up, there remains one final task. All reg-
isters are altered by the program that is called. The stack segment and stack pointer
must be saved so that they can be restored when control returns to the calling pro-
gram. Set aside variables to do this. Since DS is also destroyed, these variables can
not be retrieved until the statements MOV AX,DSEG and MOV DS,AX are
repeated. Once SS and SP are saved, place @ in AL to choose the “load and run”
option (EXEC is also used for overlays [1.3.5]). Then place 4AH in AH and call
INT 21H. At this point essentially two programs are running, and the parent goes
on “hold.” DOS provides a way for the child program to pass a return code to the
parent, so that errors and status may be reported. [7.2.5] explains how this is done.
Minimally, on return the carry flag is set if there has been an error, and in this case
AX returns 1 for an invalid function number, 2 if the file was not found, 5 for disk
problems, 8 if insufficient memory, 10 if the environment string was invalid, and
11 if the format was invalid.

The example given here is the simplest possible, but often the EXEC procedure
requires no more. It leaves the entire parameter block as zeros, and does not create
an environment string. This means that no command line is passed to the loaded
program, and that the environment will be the same as that of the calling program.
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You need only change the memory allocation, set up the filename and (empty)
parameter block, and save SS and SP.

;———IN THE DATA SEGMENT:

FILENAME DB 'A:TRIAL.EXE',0 ; load TRIAL.EXE fromdrive A

PARAMETERS DW 7 dup(@) ;parameter block all zeros

KEEP_SS bw 0 ;variable to keep SS

KEEP_SP oW @ ;variable to keep SP

;=——-REALLOCATE MEMORY:

MOV BX,ZSEG ;get paragraph # of end of program
MOV AX,ES ;9et paragraph # of start of program
SUB BX,AX ;calculate program size in paragraphs
MOV  AH,4AH ; function number
INT 21H ;make the real location

;——-POINT TO PARAMETER BLOCK:

MOV AX,SEG PARAMETERS ;ES holds segment

MOV ES,AX H

MOV BX,OFFSET PARAMETERS ;BX holds offset
;———STORE COPIES OF SS AND SP:

MOV KEEP_SS,SS ;save SS

MOV  KEEP_SP,SP ;save SP
;———POINT TO FILE NAME STRING:

MOV DX,OFFSET FILENAME ;offset in DX

MOV  AX,SEG FILENAME ;segment in DS

MOV DS,AX :
;———LOAD THE PROGRAM:
MOV AH,4BH ;EXEC function
MOV AL,O ;choose ""load and run'' option
INT 21H ;runit
;———AFTERWARDS, RESTORE REGISTERS:
MOV AX,DSEG ;srestore DS
MOV DS,AX ;
MOV SS,KEEP_SS ;restore SS
MOV SP,KEEP_SP ;srestore SP
;=—=AT THE END OF THE PROGRAM CREATE A DUMMY SEGMENT TO MARK END OF CODE:
ZSEG SEGMENT ;see [1.3.1] for anexplanation
ZSEG ENDS
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1.3.3 Use DOS user-interface commands from within a
program

Programs can have at their disposal the full range of DOS user-interface com-
mands, such as DIR or CHKDSK. When these services are used from within a pro-
gram, a second copy of COMMAND.COM is loaded and run. While a good deal
of programming can be saved by this approach, it does impose the need for ade-
quate memory for this second copy, and your program could be left at an impasse
if not enough is available.

High Level

BASIC 3.0 can load a second copy of COMMAND.COM using its SHELL state-
ment. SHELL is discussed at [1.3.2]. COMMAND.COM is loaded when no file
name is specified, so simply writing SHELL brings up the DOS prompt. Any of the
DOS utilities may be used, including batch files. To return to the calling BASIC
program, enter EXIT.

Middle Level

The example at [1.3.2] must have a command line added to it in this case. Nor-
mally the line begins with a byte giving its length, then the command string itself,
and finally ASCII 13. When passing a command to COMMAND.COM, you must
place /C before the string (see the DOS manual under Invoking a Secondary Com-
mand Processor). You also should specify the drive where COMMAND.COM is
found, placing the drive prefix at the start of the command string. To have the
directory of drive A shown when COMMAND.COM is on drive B, write:

COMMAND_LINE 0B 12,'B: /C DIR A:',13

The following bit of code sets the command line address into the parameter block
used in the example at [1.3.2]:

LEA BX,PARAMETERS ;get offset of parameter block
MOV AX,OFFSET COMMAND_LINE ;get offset of command line
MoV [BX1+2,AX ;place in 1st 2 bytes of block
MOV AX,SEG COMMAND_LINE ;get segment of command Lline
MOV [BX1+4,AX ;place in 2nd 2 bytes of block
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1.3.4 Keep a program in memory after it has terminated

Programs left resident in memory may serve as utilities to other programs. Nor-
mally such a program is accessed via an unused interrupt vector. DOS treats the
program as if it were part of itself, protecting it from being overlaid by programs
that are subsequently loaded. Resident programs are usually written in COM form,
as discussed at [1.3.6]. They are slightly more difficult to make resident when they
are written as EXE files.

Terminating a program with INT 27H causes it to stay resident. At the time that
INT 27H is executed, CS must point to the start of the program segment prefix for
this function to work properly. In COM programs, CS is initially set to this posi-
tion, and so you need simply end the program with 27H. In EXE programs, on the
other hand, CS initially points to the first byte following the PSP (that is, to 100H).
In the normal termination of an EXE program, the final RET instruction pops off
the stack the first values pushed on to the stack: PUSH DX/MOV AX,0/PUSH AX.
Since DS initially points to the bottom of the PSP, when these values are popped
the instruction pointer is directed to offset @ in the PSP, which is initialized to con-
tain the code for INT 20H. INT 20H is then executed, and it is the standard func-
tion for terminating programs and returning control to DOS. Figure 1-5 diagrams
this process. To make INT 27H work in an EXE program, poke 27H into the second
byte of the PSP (the first holds the machine code for “INT"”), and end the program
with the usual RET. For both kinds of file, before INT 27H is executed DX must
contain the offset of the end of the prcgram, starting from the beginning of the
PSP.

&
Ew
58¢
a6
INT20H Is 2 %o
Executed and Control ° @
Reverts To DOS _ 2=>%
PSP PROGRAM STACK e £
Ve
S -
Low o o =4 High
Memory | & Memory

(CS:IP) Receives J
These Values

.
Control Transfers to Here

Figure 1-5. Termination of an .EXE program.
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Middle Level

The interrupt vector is set up using function 25H of INT 21H, as discussed at
[1.2.3] (vector number 70H is used here). Be sure that the routine ends with IRET.
Apart from providing the routine, the set-up program does nothing more than ini-
tialize the interrupt vector, point DX to the end of the interrupt routine, and termi-
nate. In COM files, simply place the INT 27H statement at the end of the program.
In EXE files, poke it into the first word of the PSP, and terminate the program
using the usual RET statement. Thereafter the routine executes whenever a subse-
quently loaded program calls INT 70H.

Examples are given here for both COM and EXE files. Both set up the label “FIN-
ISH” to mark the end of the interrupt routine (recall that the $ sign gives the
instruction pointer value at that point). In the COM file, FINISH gives the offset
from the start of the PSP, as required by INT 27H. In the EXE file, the offset is
from the first byte following the PSP, and so 100H is added to this value so that
this offset too starts from the bottom of the PSP. Note that by placing the routine
first in the program, the set-up code can be excluded from the resident portion.
Another trick is to use MOVSB to move the code for the routine down into the
unused part of the PSP, starting from offset 60H, freeing 160 bytes of memory.

COM file case:
;-——HERE IS THE INTERRUPT ROUTINE:

BEGIN: JMP  SHORT SET_UP ; jump over the resident routine
ROUTINE PROC FAR
PUSH DS ;save altered registers

(the routine)

POP DS ;restore registers
IRET ;interrupt return
FINISH EQU $ ;mark end of routine
ROUTINE ENDP

;——=SET UP THE INTERRUPT VECTOR:
SET_UP: MOV DX,OFFSET ROUTINE ;put offset of routine in DX

MOV AL,70H ;interrupt vector number
MOV AH,25H ;function to set vector
INT 21H ;set the vector
;---LEAVE THE PROGRAM, STAYING RESIDENT:
LEA DX,FINISH ;set offset of resident routine
INT 27H ;quit, and routine stays resident

EXE file case:

;———HERE IS THE INTERRUPT ROUTINE:

JMP  SHORT SET_UP ; jump over the resident routine
ROUTINE PROC FAR
PUSH DS ;save altered registers

(the routine)
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POP DS ;restore registers
IRET ;interrupt return
FINISH: EQU $ ;mark end point of routine
ROUTINE ENDP

;———=SET UP THE INTERRUPT VECTOR:
SET_UP: MOV DX,OFFSET ROUTINE ;put offset of routine in DX

MOV AX,SEG ROUTINE iput segment of routine in DS
MOV DS, AX H
MOV AL,70H ;interrupt vector number
MOV  AH,25H ;function to set vector
INT 21H ;set the vector
;———LEAVE THE PROGRAM, STAYING RESIDENT:
MOV  DX,FINISH+100H iset offset of end of resident routine
MOV BYTE PTRES:1,27H ;poke 27H into PSP
RET ;quit, and routine stays resident

Function 31H of INT 21H works in much the same way, except that DX is given
the number of 16-byte paragraphs required by the routine (calculate the program
size from the start of the program segment prefix—see the example at [1.3.1]).The
advantage of this routine is that it can pass an exit code to the parent program, pro-
viding information on the status of the routine. The parent senses the code via
function 4DH of INT 21H. Exit codes are discussed at [7.2.5].
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1.3.5 Load and run program overlays

Overlays are parts of programs that remain on disk while the body of the pro-
gram is resident in memory. When the functions of a particular overlay are
required, that overlay is loaded into memory and the program calls it as a proce-
dure. Other overlays may subsequently be loaded at exactly the same place in
memory, overlaying the prior code. For example, a data base program might load a
sort routine and then later overlay it with a report-generation routine. This tech-
nique is used to conserve memory. But it works well only for procedures that are
not in constant use; otherwise, the frequent disk operations make the program
operate much too slowly.

Middle Level

DOS uses the EXEC function to load overlays. This function, number 4BH of
INT 21H, is also used to load and run one program from within another when the
code number 0 is placed in AL [1.3.2]. When 3 is placed in AL, however, an over-
lay is loaded instead. In this case, no program segment prefix is built, so the over-
lay is not set up as an independent program. The function merely loads the over-
lay, without turning control over to it.

There are two ways to provide memory for the overlays. Either an area inside
the body of the main program may be overlaid, or memory outside of the main
program must be specially allocated. The EXEC function is given only a segment
address (a 16-byte boundary) as the location at which the overlay is to be loaded.
When the overlay is loaded into a program, the program must calculate a para-
graph number that will keep the overlay from encroaching on surrounding code.
When memory is separately allocated, on the other hand, DOS provides the pro-
gram with a paragraph number.

The example below uses the memory allocation method. Since DOS initially
allocates all available memory to a program, first function 4AH is used to
deallocate excess memory. Then function 48H allocates a block big enough to
accommodate the largest overlay that will be set into it. This function returns the
segment value of the block in AX, and that paragraph number is the one at which
the overlay is loaded and the one at which the overlay is (indirectly) called by the
main program. These functions are discussed in more detail at [1.3.1].

Besides the code number 3 in AL, there are two other inputs you must set up for
this function. Point DS:DX to a string that gives the path to the overlay file, ending
the string with a byte of ASCII 0. Give the entire name of the file, complete with
.COM or .EXE ending, since DOS does not read it as if it were searching for a pro-
gram file.

Finally, point ES:BX to a four-byte parameter block that contains (1) the two-
byte paragraph number at which the overlay is to be loaded and (2) a two-byte
relocation factor that is used for relocating addresses within the overlay (relocation
is explained at [1.3.6]). For the paragraph number, use the number returned in AX
for the paragraph number of the allocated memory block. The relocation factor
gives an offset by which relocatable items in the overlay can be calculated. Use the
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paragraph number at which the overlay is loaded. Once this is set up, call the func-
tion and the overlay will be loaded. Simply by changing the path to the overlay
file, the function can be called again and again, loading different overlays each
time. On return, if the carry flag is set, there has been an error, and an error code is
returned in AX. The code is 1 if the function number was bad, 2 if the file was not
found, S if there was a disk problem, and 8 if memory was insufficient.

Once the overlay is in memory, it is accessed as a far procedure. A double-word
pointer must be set up in the data segment to accommodate this call. The segment
part of the pointer is simply the current code segment. The offset of the overlay
must be calculated by finding the difference between the code segment and the
overlay segment and multiplying the result by 16 (changing the value from para-
graphs to bytes). In the example below the two variables OVERLAY__OFFSET and
CODE__SEG are placed one after another so that the pointer is set up correctly.
The overlay, once loaded, can then be called by CALL DWORD PRT OVER-
LAY__OFFSET.

The overlay may be a complete program in itself, with its own data and stack
segments, although generally the stack segment is omitted so that the calling pro-
gram'’s stack is used instead. When the overlay is called, the segment value of its
own data segment must be placed in DS.

7 ~——END THE PROGRAM WITH DUMMY SEGMENT FOR MEMORY ALLOCATION (see [1.3.11):

ZSEG SEGMENT
ZSEG ENDS

7———IN THE DATA SEGMENT:
OVERLAY_SEG bw ?

OVERLAYZOFFSET bW ? ;offset of overlay in code segment
CODE_SEG bW ? ;overlay segment —— must fol Low OVERLAY_OFFSET
PATH DB 'A:OVERLAY.EXE'
@BLOCK DD ;4-byte parameter block for overlay
;———FREE MEMORY:

MOV  CODE_SEG,CS ;make a copy of CS

MOV  AX,ES ;copy of PSP segment value

MOV BX,ZSEG ;end of program segment address

SUB BX,AX ;calculate thedifference

MOV  AH,4AH ;SETBLOCK function number

INT 21H ;deallocate all other memory

Jc SETBLK_ERROR ;carry flag signals error
;==—ALLOCATE MEMORY FOR THE OVERLAY:

MOV BX,100H ;allocate 100@H bytes to overlay

MOV  AH,48H ;function toallocate memory

INT 21H ;now AX:@ points to new block

JC ALLOCATION_ERROR ;carry flag signals error
MOV OVERLAY_SEG,AX ;store seg address of overlay block
;———CALCULATE OVERLAY OFFSET IN THE CODE SEGMENT:

MOV  AX,CODE_SEG ;subtract overlay segment value

MOV BX,OVERLAY_SEG ; from the code segment value

SUB BX,AX ;now BX holds number of 16-byte units
MOV CL,&4 ;shift this number Left 4 places

SHL BX,CL ; tomultiply by 16

MOV OVERLAY_OFFSET,BX;save the offset

;———LOAD THE FIRST OVERLAY:
MOV  AX,SEG BLOCK ;ES:BX points to parameter block
MOV ES,AX H
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Mov
MOV
MoV
MOV
LEA
MOV
MOV
INT
Jc

BX,OFFSET BLOCK ;
AX,OVERLAY_SEG ;put seg address of overlay at first

[BX1,AX
[BX1+2,AX
DX,PATH
AH,4BH
AL,3

21H
LOAD_ERROR

; wordof the parameter block

;use overlay seg as relocation factor
;0S:DX points to file path

;EXEC function number

;code for overlay

: load the overlay

;go toerror routine if problem

;---NOW THE PROGRAM GOES ABOUT ITS BUSINESS:

CALL DWORD PTR OVERLAY_OFFSET ;call theoverlay

; (must use DWORD PTR since
;the overlay is a far procedure)

;-——OBSERVE THIS STRUCTURE WHEN WRITING THE OVERLAY:

DSEG

DSEG

CSEG
OVERLAY

OVERLAY
CSEG

SEGMENT ;set up a data segment as usual

. ;skip the stack segment (use the
. ; stack of the calling program)
ENDS

SEGMENT PARA PUBLIC 'CODE'

PROC FAR ; far procedure as always

ASSUME CS:CSEG,DS:DSEG

PUSH DS s keep copy of calling program's DS
MOV AX,DSEG ;set upoverlay's DS

MOV DS,AX

POP DS ;when finished, restore prior DS
RET

ENDP

ENDS

END
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1.3.6 Convert programs from .EXE to .COM type

Assembly language programmers have the option of converting their programs
from the usual EXE format to COM format. EXE files have a header field that con-
tains information for relocation; DOS relocates certain addresses in the program
while it loads the program. COM files, on the other hand, are set up in such a way
that relocation is not required—they are already in the form in which a loaded pro-
gram resides in memory. For these reasons, EXE files are at least 768 bytes larger on
disk than the COM equivalent (they consume the same amount of RAM once
loaded). By avoiding relocation, COM files also load more quickly. There are no
other advantages, and many programs are too complex or too large to be con-
verted to COM form.

Relocation is a process that sets addresses that are placed in the segment regis-
ters. For example, a program may point to the beginning of a data area by the
code:

MOV DX,OFFSET DATA_AREA
MOV AX,SEG DATA_AREA
MOV DS, AX

The offset in DX is in relation to the setting of the segment register DS. But what
value is to be placed in DS itself? The program code requires an absolute address,
but at what paragraph number DATA__AREA will reside depends on where in
memory the program is loaded—and that can vary by the DOS version and by
whether other programs have been kept resident in the low end of memory. Only
at the time that DOS loads the program is it a certainty where in memory the pro-
gram begins. For this reason, at the time that the program is linked, all that can be
done is to set up any segment values as offsets from the start of the program. Then
when DOS performs relocation, the value of the starting location of the program is
added to the segment values, giving the absolute location required by a segment
register. Figure 1-6 illustrates the relocation process.

COM files have no need of relocation because they are written without any need
of these “segment fixups.” Everything in the program is set up as an offset from the
start of the code segment, including all data and the stack as well. For this reason,
the whole program cannot exceed 65535 bytes in length, which is the largest offset
that addressing can manage (because the high end of this block is used for the
stack, the actual space available for code and data is somewhat less than 65535
bytes, although the stack segment can be moved outside the 64K block if neces-
sary). COM files point all of their segment registers to the bottom of the program
segment prefix; compare this with EXE files, where DS and ES are initialized the
same, but CS is set to the first byte following the PSP.

Setting up a program in COM form requires adherence to the following rules:

1. Do not set up the program as a procedure. Instead, place a label at the very
beginning of the code, such as START, and end the program with the
statement END START.

2. Place the statement ORG 100H at the start of the code. This sets the point of
origination of the code (that is, it sets the instuction pointer). COM pro-
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Figure 1-6. Relocation of the memory position of “DATA_AREA".

grams begin from 100H, which is the first byte after the PSP, because CS
is set to the start of the PSP, 100H bytes lower. The value 180H is always
used. To start the code from elsewhere, place a JMP instruction at 100H.

. An ASSUME statement sets DS, ES, and SS to match the value of the code

segment, as in, for example, ASSUME CS:CSEG, DS:CSEG, ES:CSEG,
SS:CSEG.

. The program'’s data can be placed anywhere in the program so long as it

does not interfere with the code. It is best to begin the program with the
data, since the macro assember can create errors during its first pass if ref-
erences are made to data items not yet encountered. Start the program
with a JMP instruction to jump over the data.

. Segment fix-ups such as MOV AX,SEG NEW__DATA are never used. The

offset of a label alone suffices. In particular, skip the usual code at the
start of a program that sets up the data segment by MOV AX,DSEG/
MOV DS, AX.

. The stack segment is omitted altogether in the initial code. The stack pointer

is initialized to the very top of the 64K address space used by the program
(recall that the stack grows downwards in memory). In COM programs
that must be made smaller than 64K, SS and SP may be changed. Note
that when you link the program, the linker gives an error message telling
that there is no stack segment. Ignore it.

. Terminate the program either with a RET instruction or by writing INT 20H.
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INT 20H is the standard function for terminating programs and returning
control to DOS. Even when the program ends with RET, INT 20H is actu-
ally used. This is because the first word on the stack is initialized to 0.
When the final RET instruction of the program is encountered, the @ pops
off the stack, redirecting the instruction pointer to the start of the program
segment prefix. The INT 20H function at that location is executed as the
next instruction, causing control to return to DOS. All of this means that
you should not push DS and @ onto the stack at the start of the program
(PUSH DS/MOV AX,0/PUSH AX) as required by EXE files.

Once a program has been constructed in this way, assemble and link it as
always. Then convert it to COM form by using the utility EXE2BIN that is found
on the DOS diskette. If the name of the file produced by the linker is MYPROG.
EXE, simply type in EXE2BIN MYPROG. It will create a program file named
MYPROG.BIN. At that point you need only rename the file MYPROG.COM. Or
write EXE2BIN MYPROG MYPROG.COM to make the conversion directly to a
file with a .COM extension.

Low Level

This example provides a short, complete program that reads the dip switch set-
ting of how many drives are in the machine and then reports it on the screen. It is
an example of the sort of short utility programs for which COM format is ideal.

CSEG SEGMENT

ORG 100H

ASSUME CS:CSEG, DS:CSEG, SS:CSEG ;all segments set to CSEG
;==-THE DATA:

START: JMP  SHORT BEGIN ; jump over the data
MESSAGE1 DB 'The dip switches are set for $'
MESSAGE2 DB 'diskdrive(s).$'
;===PRINT THE FIRST HALF OF THE MESSAGE:
BEGIN: MOV AH,9 ;function 9 of INT21H writes strings
MOV DX,OFFSET MESSAGE1 ;point DS:DX to the string
INT 21H ;write the string
PUSH AX ;keep the function value to use again
;—==GET THE DIP SWITCH SETTING FROM PORT A OF THE 8255 CHIP:
IN AL,61H ;get the byte in Port B
OR  AL,100000008 ;forcebit 7 on
OUT 61H,AL ;replace the byte
IN AL,60H ;get switch settings fromPort A
AND AL,110000008 ;isolate the top2bits (#drives)
MOV CL,6 ;prepare to shift AL right
SHR AL,CL smove the 2 bits to bottomof register
ADD AL,49 ;add 1 to count from1 to 4, plus
; add 48 to convert to ASCII symbol
MOV DL,AL ;put the value in DL
MOV AL,61H ;must restore PB, get the value
AND AL,011111118B ;forcebit 7 off
OUT 61H,AL sreplace the byte
;===PRINT THE NUMBER OF DRIVES:
MOV AH,2 ;use function2 of INT 21H
INT 21H ;print the number in DL
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;———PRINT THE SECOND

CSEG

POP
MOV
INT
INT
ENDS
END

HALF OF THE MESSAGE:

AX ;get back the function number
DX,OFFSET MESSAGE2 ;get ready towrite the second string
21H ;write the string

20@H ;end the program

START



2
Timers And Sound

Section 1: Set and read timers

All IBM microcomputers use the Intel 8253 (or 8254) timer chip to tally pulses
from the system clock chip. A number of cycles of the system clock are converted
into a single pulse, and chains of these pulses are counted for timing purposes, or
they can be sent to the computer’s speaker to generate sound of a particular fre-
quency. The 8253 chip has three identical, independent channels, and each can be
programmed.

The 8253 chip operates independently of the CPU. The CPU programs the chip
and then return to other matters. Thus the 8253 operates like a real-time clock—it
keeps its beat no matter what else happens in the computer. However, the longest
programmable interval is barely a twentieth of a second. Some other means is
required to time minutes and hours. It is for this reason that pulses from channel @
of the timer chip are tallied in a variable in the BIOS data area. Figure 2-1 diagrams
the process. This tally is usually referred to as the “time-of-day count.” 18.2 times
per second the output from channel @ invokes a hardware interrupt (the “timer
interrupt”) which briefly stops the CPU and increases the time-of-day count. A
count of @ signifies 12:00 midnight; when the count reaches the equivalent of 24
hours it is reset to @. Other times of the day are easily calculated by dividing the
count by 18.2 for every second. The time-of-day count is used in most timing
operations.

8253 Timer Chip 8259 Interrupt Chip
System :> Channel 0 '1'> Invokes
Clock Counts to 65535 INT 8
then Pulses

BIOS Data Area ROM BIOS

4-Byte Count Perf

at 9940:006Cc K—— {75 K

Is Incremented

Figure 2-1. Updating the BIOS time-of-day count.
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2.1.1 Program the 8253/8254 timer chip

Each of the three channels of the 8253 timer chip (8254 on the AT) consists of
three registers. Each group of three registers is accessed through a single port, num-
bered from 40H to 42H for channels @ to 2. A port leads to an eight-bit I/O register
that sends and receives data for the channel. When a channel is programmed, a
two-byte value is sent through the port, low byte first. The number is passed to a
16-bit latch register, which keeps the number, and from there a copy is placed in a
16-bit counter register. In the counter register, the number decrements by 1 each
time a pulse from the system clock is allowed into the channel. When the number
reaches zero, the channel issues an output pulse and then a new copy of the number
in the latch register is moved into the counter register and the process repeats. The
smaller the number in the counter register, the faster the beat. All three channels
are always active: the CPU does not turn them on and off. The current value of
any counter register may be read at any time without disturbing the count.

Each channel has two lines going into it, and one line coming out. The out line
conducts the pulse that results from the counting. The destination of these signals
varies by the type of IBM microcomputer:

® Channel 0 is used by the system time-of-day clock. It is set by BIOS at
startup so that it issues a pulse roughly 18.2 times a second. A four-byte
tally of these pulses is kept in memory at 8040:006C (the least significant
byte is lowest). Each pulse invokes the timer interrupt (INT 8), and it is
this interrupt that increases the tally. This is a hardware interrupt, and so
it continues to occur no matter what the CPU is doing, so long as hard-
ware interrupts are enabled (see the discussion at [1.2.2]). The out line of
channel 0 is also used for timing certain disk operations, and so if you
change it you must be sure to restore it to its original reading every time
disks are accessed.

® Channel 1 controls memory refresh on all machines but the PCjr, and it
should never be tampered with. The out line of the channel is connected to
the direct memory access chip [5.4.2], and a pulse causes the DMA chip to
refresh all of RAM. On the PCjr, channel 1 paces the conversion of incom-
ing keyboard data from serial to parallel form. The PCjr does not use a
direct memory access chip, and when it instead channels data through the
CPU, the timer interrupt is shut out. Channel 1 is used to count the inter-
vening pulses of the time-of-day clock so that the count can be updated
after disk operations are completed.

® Channel 2 is connected to the computer’s speaker, and it produces simple
square-wave signals for making sound. Programmers have more control
over channel 2 than the others. Simple sounds may be made to occur
simultaneously with other program operations, or more complex sounds
may be produced with the full attention of the CPU. Channel 2 may also
be disconnected from the speaker and used for timing operations. Finally,
the out line of channel 2 is connected to the computer’s speaker. The
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speaker will not sound, however, unless a particular setting is made on the
8255 peripheral interface chip.

The two lines going into each channel consist of a clock line that feeds the system
clock signal from the system clock chip, and a line called the gate that turns the
clock signal on and off. The gate is always open for the clock signal to channels 0
and 1. But it can be opened and closed on channel 2, and this feature allows special
sound techniques. The gate is closed by setting to 1 the lowest bit at port address
61H, which is a register on the 8255 chip; changing the bit back to @ reopens the
gate. [1.1.1] discusses this chip. Note that—like the output of channel 2—bit 1 at
61H is connected to the speaker, and it too may be used to make sound. Figure 2-2
diagrams the 8253 timer chip.

Clock
Chip
Channel ¢ o] Latch Counter }—BIOS Timer
Interrupt
Gate (Always Open)
Channel 1 > Latch == Counter }—=RAM Refresh
TGate (Always Open)
Channel 2 ={ Latch j==] Counter

Gate

8255
Peripheral Interface

Port B |7]|6]|5|4[3|2]|1|0
) Output Signal m
— -
) to Speaker

Port C|7(6(5[4|3]|2]|1|0

Figure 2-2: The 8253/8254 Timer Chip.

The timer chip can be used directly for timing activities, but this is seldom practi-
cal. The input clock rate is 1.19318 million times a second (even on the AT, where
the system clock runs faster, the timer chip receives a 1.19 MHz signal). Since the
largest number held by 16 bits is 65535, and since that number divides into the
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clock pulse rate 18.2 times, the longest possible period between pulses is scarcely a
twentieth of a second. Most timing operations instead use the BIOS time-of-day
count. An interval is timed by reading the time-of-day value and comparing it to
some earlier reference value to see how many pulses have passed. Special tech-
niques described at [2.1.7] use the time-of-day count for real-time operations.

The 8253 offers hardware designers six modes of operation for each channel.
Programmers ordinarily confine themselves to mode 3, both in channel @ for timing
or in channel 2 for either timing or sound. In this mode, once a latch register is
given a number, it immediately loads a copy into the counter register. When the
number reaches 0, the latch instantly reloads the counter, and so on. During half of
the count the out line is “on” and during half it is “off.” The result is a square wave
pattern that is equally useful for making sound and for counting.

An eight-bit command register controls how a number is loaded into a channel.
This register is located at port address 43H. The command register is given a byte
that tells which channel to program, in what mode, and whether one or both of the
bytes of the latch will be sent a number. It also shows whether the number will be
in binary or BCD (binary coded decimal) form. The bit pattern is as follows:

bits if @, binary data, else BCD

3-1 mode number, -5 (B00-101)

5-4 kind of operation:
@@ = move counter value into latch
@1 = read/write highbyte only
10 = read/write Low byte only

11 = read/write high byte, then Low byte
7-6 number of channel to program, @-2 (00-10)

In summary, here are the three basic steps for programming the 8253 chip. Once
step 3 is completed, the programmed channel immediately begins to function at the
new setting. : '

(1) Send a byte to the command register (43H) that holds the bit pattern that
selects the channel, the read/write status, the mode of operation, and the
numerical type.

(2) If channel 2, enable the clock signal by setting bit @ to 1 at port address 61H.
(When bit 1 of this register is set to 1, channel 2 drives the speaker. Set it
to @ for timing operations.)

(3) Calculate a counter from 0-65535, place it in AX, and send the low byte and
then the high byte to the channel’s I/O register (40H-42H).

The three channels of the 8253 are always in operation. For this reason, pro-
grams should restore the original settings of the 8253 registers before ending. In
particular, if sound is in progress when the program ends, the sound will continue
even after DOS takes control and loads another program. Keep this in mind when
designing a Ctrl-Break exit routine [3.2.8].

Low Level

In this example channel 0 is programmed to a different value than the setting
made by BIOS at start-up. The reason for changing the setting is so that the time-
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of-day count increments at a rate faster than 18.2 times a second. The rate is
changed to, say, 1000 times per second, for the purpose of making precise labora-
tory measurements. The latch value must be 1193 (1193180 clocks per second/
10000). To read the current value of the counter register, see the example at [2.1.8].
Prior to disk operations, the original latch value must be replaced, since channel 0
controls their timing. This value is the highest possible—65535 clock inputs be-
tween pulses from the channel—and it is made by placing @ in the latch register (the
0 immediately counts down to 65535).

;===SET UP I/O REGISTER:

COMMAND_REG EQU 43H iset address of command register
CHANNEL_0@ EQU 40H iset address of channel @
MOV AL,00110110@8B ;bit pattern for channel 2, 2-byte

; counter, mode 3, binary number
OUT COMMAND_REG,AL  ;sendbyte to command register
3===SEND COUNTER TO LATCH:

MOV  AX,1193 ;counter for 10@ pulses/sec.
OUT CHANNEL_2,AL ;send LSB
MOV AL,AH ;shift MSB, since must send from AL

OUT CHANNEL_2,AL :send MSB
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2.1.2 Set/read the time

At start-up, DOS prompts the computer user for the time-of-day. The value
entered is placed in the four bytes that hold the time-of-day count (starting at
0040:006C, with the least significant byte lowest). But first it is converted to the
form in which the time-of-day is counted, that is, the time is converted to a value
that represents the number of (roughly) 18th-seconds that have passed since mid-
night. This count is continuously updated 18.2 times per second by the timer inter-
rupt. When there is a subsequent request for the time, the current value of the
time-of-day count is converted back from its tally of 18ths of a second into the
familiar hours-minutes-seconds format. If no value is entered at start-up, the count
is set to 0, as if it were midnight. Computers equipped with a clock-calendar chip
may automatically set the time-of-day count [2.1.4].

High Level

TIMES$ sets or retrieves the time as a string in the format hh:mm:ss, with the
hours counted from @ to 23, starting from midnight. For 5:10 PM:

100 TIME$ ="17:10:00" 'set the time
110 PRINT TIMES 'get the time

Since TIME$ returns a string, the string functions MID$, LEFT$, and RIGHT$
are required to pick out any particular part of the time reading. For example, to
convert the time from 17:10:00 to 5:00, you must cut out the characters from the
string that show the hour, convert them to numeric form (using VAL), subtract 12,
then change the result back to string form:

100 T$=TIMES ‘assign the TIME$ string to T$

110 HOURS=LEFT$(T$,2) 'get the 2 Left characters of T$

120 MINUTES$=MID$(T$,4,2) 'get the 2 characters showing minutes
130 NEWHOUR=VAL (HOUR$) ‘convert HOURS to numeral

140 1F NEWHOUR>12 THEN NEWHOUR=NEWHOUR-12 ‘'subtract 12 if applicable

140 NEWHOUR$=STR$ (NEWHOUR) 'convert new value back to string form

150 NEWTIMES=NEWHOURS$+'' :""+MINUTES$ 'make string of hour, :, and minutes

Middle Level

DOS provides interrupts that read and set the time, making the required conver-
sions from the time-of-day count to hours-minutes-seconds. The time is set to an
accuracy of 100ths of a second, but since the time-of-day count is updated at only a
fifth this rate, the 100ths-second reading is really only an approximation. Function
2CH of INT 21H retrieves the time, and function 2DH sets it. In both cases, CH
holds the hour (@-23, where @ = midnight), CL holds the minutes (8-59), DH holds
the seconds (0-59), and DL holds the “hundredth-seconds” (8-99).

In addition, when function 2CH gets the time, AL holds the number of the day of
the week (@ = Sunday). The day will be correct only if the date has been set. DOS
calculates the day of the week from the date. Note that when function 2DH sets the
time, AL flags that the values entered for the time were valid (0 = valid, FF =
invalid).
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;——=TO SET THE TIME:

MOV CH,HOURS ;enter the time values

MOV CL,MINUTES ;

MOV DH,SECONDS H

MOV DL,HUNDREDTHS H

MOV  AH,2DH s function number for set time

INT 21H ;sets the time

CMP AH,OFFH ;check that time value was correct

JE  ERROR ;go toerror routine if not
;===TO RETRIEVE THE TIME:

MOV AH,2CH ;function number for get time

INT 21H ;get the time

MOV DAY_OF WEEK,AH ; take day of week from AH

Low Level

If you change the pulse rate of channel 1 of the 8253 chip for a special applica-
tion, you will need to decode the time-of-day count with your own routines. BIOS
turns the count over to @ after 1.573 million pulses, and this can be changed only
by rewriting the timer interrupt. Thus a true hundredth-seconds clock can not run
for 24 hours without some special programming. Note that the byte at 0040:0070 is
set to @ at start-up, and that it increments to 1 (but not higher) when the clock turns
over.
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2.1.3 Set/read the date

When the computer is turned on, DOS prompts the user to enter the current date
and time. The time is recorded in the BIOS data area. The date, however, is placed
in a variable in COMMAND.COM. It is formatted in three successive bytes that
hold respectively the day of the month, the number of the month, and the number
of the year, counting from 0, where @ equals 1980. Unlike the time-of-day count,
the memory location of the date varies with the DOS version and the position of
COMMAND.COM in memory. For this reason the date must always be accessed
via the ready-made utilities in BASIC or DOS rather than fetched directly.

Machines equipped with a clock-calendar chip will automatically set the time
and date with the aid of special software (usually run at start-up via an
AUTOEXEC.BAT file). See [2.1.4] for how to access a clock-calendar chip. Note
that when the BIOS time-of-day count rolls over after 24 hours, DOS adjusts the
date accordingly.

High Level

DATES sets or retrieves the date as a string in the format mm-dd-yyyy. You may
use slashes instead of dashes. The first two digits of the year may be omitted. For
Halloween of 1984:

100 DATES =""10/31/84" 'set the date
110 PRINT DATES 'show the date

...and the screendisplays: 10-31-1984

Middle Level

Functions 2AH and 2BH of DOS interrupt 21H get and set the date. To get the
date, place 2AH in AH and execute the interrupt. On return, CX contains the year
as a number from 0 to 119 that corresponds to 1980-2099 (this is to say that the
date is an offset from 1980). DH holds the number of the month, and DL holds the
day.

MOV  AH,2AH ; function number to retrieve date
INT 21H ;get the date
MOV  DAY,DL ;day in DL

MOV MONTH,DH smonth in DH
ADD CX,1980 ;add base value to the date
MOV YEAR,CX ;if CX=5, then 5 + 1980 = 1985

To set the date, place the day, month, and year in the same registers and execute
function 2BH. If the values for the date are invalid, AL returns FF; otherwise it
returns 0.

MOV DL,DAY ;place day in DL

MOV DH,MONTH ;place month in DH

MOV CX,YEAR ;place year (eg. 1985) in CX
suB CX,1980 ;make year an offset from 1980

MOV  AH,2BH ;function number to set date

INT 21H ;set the date

CMP AH,OFFH ;check if operation successful

JE  ERROR ;date out of range, go to error routine
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2.1.4 Set/read the real-time clock

A real-time clock has an independent processor that can count the time without
interference from other computer operations. It also has a battery power supply
that keeps it running when the computer is turned off. A program can both read
and set a real-time clock. Ordinarily, auxiliary software will have set the BIOS
time-of-day count and DOS date variables so that they reflect the current setting of
the real-time clock. But a program may check to see that these values are current
before it uses them, and it can set matters straight if there is a discrepancy.

The various time and date settings on the clock are made through a series of port
addresses. Many of the multifunction boards available for IBM microcomputers
have a real-time clock, but unfortunately there is no standard chip or range of port
addresses. The AT comes equipped with a real-time clock that is based on the
Motorola MC146818 chip, and it shares registers on the chip with configuration
data for the system. The registers are accessed by first sending a register number to
port address 70H and then reading the register value from 71H. The clock-related
registers are as follows:

Register Number Function
00H Seconds
01 Seconds alarm
02 Minutes
03 Minutes alarm
04 Hours
05 Hours alarm
06 Day of the week
07 Day of the month
08 Month
09 Year
0A Status register A
(1)) Status register B
oC Status register C
oD Status register D

Bits in the four status registers perform various functions, of which only the fol-
lowing are of much concern to programmers:

Register A: bit 7 1

time update in progress (wait until @ before
reading)

Register B: bit 6 1 = periodic interrupt is enabled
5 1 = alarm interrupt is enabled
4 1 = update-ended interrupt is enabled
1 1 = hours counted by 24, & = counted by 12
0 1=

daylight savings time enabled
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The AT's real-time clock can invoke hardware interrupt IRQ 8. A program may
point the vector for this interrupt to any routine it wants performed at a particular
time [1.2.3]. Use vector 4AH. Real-time operations created in this way entail less
processing overhead than those discussed at [2.1.7] (although at the cost of pro-
gram portability). The interrupt may be invoked in three ways, all of which are
disabled at start-up. The periodic interrupt occurs at a regular period. The period is
initialized to roughly one millisecond. The alarm interrupt occurs when the settings
in the three alarm-related registers match their corresponding timing registers. The
update-ended interrupt occurs after every update of the register settings on the
chip.

INT 1AH is expanded in the AT BIOS to set and read the real-time clock. Since
the readings are never more than two decimal digits, the time values are given in
binary coded decimal (BCD), where a byte is divided in half, with each digit occu-
pying four bits. This format makes it easy to convert the numbers to ASCII form.
A program needs only to shift half of a byte into the low end of a register and add
48 in order to obtain the ASCII symbol that corresponds to the number. On all
IBM machines, functions @ and 1 of INT 1AH read and set the BIOS time-of-day
count. There are six new functions to service the AT’s real-time clock:

Function 2: Read the time from the real-time clock

Onreturn: CH = hoursin BCD
CL = minutes in BCD
DH = secondsin BCD
Function 3:  Set the time on the real-time clock
Onentry: CH = hoursin BCD
CL = minutes in BCD
DH = secondsin BCD
DL = if daylight savings, else 1

Function 4: Read the date from the real-time clock
On return: CH century in BCD (19 or 20)

CL = year in BCD (offset from 1980)
DH = monthin BCD
DL = day of month in BCD
Function 5:  Set the date on the real-time clock
Onentry: CH = centuryin BCD (19 or 20)
CL = uyear in BCD (offset from 1980)
DH = month in BCD
DL = day of month in BCD
Function 6: Set the alarm on the real-time clock
Onentry: CH = hoursin BCD
CL = minutes in BCD
DH = secondsin BCD

Function 7: Reset the alarm
(no input registers)
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The alarm setting is made as an offset from the time the setting is made. The maxi-
mum period is 23:59:59. As explained above, interrupt vector 4AH must be pointed
to the alarm routine. Note that if the clock is not operating (most probably as the
result of a dead battery) then functions 2, 4, and 6 set the carry flag.
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2.1.5 Delay program operations

When program operations are delayed by empty loops, a good deal of program-
ming time can be wasted testing and retesting the loop for proper duration. Even
when the right length is found, it can not be relied upon in all future applications of
a program. The loop may vary in speed depending on the compiler used (or, in
BASIC, the speed will depend on whether the program is compiled or not). And
now that the AT and various IBM “compatibles” have appeared—bringing with
them a range of CPU speeds—even assembly language loops may give varying
durations. Thus it is always good policy to create precisely clocked program
delays. The 18.2 times/second pulse rate of the BIOS time-of-day count should be
adequate for most needs (see [2.1.1] to increase the pulse rate).

To make a delay of a set duration, a program must calculate how many pulses of
the time-of-day count equal that duration. That value is added to a reading of the
current value of the count. Then the program keeps reading the count and compar-
ing it to the anticipated value. When the two values are equal, the delay has been
achieved and the program moves on. The four bytes that hold the time-of-day
count start at 0040:006C (as always, the least significant byte is the lowest in mem-
ory). Delays under 14 seconds may be timed by reading the lowest byte alone. The
lowest two bytes can time up to an hour (one-half second short of an hour, to be
precise).

High Level

In BASIC, use the SOUND statement [2.2.2] with the value 32767 for the fre-
quency. In this case no sound is produced at all. This non-sound lasts for as many

time-of-day pulses as you specify. A five-second delay takes 91 pulses (5 x 18.2)
Thus:

100 SOUND 32767,91 'delays the program for 5 seconds

To read the time-of-day count directly:

100 DEF SEG=0 'set segment to the bottom of memory
110 LOWBYTE=PEEK(&H46C) ‘'get lowest byte
120 NEXTBYTE=PEEK(&H46D) '2nd byte
130 LOWCOUNT=NEXTBYTE*256+LOWBYTE
'value of the two Low bytes combined

Middle Level

Read the BIOS time-of-day count using function @ of INT 1AH, and add the
desired number of 18th-second pulses to that value. Then keep rereading the time-
of-day count, each time testing the current value against the desired one. When
equal, the delay ends. INT 1AH returns the two low bytes in DX (within which
most delays may be counted), and so the two high bytes returned in CX may be
disregarded, allowing you to avoid all the fuss of 32-bit operations. In this exam-
ple, the delay will be 91 pulses, equalling five seconds.
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;———GET THE BIOS COUNT AND ADD DELAY VALUE:

MOV AH,0 : function number for "'read"
INT 1AH ;get the time-of-day count
ADD DX,91 ;add 5 sec. delay to Low word
MOV BX,DX ;store "end of delay' value in BX

;———KEEP CHECKING BIOS TIME-OF-DAY VALUE:

REPEAT: INT 1AH ;get the time-of-day reading again

CMP  DX,BX ;compare reading to delay value
JNE REPEAT ;90 back to REPEAT i f not equal

;else, endof delay, goon...

The AT possesses an additional function within INT 15H that performs a mea-
sured time delay. Place 86H in AH, and the number of microseconds of delay in
CX:DX. Then execute the interrupt.
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2.1.6 Time program operations

A program times operations exactly as people do: it takes an initial reading of
the system time-of-day count and later compares it to a subsequent reading. The
reading can be taken in hours-minutes-second format, but it is messy to calculate
the difference between two such readings because the counting system is not deci-
mal. Better to read the BIOS time-of-day count directly, measure the elapsed dura-
tion in 18ths of a second, and then convert it to the hh:mm:ss form normally
required.

High Level

In BASIC, read the BIOS count directly from memory location 0040:006C.
Divide the number by 65520 to figure hours elapsed, 1892 for minutes, and 18.2 for
seconds.

100 Gosus 500
110 START=TOTAL

(the timed process moves along)

300 Gosus 5@@

310 TOTAL=TOTAL-START

320 HOURS=FIX(TOTAL/65520)

330 TOTAL=TOTAL-HOURS*65520
34@ MINUTES=FIX(TOTAL/1092)

350 TOTAL=TOTAL-MINUTES*1092
360 SECONDS=FIX(TOTAL/18.2)

370 PRINT HOURS ,MINUTES, SECONDS
380 END

500 DEF SEG=0

510 A=PEEK (&H46C)

520 B=PEEK (&H46D)

530 C=PEEK(&H46E)

540 TOTAL=A+B*256+C*65535
550 RETURN

'get the time-of-day count
'save the initial count in START

'get the final time~of-day count
'figure pulses elapsed
'calculate number of hours
'subtract hours from TOTAL
'calculate number of minutes
'subtract minutes from TOTAL
'calculate number of seconds
'the result

'subroutine to read time-of-day
'get lowest byte

'2nd lowest

'3rd lowest

'tally the count in TOTAL

'all done

The TIMER function in BASIC returns the number of seconds that have passed
since the time-of-day count was last set to 0. Ordinarily this will be the number of
seconds since the computer was last booted up. If the time was correctly set at sys-
tem start-up, TIMER returns the number of seconds that have passed since mid-
night. Simply write N = TIMER.

Middle Level

INT 1AH has two functions to set (AH=1) and retrieve (AH = 0) the time-of-
day count. To read the count, simply execute the interrupt with @ in AH. On return
CX:DX holds the count, with the most significant word in CX. AL contains 0 if the
count has not passed the 24-hour value since it was last set. To set the count, place
the two words in the same registers, and set AH to 1. This example measures an
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elapsed time under one hour. Only the bottom two bytes of the counter need be
consulted. In this case, be sure to allow for a “turnover” condition where the initial
reading is higher than the second reading.

i=—=IN THE DATA SEGMENT:

OLDCOUNT bW 0 sholds the initial time-of-day count
+——=TAKE THE INITIAL TIME-OF-DAY READING:
MOV AH,0 ;set function number
INT 1AH ;get the count (low word in DX)
MOV OLDCOUNT,DX ;save the initial count

(the timed process moves along)

;—=——LATER, TO CALCULATE TIME ELAPSED:

MOV AH,0 ;set function number

INT 1AH ;get the count

MOV BX,OLDCOUNT ;jretrieve the first reading

CMP BX,DX ;check for "turn over"”

JG  ADJUST ; jump to adjust routine if ""turn over"
SUB DX,BX ;else, finddifference (=elapsed pulses)

JMP  SHORT FIGURE_TIME ; jmp over adjustment, to time calculation
;———ADJUST FOR TURN OVER:

ADJUST: MOV CX,OQFFFFH splace largest number (65535) in CX
suB CX,BX ;subtract first reading
ADD CX,DX ;add second reading
MOV DX,CX ;as above, leave elapsed time in DX
;==-BEGIN TIME CALCULATION ROUTINE:
FIGURE_TIME: ;nowdivide DX by 18.2 for seconds, etc.
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2.1.7 Control real-time operations

In real-time operations, a program issues instructions at specified points in time,
rather than issuing them as soon as possible. This technique is usually associated
with robotics, but it has many other uses. There is a choice of approaches to real-
time operations. In programs that have little or nothing to do between the real-time
instructions, the program needs merely to idle along, doing nothing but checking
the BIOS time-of-day count to sense when it is time to become active. This tech-
nique is little more than a series of delay loops, as described at [2.1.5].

The second approach is more difficult. It is used when a program is constantly
busy, but needs to interrupt its operations at specific times in order to carry out
some task. An extension is made to the timer interrupt, which is executed 18.2
times per second. Whenever the interrupt occurs, the extension checks the new
value of the time-of-day count, and if it matches the count value at which a real-
time activity is to begin, the routine initiates the activity. Figure 2-3 illustrates this
process. The simple examples given here show how to create within a program a
sort of alarm clock that can be set by the user to beep when “time’s up.” (A more
complicated low-level example found at [2.2.6] plays music while the CPU is com-
pletely occupied with other matters.)

High Level

BASIC provides primitive control over real-time operations by the ON
TIMER(n) GOSUB statement. When a program comes upon this statement, it
begins to count to the number of seconds given by n. Meanwhile, program opera-
tions continue. When n seconds have passed, the program jumps to the subroutine
beginning at the specified line number, performs the subroutine, and then returns
to where it left off. The counting then starts anew from @, and the subroutine will
be called again after n seconds more.

ON TIMER will not function until it is enabled by a TIMER ON statement. It
may be disabled by TIMER OFF. In cases where the timing should continue but
transfer to the subroutine must be delayed, use TIMER STOP. In this case it is
recorded that n seconds have passed, and the program jumps to the subroutine as
soon as another TIMER ON statement is encountered.

Because it repeats, ON TIMER is particularly useful for showing a clock on the
screen:

100 ON TIMER(60) GOSUB 500 'change the clock every 6@ secs
110 TIMER ON 'enable the timer

50 LOCATE 1,35:PRINT"TIME: '";LEFT$(TIME$,5) 'locate cursor, print the time
510 RETURN

Low Level

BIOS contains a special “dummy” interrupt (INT 1CH) which does nothing until
you provide a routine for it. At start-up, the vector for the interrupt points to an
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Vector Your
Table ) Real-Time
_ Routine
—1— IRET
INT ICH
(Extension
of 8H)
BIOS
Time-of-Day
\ Routine
\_ INT ICH
\“——+— MOV AL, 20H
INT 8H — — OUT 20H, AL
(Time-of-Day 8259 IRET
Interrupt) Interrupt |
Controller END Time-of-Day Interrupt
Tim8ezr58hip ——— BEGIN Time-of-Day Interrupt

Figure 2-3. Extending the timer interrupt.

IRET (interrupt return) instruction; when the interrupt is called, it simply returns.
What is special about INT 1CH is that it is invoked by the BIOS timer interrupt
after that interrupt has updated the time-of-day count. That is to say, it is a hard-
ware interrupt that automatically occurs 18.2 times per second. You may change
the vector for this interrupt to point to a procedure in your program. Then that
procedure will be called 18.2 times a second. See Section [1.2.3] about how to write
and install your own interrupts.

The procedure you provide should first read the freshly updated time-of-day
count, compare it to the count that corresponds to the awaited time, and do what-
ever is required when the right time arrives at last. Of course, when it is not yet
time to perform the real-time operation, the routine merely returns with no further
ado. In this way the CPU is kept free for other activity.
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In the example below, a routine (unshown) requests from the program user a
value up to 60 for the number of minutes that should pass before an alarm goes off.
The number, which is stored in MINUTES, is multiplied by 1092, giving the equiv-
alent in time-of-day pulses. A one-hour period fits into 16 bits—longer periods
require more complicated 32-bit operations. The number of pulses is added to the
low word of the current time-of-day reading, and then it is saved as ALARM-
COUNT.

Next, the vector for interrupt 1CH is changed to point to a procedure called
ALARM. Remember that once the vector is changed, ALARM will immediately
begin to be invoked every 18th of a second. When it is called, it gets the current
time-of-day reading via interrupt 1AH, and then it retrieves ALARMCOUNT for
comparison. If the two values match, the routine calls a procedure called “BEEP”
(also unshown—see [2.2.4]) that beeps the speaker. Otherwise, the routine simply
returns. The usual return code for hardware interrupts (MOV AH,20H/OUT
20H,AL) is not required, since it is handled by the timer interrupt. Be very careful
about saving changed registers.

3===IN THE DATA SEGMENT:
MINUTES ow 0 ;holds number of minutes until alarm
ALARMCOUNT oW @ ;holds time-of-day for alarmsetting

;——=SET ALARMCOUNT TO THE AWAITED BIOS TIME-OF-DAY VALUE:
CALL REQUEST MINUTES ;get fromuser the minutes until alarm

MOV  AX,MINUTES ;move number of minutes to AX
MOV BX,1092 ;number of time-of-day pulses/minute
MUL BX smultiply—result now in AX

sGET CURRENT TIME-OF-DAY VALUE:
MOV AH,0 ; function number for time-of-day read
INT 1AH ;get count, low word in DX

;ADD THE TWO VALUES:
ADD AX,DX ;add alarm time to current time-of-day
MOV  ALARMCOUNT, AX ;set time-of-day value for the alarm

+———CHANGE THE DUMMY INTERRUPT VECTOR:

PUSH DS ;save the data segment
MOV  AX,SEG ALARM ;get segment of the alarm routine
MOV DS,AX ;place segment in DS
MOV DX,OFFSET ALARM ;get offset of the alarm routine
MOV AL,1CH ;number of interrupt vector to change
MOV AH,25H ;D0S function that changes vectors
INT 21H ;change the vector
POP DS ;restore the data segment

———PROGRAM CONTINUES ALONG. ..NEW INTERRUPT OCCURS 18.2 TIMES/SEC

;=——AT END OF PROGRAM REPLACE FORMER INTERRUPT VECTOR:

MOV DX,@FF53H ;original offset for INT 1CH
MOV AX,@FQQ0H ;original segment
MOV DS,AX ;place segment in DS
MOV AL,1CH ;number of interrupt vector to change
MOV AH,25H ;D0S function that changes vectors
INT 21H ;restore theoriginal vector

;etc...

;=——PROCEDURE TO SOUND ALARM:
ALARM PROC FAR ;create a far procedure
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PUSH AX ;save changed registers
PUSH CX ;
PUSH DX H
;READ THE TIME-OF-DAY COUNT:
MOV AH,Q ; function number for time-of-day read
INT 1AH ;get count, low word in DX
+GET THE COUNT CORRESPONDING TO ALARM TIME:
MOV CX,ALARMCOUNT ;get variable that signals "time's up"
CMP DX,CX ;does the current reading match?
JNE NOT_YET ;if not, Leave the routine
s SOUND ALARM IF THE TWO COUNTS MATCH:
CALL BEEP ;beep routine is not shown
;OTHERWISE, RETURN FROM INTERRUPT:
NOT_YET: POP DX ;restore changed registers
POP CX ;
POP AX ;
IRET sreturn from interrupt
ALARM ENDP ;end of the procedure
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2.1.8 Generate random numbers by the timer chip

Considerable mathematical sophistication is needed to generate a series of ran-
dom numbers. But sometimes programs require only a single number at a particu-
lar instant. In this case the random number can be derived simply by reading the
current value from a channel of the timer chip. BASIC uses such a value as the seed
from which to calculate a random series. Of course, you can not derive a series of
random numbers by reading timer settings successively, since the sampling rate will
itself be nonrandom.

High Level

BASIC contains a random number generator that can be reseeded using the
TIMER statement, so that a different series of random numbers is created each time
a program is run. Simply write RANDOMIZE TIMER, and then use the RND func-
tion to call a random number.

100 RANDOMIZE TIMER 'automatically reseed the generator
110 PRINT RND,RND,RND 'print three random numbers

...producing: .7122483 .4695052. 9132487

Low Level

Since the counter register of a timer channel is reloaded again and again with a
given number (counting down to @ in the interim), select a counter that equals the
desired range of random numbers. Thus, for a random hour of the day, use 23 as
the counter.

It is best to use mode 3 in channel 2 (port 42H) of the timer chip [2.1.1]. First set
the counter in the desired range (the example below uses 10000, giving a random
value from 0000 to 9999). Then, to sample the channel for a random number,
instruct the timer chip command register at port 43H to “latch” the current value of
the counter register by setting bits 4 and 5 to zero. This transfer to the latch register
does not interfere with the ongoing counting. Next, set both bits 4 and 5 of the
command register to 1 so that the CPU can read from the latch register. Then two
IN instructions will bring first the low byte and then the high byte into the AL reg-
ister. Finally, reset the latch register to its original value so that the counting con-
tinues across the desired range.

;———SET THE PORT ADDRESSES:

COMMAND REG EQU 43H ;set command register address
CHANNEL 2 EQU 42H ;set channel 2 address
CALL SET_COUNT ;set the timer range

; ———THE PROGRAM M(')VES ALONG.....AND THEN REQUESTS A RANDOM NUMBER:

éALL GET_NUMBER ;get a random number

64



Generate random numbers by the timer chip 2.1.8

;-——-START CHANNEL 2 COUNTING:

SET_COUNT PROC
MOV AL,101101108
OUT COMMAND REG,AL
MOV  AX, 10000
OUT CHANNEL_2,AL
MOV AL,AH
OUT CHANNEL_2,AL
RET

SET_COUNT ENDP

;-——GET A RANDOM NUMBER:

READ NUMBER PROC

;channel 2, both bytes, mode 2, binary
;send instruction byte to command reg
;counter value

;send Llow byte of counter

;move high byte to al

;send high byte of counter

;==-MOVE THE COUNTER VALUE INTO THE LATCH REGISTER:

MOV AL,100001108
OUT COMMAND_REG,AL
7 ———READ THE VALUE OF THE COUNTER:
MOV AL,101101108
OUT COMMAND REG,AL
IN  AL,CHANNEL 2
MOV AH,AL
IN  AL,CHANNEL_2
CALL SET_COUNT
SWAP AH,AL
RET
READ_NUMBER ENDP

;instructs command register to''latch"
;send the instruction

;request for "'read/write"

;send the request

;get Low byte

;temporarily keep low byte in AH
;get high byte

srestore value in latch register
;reverse high and low bytes

;and now the random number is in AX

65



2.2.0 Create Sound

Section 2: Create Sound

BASIC is equipped with elaborate sound facilities, but the operating system
makes possible only a single “beep.” To make any other sound you must directly
program the 8253 timer chip. Channel 2 of the chip is connected to the computer’s
speaker. When the channel is programmed in mode 3, it produces a square wave of
given frequency. Because the speaker is a simple one, it rounds the edges of the
square wave, reducing it to a more pleasant sounding sine wave. Unfortunately,
the 8253 chip can not alter the amplitude of the wave, so there is no control over
the volume of sound from this source.

The speaker receives not one, but two, inputs to make sound. As Figure 2-2 at
[2.1.1] shows, in addition to the timer chip, the 8255 peripheral interface [1.1.1]
also sends a signal. The pulse rate at either chip can be changed, and combining the
actions of the two chips can produce special sound effects.

The PCjr alone possesses a dedicated sound generator chip. It can deliver three
simultaneous tones, plus noise for sound effects. The volume of each channel may
be set independently. Another unique attribute of the PCjr is that it can manage
sound from an external source (such as a cassette player).
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2.2.1 Program the 76496 sound generator (PCjr only)

The PCjr is blessed with a four-channel sound generator in which three channels
produce tones and the fourth generates “noise” for sound effects. The four channels
are independently programmable—with each having its own volume control—and
their outputs are combined into a single audio signal. The chip is the TI SN76496N
Complex Sound Generator. It has eight registers—two for each channel—all of
which are addressed through the single port address COH. This port address is
write-only; if an IN (or INP) instruction is used, the entire system will freeze up.

The PCjr has a plug for external audio output. At system start-up the audio
channel receives output from the 8253 timer chip. But the channel may be turned
over to the sound generator chip, or to either of two external audio inputs. This is
done by changing bits 5 and 6 of Port B on the 8255 Peripheral Interface chip (port
address 61H—see [1.1.1]). The bit patterns are as follows:

Bits 6 & 5 Function Selected

00 8253 timer chip

01 Cassette audio input

10 170 channel audio input
11 76496 sound generator

To select the audio source, the PCjr BIOS adds function 80H to INT 1AH. Place in
AL a code number from 0 to 3, corresponding to the table above, and call the func-
tion. There are no return registers. The 76496 sound generator must use this audio
channel, since it cannot drive the PCjr's internal speaker.

Generally speaking, when a byte of data is sent to the sound generator, bits 4-6
hold an identification code telling which of the eight registers the data is directed
to. The codes are:

Bits 6-4 Register addressed
000 Tone 1 frequency
001 Tone 1 volume
010 Tone 2 frequency
011 Tone 2 volume
100 Tone 3 frequency
101 Tone 3 volume
110 Noise control

111 Noise volume

In the case of the tone frequency registers, two bytes are required. The bit pat-
terns are:
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byte 1: bits 0-3 low 4 bits of frequency data
4-6 register identification code
7 always set to1

byte 2: bits B8-5 high 6 bits of frequency data
6 unused
7 always set to

The frequency of a tone is set by sending to the register a ten-bit value that when
divided into 111,843 results in the number of cycles per second desired. Thus, fre-
quencies from 110 CPS upward are possible (111843/2"10). Once the register is ini-
tialized (and Port B on the 8255 is properly set), the sound begins immediately and
continues until it is shut off. It is not necessary to send another two bytes to change
the frequency. If only byte 2 is sent (the high six bits of frequency data), it auto-
matically replaces the corresponding data in the channel that was last addressed.
This feature enables tones to smoothly warble and slide.

The noise generator takes only one byte to program. Its bit pattern is:

bits @-1 noisedensity

noisequality
3 unused

4-6 register identification code
7 always set to1

The noise quality (feed back configuration) is set for white noise (a constant hiss)
when bit 2 is 1 and for periodic noise (waves of sound) when bit 2 is @. The noise
density (shift rate) increases with settings for bits -1 from 00B to 10B; when set to
11B, the sound varies with the output of tone channel 3.

The volume of each of the four channels is changed by attenuating the basic sig-
nal. It is set using only one byte of data. The bit pattern is:

bits @-3 attenuationdata

4-6 register identification code
7 alwayssetto1

When all four bits of data are @, the sound is at its maximum volume. When all are
1, the sound is shut off entirely. Any combination of bits can be used to set inter-
mediate volume levels. Bit @ attenuates the sound by 2 dB (decibels), bit 1 by 4 dB,
bit 2 by 8 dB, and bit 3 by 16 dB. Maximum attenuation is 28 dB.
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2.2.2 Make a tone

This subsection explains how to make sound while the computer does nothing
else; [2.2.3] shows how it is done while other activity is going on. Oddly, for
assembly language programmers the latter is simpler. It entails programming the
8253 timer chip, which operates independently of the CPU. In the method shown
here, the CPU controls the speaker directly, and so the software must do the work
of the timer chip hardware. Although more difficult, this technique allows much
more control over the speaker, and most special sound effects [2.2.8] rely on it.

High Level

The BASIC SOUND statement plays a tone over a wide range of frequencies and
durations. The frequency is given in cycles per second (37-32767), and the duration
is counted in pulses of the BIOS time-of-day reading (0-65535), where there are
18.2 such pulses per second. SOUND 440,91 plays the tuning note A for five sec-
onds (5 x 18.2). The frequencies of the octave starting at middle C are:

Middle C 523.3
D 587.3
E 659.3
F 698.5
G 784.0
A 880.0
B

987.7

Frequencies an octave higher are roughly twice these values, and two octaves
higher they are twice as great again. Conversely, frequencies an octave lower are
about half of these values (a well-tuned piano does not precisely follow the arith-
metic intervals).

By virtue of its sound generator chip [2.2.1], the PCjr can use the SOUND state-
ment for three independent channels of sound, and it can control the volume of
each. The format is SOUND frequency, duration, volume, channel. The volume is
from 0 to 15, defaulting to 8. The channel number is from @ to 2, defaulting to 0.
Because the PCjr can use the multivoice and volume control features only over an
external speaker, that speaker must first be enabled. Do this by writing SOUND
ON. SOUND OFF restores control to the internal beeper. To play a D minor chord
(D-F-A) at low volume, write:

100 SOUND ON ;enable multi-channel sound
110 SOUND 587,50,3,0 ;playD
120 SOUND 699,50,3,1 splay F
130 SOUND 88@,50,3,2 splay A
Low Level

Producing sound from the 8255 peripheral interface adapter entails nothing more
than turning on and off at the desired frequency the bit in Port B that is hooked up
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to the speaker (bit 1). Port B is located at port address 61H (although the AT does
not have an 8255 peripheral interface as such, it uses the same port address and bit
assignment). If a program changes the bit back and forth as rapidly as possible, the
frequency produced is far too high to be useful. Thus delay loops must be inserted
between the on-off actions. Remember that bit @ of Port B controls the gate to
channel 2 of the timer chip, which in turn is connected to the speaker. So this bit
should be turned off, disconnecting the timer channel. Figure 2-4 shows how this
method sets the sound frequency.

On—
SIGNAL
off— 4 A A A A Ar"
c = c = c =
300 Q[ Wait* O Wait* 2/ Wait * Q Wait * 2 wait * Q
Cycles 5\ Loop 4 5\ Loop 4 5\ Loop 4 5\ Loop 4 5\ Loop 45
- 1— = |1 - +1
Duration Count: Count ................. Count ......cooeiiiiiin Count

Now Shorten Wait Loops
to Increase Frequency

= (0000

Figure 2-4. Producing sound by the 8255 chip.

In the following example, there are two variables. The one labeled “FRE-
QUENCY" is used as the counter in the delay loops between the on-off actions. The
smaller the number, the quicker the alternation, and the higher the frequency. The
variable “NUMBER__CYCLES”, on the other hand, sets the duration of the tone. It
tells how many times the whole on-off process should be cycled through. The
larger the number, the longer the tone lasts.

Note that hardware interrupts are cleared (deactivated) during this routine. The
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reason is that the timer interrupt occurs with such frequency and regularity (18.2
times per second) that it audibly modulates the tone. Be cautioned that whenever
the interrupts are deactivated, the BIOS time-of-day count falls behind. When a
time-of-day reading is subsequently made, it will be thrown off proportionately
unless adjustments are made.

NUMBER _CYCLES EQU 1000
FREQUENCY EQU 300

PORT_B EQU 61H

CcLI ;disable interrupts

MOV DX,NUMBER _CYCLES ;DX counts the length of the tone

IN AL,PORT_B ;get Port B

AND AL,111111108 ;disconnect speaker from timer chip
NEXT_CYCLE: OR AL,000000108 ;turn on speaker

OUT PORT_B,AL isend the command to Port_B

MOV CX,FREQUENCY ;move the delay for 1/2 cycle to CX
FIRST_HALF:  LOOP FIRST_HALF imake delay while speaker is on

AND AL,111111018 ;turn off speaker

OUT PORT_B,AL isend the command to Port_B

MOV  CX,FREQUENCY imove the delay for 2nd half of cycle
SECOND_HALF: LOOP SECOND_HALF imake delay while speaker is off

DEC DX isubtract 1 from the number of cycles

JNZ  NEXT_CYCLE ;if @, thenduration is exhausted

STI ;reenable interrupts
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2.2.3 Make a tone simultaneous to other operations

BASIC programmers will find no great distinction made between the techniques
for simultaneous and non-simultaneous sound production. But assembly program-
mers resort to entirely different techniques. Because the 8253 timer chip operates
independently of the 8088 CPU, it is trivial to make sounds that continue while
other operations are going on. You need merely to program channel 2 of the chip to
begin producing a particular frequency, and then later you must reprogram the
chip to stop the sound.

High Level

The SOUND statement in BASIC can not make simultaneous sound, but the
PLAY statement can if it is especially instructed to do so. PLAY is followed by a
string that tells what notes (and rests) are to be played, their durations, and other
characteristics. The details of PLAY strings are discussed at [2.2.5]. When the string
contains the letters MB (“music background”), the string is placed in a special
buffer and it is performed while other program operations proceed. Conversely,
MF (“music foreground”) stops all other program operations until the string is fin-
ished. Here a single tone A is played in the background.

100 PLAY ""MB A" . 'plays A...
110 ... } '...while doing this

Note that when in MB mode, the statement X = PLAY(0) returns the numbers of
notes (up to 32) that remain to be played. When in multichannel mode on the PCir,
this statement returns the number of notes in the buffer of the particular channel
(@-2) named within the parentheses.

Low Level

Simply send a counter to channel 2, as explained at [2.1.1]. The chip must first
be enabled via Port B of the 8255 peripheral interface (at 61H). Calculate the
counter for the latch by dividing 1.19 million by the number of cycles per second
desired. The sound will continue until the gate for channel 2 is shut off. So you
must reset bit 1 of Port B to 0, or else the sound will continue indefinitely and can
be stopped only by rebooting the computer. To precisely time the duration of the
tone, use the BIOS time-of-day count, as discussed at [2.1.6]. In this example, the
pitch is set to 440 cycles per second. A delay is provided by waiting for a random
keystroke.

;———ENABLE CHANNEL 2 BY SETTING PORT B OF THE 8255 CHIP:

PORT_B EQU 61H ;set address of PB on the 8255 chip
IN AL,PORT_B ;get Port B
OR AL,3 ;turnon 2 low bits (3=000000118)
OUT PORT_B,AL ;send changed byte to Port B
;-——SET UP I/O REGISTER:
COMMAND_REG EQU 43H ;set address of command register
CHANNEL_2 EQU 42H ;set address of channel 2
MOV AL,101101108 ;bit pattern for channel 2, 2 bytes,
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OUT COMMAND_REG,AL

i ———SEND COUNTER TO LATCH:
MOV  AX,2705
OUT CHANNEL_2,AL
MOV AL,AH
OUT CHANNEL 2,AL
;———DELAY BY WAITING FOR KEYSTROKE:
MOV  AH,1
INT 21H
i———TURN OFF THE SOUND:
IN  AL,PORT_ B
AND AL,111111008
OUT PORT_B,AL

;mode 3, binary number
;send byte to command register

;the counter: 1190000/440

;send LSB ’

;shift MSB, since must send from AL
;send MSB

; function number of INT 21H
;call interrupt

;get the byte in Port B

;force the two lowbits to @
;send changed byte to Port B
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2.2.4 Beep the speaker

Some programs require a variety of warning “beeps.” They are easy to create in
BASIC, but the operating system provides no “beep” function as such, and it only
indirectly allows access to the beeping sound you hear at system start-up. For alter-
nate tones an entire sound-production routine must be programmed at low level.
Use a little imagination to tailor the beep to its message. To augur impending
doom, create a siren out of sliding tones [2.2.7], or, if the printer is on line, alter-
nate between the computer speaker and printer speaker (output ASCII 7 on the
printer data line).

High Level

In BASIC, simply write “BEEP”. Here, a likely error is met with a beep and a
query:

100 INPUT"Enter your age'',AGE 'get age
110 IF AGE>100 THEN BEEP:PRINT''Are you really over 1007?" ‘error?
‘etc....

For beeps of another frequency or duration, use the SOUND statement. The
form is SOUND pitch,duration, where the pitch is given in cycles per second (3000
is mid-range) and the duration is given in intervals of (roughly) eighteenths of a
second. SOUND 3000,18 makes a mid-range sound for about one second. In this
example the speaker rapidly alternates between a high and low sound, scaring the
living daylights out of anyone nearby.

100 FOR N=1 TO 200 'set the number of alternations
11@ SOUND 500,1 'Llow sound for 1/18th of a sec
120 SOUND 5000,1 'high sound for 1/18th of a sec
130 NEXT 'repeat

Middle Level

The operating system does not offer a function specially made for sound. But
you can elicit the familiar “beep” sound simply by “writing” ASCII character 7 “to
the standard device” using one of the DOS or BIOS functions—that is, send it to
the video monitor. ASCII 7 is interpreted as the “bell” control code, and its symbol
is not placed on the screen. Function 2 of DOS interrupt 21H is easiest:

MOV AH,2 ;function to write character on screen
MOV DL,7 ;send ASCII 7
INT 21H ;the speaker beeps

Note that BIOS function AH of INT 10H does not cause a beep when it handles
ASCII 7; it displays the character instead.

Low Level

For a simple “beep,” the method based on the 8255 peripheral interface chip
[1.1.1] is the most concise. The example here roughly replicates the BIOS beep tone
heard when the computer is switched on. ;
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; ———BEEP THE SPEAKER:

NEXTCYCLE:

CYCLEUP:

CYCLEDOWN:

MOV
IN
AND
OR
ouT
MoV
Loop
AND
out
Loop
DEC
JNZ

DX, 800
AL,61H
AL,Q@FEH
AL,2
61H,AL
cx,150
CYCLEUP
AL,@FDH
61H,AL
CYCLEDOWN
DX
NEXTCYCLE

scounts the number of cycles
;read Port B on the 8255 chip
sturn off the 8253 timer bit
;turnon the speaker bit

;send the byte back to port B
;set duration of 1st half of wave
;delay while signal is high
;turn off the speaker bit

;send the byte to port B

;delay while signal is Low

;dec 1 from the number of cycles
;do another cycle if DX not @
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2.2.5 Make a string of tones

This subsection shows how to make a timed string of sounds while the computer
does nothing else; the next section shows how sound strings are performed while
the computer is busy with other operations. When the sound is non-simultaneous,
the string may be either a melody or a display of sound effects; when the sound is
simultaneous, however, sound effects are not possible.

Sound strings are an advanced feature offered by BASIC. Building the strings
from scratch in assembly language requires a good deal of work. Either of the two
sound production methods [2.2.2 & 2.2.3] may be used. For both, it is only a mat-
ter of starting one tone, timing it, then starting the next, and so on. Every sound
string is formed from two data strings, one that holds the frequencies of the succes-
sive tones, and another that holds the duration for each (providing different length
tones are required). The durations are measured using the BIOS time-of-day count
[2.1.6].

High Level

The PLAY statement is one of BASIC’s most advanced features. The statement is
comprised of a string of notes that is interspersed with information about how the
notes are to be played. The notes are written as the letters A - G, and signs for
sharps and flats (“accidentals”) follow. Sharps are shown by # or +, and flats by
-. PLAY“CC#D"” and PLAY“CD-D” are equivalent (but do not use accidentals to
show non-black key notes). A second way of naming notes is to calculate a code
number from @ to 84, where @ equals a rest, and 1 through 84 correspond to the 84
possible notes in the seven octaves, starting from the bottom. Precede the number
with the letter N: PLAY“N3N72N44".

A seven-octave range is allowed, each reaching from C to B. The octaves are
numbered from 0 to 6, and middle C starts octave 3. The current octave may be
changed at any point in the string by inserting O (the letter “O”, not zero) followed
by the octave number. All notes that follow are played in that octave until another
octave setting is made. When none is initially set, octave 4 is used. PLAY
“03C04CO5CO6C" plays progressively higher Cs. Another way to change the
octave is to place the symbols > or < in the string; these respectively switch a
tune up or down one octave. PLAY”O3C>C>C>C" also plays progressively
higher Cs.

Notes may be given different lengths by inserting a code number preceded by the
letter L. All notes that follow are given that length until another length code
appears. The code is a number from 1 to 64, where 1 is a whole note and 64 is a
64th note. Write L4 to make quarter notes. The tempo at which the notes are
played is set by a tempo code, which is the letter T followed by a number from 32
to 255, giving the number of quarter notes per minute. When left unspecified, the
note length defaults to L4, and 120 is used for the tempo. To change the length of
only a single note and not all that follow, place the value of the length after the
note, and without the letter L. PLAY “L4CDE16FG” plays E as a sixteenth note and
all others as quarter notes.
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Rests are counted in the same way as note lengths are counted. Place a number
from 1 to 64 after the letter P (for “pause”). P1 gives a whole note pause, and Pé4
gives a 64th note pause. Placing a period after a note has the same effect as it does
in ordinary music notation: the length of the note is extended by half. A second
period extends the length by half as much again.

By default, notes are played for 7/8ths of their specified duration. To play them
for their full duration (legato), put ML in the string. To play them at 3/4ths dura-
tion (staccato), put MS in the string. And to return the texture to normal, write
MN.

Normally, all other program activity stops until the string has been completed.
Use MB to cause the string to be played in the background while statements that
follow the PLAY statement are executed. To restore the normal situation, write
MF.

Finally, the PLAY statement allows substrings to be played from within a larger
string. This means that a part of a string can be set up as an ordinary string vari-
able, and then that variable can be called from within the string that forms the
PLAY statement. For example, if S$=“EEEEE”, then in the statement
PLAY”CDXS$;FG” the note E is repeated five times. Note that the variable name is
preceded by the letter X, and it is followed by a semicolon. (For compiled programs
another method, using VARPTRS, is required—see the BASIC manual for details.)

This example plays the familiar grandfather clock chimes. The string first sets the
melody to play in legato, then sets the tempo and starting octave, and finally lays
out the four notes, a pause, and then the same four notes in reverse. The spaces
between the codes are entirely for the convenience of the programmer—BASIC
ignores them.

100 PLAY "ML T4@ 03 ECD<G P32 G>DEC"

Because of its special sound chip, the PCjr adds two features to the PLAY state-
ment. First, it accepts a V parameter, which sets the volume. The expression V5
sets (or changes) the volume to level 5. The volume settings range from 0 to 15,
with 8 as the default. @ shuts off sound completely. Second, three strings of sound
can be made to sound simultaneously using the PLAY statement. Place all three
strings on the same line, separating them with commas. To use these special fea-
tures, you must first enable the external speaker by writing SOUND ON.

10@ SOUND ON
110 PLAY ".......... BRI Mt "

Low Level

This example uses the 8253 timer chip to produce sound. It does no more than
play a scale of eight notes, but with a little modification it could be made quite ver-
satile. There are three data strings. The first sets the duration of each note as a mul-
tiple of an arbitrary delay period (changing the arbitrary period changes the
tempo). The second string holds frequencies for each of the eight notes; the values
are those that when placed in the latch register of channel 2 of the 8253 chip result
in the desired tones. The third string holds the melody in the form of code numbers
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from 1 to 8 that correspond to the eight frequencies. This string terminates with FF
to flag its end. The routine does nothing more than read each note of the melody,
look up the corresponding frequency, and place it in channel 2. Then the duration
assigned to that note is fed into a delay loop that uses the time-of-day count, and
when the delay is finished, the next note is processed. Figure 2-5 diagrams the
routine.

1 2 3 4 5 6 7 8

Frequency String 1355
Get Frequenc;j L Place in 8253
Fetch Next N ;
etch Nex °tew (at that Offset 8253 Chip | Timer
Melody String 111|5]5|6|6|5]4]4]|3|3

Get Corresponding Number
of Beats in the Note

BIOS

T
Fne-of—Day Count |Area \

Keep Reading

Beat String al2l4|2f1|1]|1]1]|8]|4]|4 Count until
it Equals
Go to Next Note the Sum

Figure 2-5. Playing a string of notes.

;===IN THE DATA SEGMENT:
BEAT o8 10,9,8,7,6,5,4,3,2 ;duration of each note
FREQUENCY DW  2280,2031,1809,1709 ;table of frequencies
DW  1521,1355,1207,1139

MELODY o8 1,2,3,4,5,6,7,8,0FFH ; frequency code of each note
+===INITIALIZATION:
PORT_B EQU 61H
COMMAND REG  EQU 43H
LATCH2 EQU 42H
IN AL,PORT_B ;get current status of Port B
OR AL, 00070118 ;enable the speaker and timer channel 2
ouT PORT_B AL ;replace the byte
MOV SI,0 ;initialize ptr tomelody/beat strings
MOV AL,@B6H ;initialize channel 2 for mode 3
OUT COMMAND_ REG,AL ;send byte to command register
;--—LOOK UP A NOTE, GET ITS FREQUENCY PLACE IN CHANNEL 2:
NEXT_NOTE: LEA BX,MELODY ;get offset of melody string
MoV AL, [BX1[SI] ;get code for nth note of the string
CMP AL,@FFH ;is it FF? (end of string marker)
JE NO_MORE ;if so, jump to end of routine
CBW ;convert AL to word-length operand
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;GET THE FREQUENCY:

MOV BX,OFFSET FREQUENCY ;get offset of the frequency table

DEC AX

SHL AX,1

MOV DI,AX

MOV DX, [BX1[DI]

; START THE NOTE PLAYING:

MOV AL,DL

OUT LATCH2,AL

MOV AL,DH

OUT LATCH2,AL
;---CREATE DELAY LOOP:

MOV AH,0

INT 1AH

MOV BX,OFFSET BEAT

MOV CL,[BX1[SI]

MOV CH,0

MOV  BX,DX

ADD  BX,CX
STILL_SOUND:  INT 1AH

CMP DX, BX

JNE STILL_SOUND

INC SI

JMP  NEXT_NOTE
;---FINISH UP:
NO_MORE: IN  AL,PORT B

AND AL,@BFCH

oUT 61H,AL

;AX =1 so that counting starts from
;double AX, since word-Llength table
;mov to DI for addressing

;get the frequency from the table

;prepare to send Low byte of frequency
;send to latch register (via I/0 reg)
;prepare high byte

;send high byte

; function to get BIOS time-of-day count
;get the count

;9et offset of beat string

;get beat value for note number SI
;clear high half of CX to use as word
;get Low word of BIOS count from DX
;add beat count to current BIOS count
;get the count

;cmp count with end-of-note count
;i1f not equal, continue sound

;else, point to next note

;g0 get the next note

iget the byte in Port_B

sturn off the speaker bits
ireplace the byte inPort_B
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2.2.6 Make a string of tones simultaneous to other
operations

Although BASIC makes it easy, simultaneous music is a tricky bit of real-time
programming. Only the 8253-based sound production method [2.2.3] may be used,
since the 8255-based method [2.2.2] keeps the CPU busy. Accordingly, only strings
of pure musical tones—and no sound effects—can be played simultaneously. The
basic technique of real-time programming is shown at [2.1.7]. Real-time programs
modify the BIOS timer interrupt, which stops the CPU 18.2 times per second to
update the BIOS time-of-day count. An extension to the interrupt compares the
new time-of-day count to a value representing the desired duration of the sound,
and when that value is reached it stops the tone, starts another, and sets up the tim-
ing for the new tone.

High Level

A simultaneous tone string is just another option within Advanced BASIC's very
elaborate PLAY statement, which is discussed at length at [2.2.5]. Simply add MB
to the beginning of the control string. This stands for “Music Background”; insert
MEF (for “Music Foreground”) to cause PLAY to revert to stopping all other pro-
gram operations until the melody is finished. This example plays a scale while
drawing and filling a box (it requires graphics capability).

100 PLAY '""MB T10@ 03 L4;CDEFG>ABC" ‘play a scale from middle C
110 LINE(10,10)-(80,80),1,BF 'draw a box at the same time
Low Level

The routine below is an elaboration of the non-real-time routine shown in the
previous subsection. It requires an understanding of how the timer interrupt is
reprogrammed, as discussed at [2.1.7]. The routine is pointed to by an interrupt
vector, and it is executed 18.2 times a second, at the same time as the BIOS time-
of-day count is updated. Normally, only a few lines are actually executed—just
enough to determine that no change of sound is required—and the routine returns,
freeing the CPU for other tasks.

The BIOS time-of-day count is used to measure the duration of each note. When-
ever a change is made from one note to another, the duration of the new note is
calculated as a number of pulses of the BIOS time-of-day count, and that value is
added to a reading of the current count. The time-of-day value is checked each time
the routine is invoked, and when the awaited value finally comes up, a chain of
events looks up the next note, programs its frequency into channel 2 of the 8253
chip, and sets up a new duration counter. Extra code is required for the special
cases of the first and last notes of the strings.

;===IN THE DATA SEGMENT:

BEAT b8 10,9,8,7,6,5,4,3,2 ;duration of each note

FREQUENCY DW  2280,2031,1809,1709 ;table of frequencies
DW  1521,1355,1207,1139 H
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MELODY o8 1,2,3,4,5,6,7,8,0FFH
HOLDIP oW 0
HOLDCS DW

SOUND_NOW? DB 1
FIRST NOTE? DB 1
END_NOTE oW 0
WHICH_NOTE  DW @
;=—=INITIALIZE THE INTERRUPT VECTOR:
; CHANGE THE VECTOR:
PUSH DS
MOV AX,SEG MELODY2
MOV DS, AX

MOV DX,OFFSET MELODY2

MOV AL,1CH
MOV AH,25H
INT 21H
POP DS

e we ws

; frequency code of each note
;storesoriginal INT 1CH vector
;ditto

; flags whether sound on or off
;flags special case of 1st note
;holds timer count to end note
;pts to current note instring

;DS is destroyed

;get segment of routine
;place inDS

;9et offset of routine
;interrupt vector to change
; function to set vector
;change the vector
;restore DS

—-==THE PROGRAM MOVES ALONG, CALLS SOUND ROUTINE AT ANY TIME

+———AT END OF PROGRAM, REPLACE ORIGINAL VECTOR:

MOV DX,@BFFS3H
MOV  AX,@BF000H
MOV DS, AX

MOV AL,1CH
MOV  AH,25H
INT 21H

RET

7———HERE IS THE INTERRUPT:
MELODY2 PROC FAR
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH DI
PUSH SI
PUSH DS
MOV  AX,SS:[114]
MOV DS,AX
CMP  SOUND_NOW?,1
JE  PLAY_IT
JMP  NOT_NOW
PLAY_IT: CMP  FIRST_NOTE?,0
JE  TIME_CHECK

;———INITIALIZATION:

PORT_B EQU 61H
COMMAND_REG  EQU 43H
LATCH2 EQU 42H

IN  AL,PORT B

OR  AL,000000118
OUT PORT_,AL

MOV SI,0

MOV AL,@B6H

OUT COMMAND_REG,AL
MOV FIRST NOTE?,@

;sput original INT 1C offset in DX
;put original INT 1C segment in DS

[
;number of the interrupt

;function to change interrupt vector
;replace theoriginal interrupt

save altered registers

e %o %o we we W we

;getoriginal DS from stack
;restore DS

;is sound required?

;i1f so, move on

;ifnot, skip the interrupt

;is this the beginning of a string?
;if not, jump to timing Loop
;otherwise, start the melody string

;set equates for port names

;get current status of Port B

;enable the speaker and timer channel 2

;replace the byte

;initialize ptr to melody/beat strings

;initialize channel 2 for mode 3
;send byte to command register
;set flag that melody now in progress

;———LOOK UP A NOTE, GET ITS FREQUENCY, PLACE IN CHANNEL 2:

NEXT_NOTE: LEA BX,MELODY

;get offset of melody string
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NOT_NOW:

MELODY2

MoV
Mov
CcMP
JE
CBW
;GET THE FREQUENCY:
MOV BX,OFFSET FREQUENCY
DEC AX
SHL AX,1
MOV DI,AX
MoV DX, [BX1LDI]
s START THE NOTE PLAYING:
MOV AL,DL
OUT LATCHZ2,AL
MOV AL,DH
OUT LATCHZ,AL

SI,WHICH NOTE
AL, [BX1[S1]
AL, @FFH
NO_MORE

;——-CREATE A DELAY LOOP:

TIME_IT: MoV
INT
MoV
MoV
MoV
MOV
ADD
MOV
MoV
INT
CMP
JNE
MoV
INC
MoV
JMP

AH,0

1AH

BX,OFFSET BEAT
cL,[BX1[SI]
CH,O

BX, DX

BX, CX

END NOTE, BX
AH,D

1AH
DX,END_NOTE
NOT_NOW
SI,WHICH_NOTE
SI
WHICH_NOTE,SI
NEXT NOTE

TIME_CHECK:

;=—-FINISH UP THE ROUTINE: —

IN
AND
ouT
MoV
MoV
POP
POP
POP
POP
POP
POP
POP
IRET
ENDP

NO_MORE: AL,PORT_B
AL,@FCH
61H,AL
SOUND_NOW?,@
FIRST_NOTE?,1
DS

SI

DI

DX

cX

BX

AX

:SI gets pointer to current note
;get code for nth note of the string
;is it FF? (end of string marker)
;if so, jump to end of routine
;convert AL to word-length operand

;get offset of the frequency table
;AX - 1 so that counting starts from®
;double AX, since word-length table
;mov to DI for addressing

;get the frequency from the table

;prepare to send Low byte of frequency
;send to latch register (via I/0 reg)
;prepare high byte

;send high byte

sfunction to get BIOS time-of-day count
;get the count

;get offset of beat string

;get beat value for note number SI
sclear high half of CX to use as word
;get Low word of BIOS count from DX

;add pulse count to current BIOS count
;store as value at which to end note
;function to get BIOS time-of-day count
;get the count

;cmp count with end-of-note count

:if not equal, quit the interrupt
;otherwise, start next note

;increase the note counter by one

;save the note counter

;start the next note

;get the byte in Port_B

;turn off the speaker bits

;replace the byte inPort_B

;set the play-a-string variable off
;set the first-note variable on
;restore altered registers

.
’
-
’
.
’
-
’
-
’
.
’
.
.

return from the interrupt



Make sliding tones  2.2.7

2.2.7 Make sliding tones

Sliding tones are made by continuously changing frequency. Both BASIC and
low-level programming can achieve them. This sound effect is made more dramatic
by slightly shortening the duration of each segment of the tone as it rises, or by
slightly lengthening the duration as the tone falls.

High Level

In BASIC, simply place a SOUND command [2.2.2] in a loop, using very short
durations for the tone. Increment the frequency by some multiple of the counter
each time through. See [2.2.8] for an example using the PLAY statement, which
allows faster transitions.

100 FOR N=1 TO 500 STEP 15

110 SOUND 4808 + N,1
120 NEXT

Low Level

It is easiest to use the method of sound production controlled from the 8255
peripheral interface chip. Simply modulate bit 1 of Port B between 1 and 0, using
empty timing loops as shown at [2.2.2]. Each time the timing loop is restored by
placing a value in CX, slightly increase or decrease that value. Here, the tone rises:

;———DISABLE THE TIMER CHIP

PB EQU 61H ;set PB equal to address of 8255 port B
IN AL,PB ;get the byte at PB
OR AL,1 ;turnoffbit@
OuUT PB,AL ;put the changed byte back in PB

;=—=SET THE SOUND FREQUENCY AND DURATION
MoV  BX,9000
MOV  DX,3000
REPEAT:
;—==TURN THE SPEAKER BIT ON
OR  AL,000000108
OuUT PB,AL
MOV CX,BX
CYCLE1: LOOP CYCLE1
;=—=TURN THE SPEAKER BIT OFF
AND AL,111111018
ouT PB,AL
MOV CX,BX
CYCLE2: LOOP CYCLE2
;==—GO ON TO NEXT CYCLE
DEC BX
DEC BX
DEC DX
JNZ REPEAT

;initial counter value, decreased below
;sound will continue for 3000 cycles
;return here after each cycle

;forcebit 1 "on"

;place "on'' byte in PB

;set counter for 1st half of cycle
;idle at Loop for 1000 repetitions

;forcebit 1 “off"

;place"off" byte in PB

;set counter for 2nd half of cycle
;idle at Loop for 1000 repetitions

;decrement counter, increase frequency
;and again

;decrement the remaining duration

;do another cycle if DX not @

;else, the sound ends...

This simple method results in the high range passing considerably more quickly
than the low range. Over short intervals this effect is actually desirable; when not,
code must be added so that as the tone rises DX is given ever higher values when it
is reloaded (6th line of the example).
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2.2.8 Make sound effects

Sound effects generally entail a continuous change in the frequency of a tone.
Only the PCjr is well equipped for this purpose (see the special discussion at
[2.2.1]). On the other machines sound effects cannot readily be produced simulta-
neously with other program operations.

High Level

Because of the power of the SOUND and PLAY statements, BASIC makes it easy
to produce sophisticated sound effects. But all must be constructed out of a pure
musical tones, which means that the effect of sound distortion must be created by
changing the tones so quickly that the ear blurs them together. For example, a
piercing “warble” is created by rapidly switching back and forth between the same
tone set several octaves apart:

100 FOR N=1 TO 100 'set duration

110 PLAY'" L64t255" 'fastest possible tempo
120 PLAY"Q1A" 'play a low A

130 PLAY"'@5A" 'play ahighA

140 NEXT 'repeat

When the variation ranges over only a few cycles per second, the result is a sort of
vibrato:

100 FOR N=1 TO 100 'set duration

11@ SOUND 440,1 '‘play anA

120 SOUND 445,1 'play the Aslightly sharped
130 NEXT 'repeat

Another technique entails nesting sliding tones within a sequence that itself moves
upwards or downwards. Figure 2-6 shows an upward-moving sequence. Many
arcade games use this technique:

C111
c1
-
C
|
! <
C L IC

Figure 2-6. The sliding-sliding tone sound effect.
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100 FOR I1=1TO 10 'set number of repetitions

110 FORJ=0 TO 6 'repeat scale 6 times

120 PLAY "mbl64t2550=] ;baaghgfi#fediidciccHdd#ef fitgattaatib 'slide thru a scale
130 NEXT 'repeat at higher octave (o=j)

14@ NEXT 'repeat the whole sequence

The PCjr is much more versatile than the other machines, thanks to its special
sound chip. The NOISE statement can generate a variety of sounds, using the for-
mat NOISE source, volume, duration. The source is a number from 0@ to 7 taken
from the following table:

high pitch periodic noise

medium pitch periodic noise

low pitch periodic noise

periodic noise where pitch varies with channel 3
high pitch white noise

medium pitch white noise

low pitch white noise

white noise where pitch varies with channel 3

NOoOUW kWS

The volume is given as a number from 0 to 15, where 0 is “off.” And the duration is
specified as a number of pulses of the BIOS time-of-day count, where there are 18.2
pulses per second.

Low Level

Any of the techniques shown for BASIC are also available through assembly lan-
guage, although they may take a good deal of programming, as earlier parts of this
chapter demonstrate. In addition, assembly programming allows you to create
impure tones in which the interval during which the speaker is turned off does not
equal the interval during which it is on. This distortion of symmetry makes for a
variety of buzzing and clicking sounds. Buzzing results when the difference in the
two intervals is, say, 50 to 1. When the difference is 10 to 20 times that, the buzz
slows down to individual clicking sounds. In either case, the sound must be pro-
duced from the 8255 peripheral interface chip, using the basic technique shown at
[2.2.2]. Here is an example of a buzz:

NUMBER_CYCLES EQU 300 ;number of times speaker goes on-off
FREQUENCY1 EQU 50 . ;time on
FREQUENCY2 EQU 3200 ;time off
PORT_B EQU 61H ;address of Port B of 8255 chip

CLI ;disable interrupts

MOV DX,NUMBER _CYCLES ;DX counts the length of the tone

IN AL,PORT B ;get Port B

AND AL,111171108B ;disconnect speaker from timer chip
NEXT_CYCLE: OR  AL,000000108 ;turn on speaker

OUT PORT_B,AL ;send the command to Port_B

MOV  CX,FREQUENCY1 ;move the delay for 1/2 cycle to CX
FIRST_HALF: LOOP FIRST_HALF ;make delay while speaker is on

AND AL,111111018 ;turn off speaker
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OUT PORT_B,AL ;send the command to Port_B

MOV CX,FREQUENCY2 ;move the delay for 2nd half of cycle
SECOND_HALF: LOOP SECOND_HALF ;make delay while speaker is off

DEC DX ;subtract 1 from the number of cycles

JNZ NEXT_CYCLE ;i1f 0@, thenduration is exhausted

ST1 ;reenable interrupts

To produce clicking sounds, use the same code, but change the value of
FREQUENCY__2 to about 40000.
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2.2.9 Make simultaneous sounds

Only the sound generating chip found in the PCjr can produce true simultaneous
sound (see the discussion at [2.2.1]). However, in assembly language the two low-
level methods of sound production may be combined to simulate the production of
two simultaneous sounds. The pulse rates combine to create the effect of a complex
wave form. The two sounds are each of diminished intensity, and if they are not
widely separated, the result is more like a buzz than like two voices. This trick is
really only useful for sound effects.

Low Level

Simply combine the two sound production techniques shown at [2.2.2] and
[2.2.3]. Start sound from channel 2 of the timer chip. Then modulate output to the
speaker from bit 1 of Port B of the peripheral interface. This second action deter-
mines the duration of the sound. Remember to shut off the timer chip when

finished.

;——-START SOUND OUTPUT FROM CHANNEL 2 OF 8253 TIMER CHIP:

IN  AL,61H

OR AL,3

OUT 61H,AL

MOV AL,10110110@8
OUT 43H,AL

MOV AX,600H

OUT 42H,AL

MOV AL,AH

OUT 42H,AL

;get byte fromPort B

;turnonbottom2 bytes

;send byte back to PB

;bit pattern for 8253 command register
;send to register

;counter for channel 2

;send Low byte

;ready to send high byte

;send high byte

;———GENERATE A SECOND FREQUENCY FROM THE 8255 CHIP:

NUMBER_CYCLES EQU 9000
FREQUENCY EQU 150
CLI

MOV  DX,NUMBER _CYCLES

IN  AL,61H

AND AL,111111118B
NEXT_CYCLE: OR  AL,000000108

OUT 61H,AL

MOV  CX,FREQUENCY
FIRST_HALF: LOOP FIRST_HALF

AND AL,111111018

OUT 61H,AL

MOV  CX,FREQUENCY
SECOND_HALF: LOOP SECOND_HALF

DEC DX

JNZ NEXT_CYCLE

STI

;—==SHUT OFF CHANNEL 2 OF TIMER CHIP:

IN  AL,61H
AND AL,111111008
OUT 61H,AL

;number of times to cycle on-off
;delay time for 1/2 cycle

;disable interrupts

;DX counts the length of the tone
;get Port B

;disconnect speaker fromtimer chip
;turn on speaker

;send the command to Port_B

;move the delay for 1/2 cycle to CX
;make delay while speaker is on
;turn off speaker

;send the command to Port_B

;move the delay for 2nd half of cycle
;make delay whi le speaker is off
;subtract 1 from the number of cycles
;1f @, thenduration is exhausted
;reenable interrupts

;get byte fromPort B

;turnoff bottom2bits
;replace the byte
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3
The Keyboard

Section 1: Monitor the Keyboard

The keyboard contains an Intel microprocessor which senses each keystroke and
deposits a scan code in Port A of the 8255 peripheral interface chip [1.1.1], located
on the system board. A scan code is a one-byte number in which the low seven bits
represent an arbitrary identification number assigned to each key. A table of scan
codes is found at [3.3.2]. Except in the AT, the top bit of the code tells whether the
key has just been depressed (bit=1, the “make code”) or released (bit=0, the
“break code”). For example, the seven-bit scan code of the <B> key is 48, which is
110000 in binary. When the key goes down, the code sent to Port A is 10118000,
and when the key is released, the code is #0110000. Thus every keystroke registers
twice in the 8255 chip. Each time, the 8255 issues an “acknowledge” signal back to
the microprocessor in the keyboard. The AT works slightly differently, sending the
same scan code in either case, but preceding it with the byte FOH when the key is
released.

When the scan code is deposited in Port A, the keyboard interrupt (INT 9) is
invoked. The CPU momentarily sets aside its work and performs a routine that
analyzes the scan code. When the code originates from a shift or toggle key, a
change in the key’s status is recorded in memory. In all other cases the scan code is
transformed into a character code, providing it results from a key depression (oth-
erwise the scan code is discarded). Of course, the routine first checks the settings of
the shift and toggle keys to get the character code right (is it “a” or “A”7). And then
the character code is placed in the keyboard buffer, which is a holding area in
memory that stores up to fifteen incoming characters while a program is too busy
to deal with them. Figure 3-1 shows the path a keystroke takes to travel to your
programs.

There are two kinds of character codes, ASCII codes and extended codes. ASCII
codes are one-byte numbers that correspond to the IBM extended ASCII character
set, which is listed at [3.3.3]. On the IBM PC, these include the usual typewriter
symbols, plus a number of special letters and block-graphics symbols. The ASCII
codes also include 32 control codes which ordinarily are used to send commands to
peripherals, rather than to act as characters on the screen; each, however, has its
own symbol which can be displayed by direct memory mapping onto the video dis-
play [4.3.1]. (Precisely speaking, only the first 128 characters are true ASCII char-
acters, and it is redundant to speak of “ASCII codes,” since “ASCII” stands for
“American Standard Code for Information Interchange.” But programmers com-
monly speak of “ASCII codes” in order to distinguish them from other numbers.
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8048
Keyboard Processor

!

8255
Peripheral Interface

Scan Code

!

Keyboard Interrupt
(Stored in ROM)

!

Keyboard Buffer
(System RAM)

I

Screen Output
Interrupts

ASCIl Codes and
Extended Codes

e Program Code

{

Video Buffer

(Video Adaptor Cord)|

oo

Figure 3-1. From Keyboard To Screen.

For example, “ASCII 8" refers to the backspace character, while “8" is the letter ref-

erenced by ASCII 56).

The second kind of codes, the extended codes, are assigned to keys or key-com-
binations that have no ASCII symbol to represent them, such as the function keys
or Alt key combinations. Extended codes are two bytes long, and the first byte is
always ASCII 0. The second byte is a code number, as listed at [3.3.5]. The code
0;30, for example, represents Alt-A. The initial zero lets programs tell whether a
code number is from the ASCII set or the extended set.
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There are a few key combinations that perform special functions and that do not
generate scan codes. These combinations include < Ctrl-Break>, < Ctrl-Alt-Del > ,
and <PrtSc>, plus <Sys Req> on the AT, and < Ctrl-Alt-Cursor left, -Cursor
right, -CapsLock, -Ins> on the PC Jr. These exceptions bring about special pre-
defined results [3.2.2]. All other keystrokes must be interpreted by your programs,
and if they have a special purpose, such as to move the cursor leftward, your pro-
gram must provide the code that achieves that effect.

Fortunately, the operating system offers a variety of routines that read codes
from the keyboard buffer, including means to receive whole strings at once.
Because the routines do just about anything you can ask, it is generally senseless to
write your own keyboard procedures, and so there are few low level programming
examples in this chapter. However, a discussion of how to reprogram the keyboard
interrupt is provided.
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3.1.1 Clear the keyboard buffer

Programs should clear the keyboard buffer before prompting for input, eliminat-
ing any inadvertent keystrokes that may be waiting in the buffer. The buffer holds
up to fifteen keystrokes, whether they be one-byte ASCII codes or two-byte
extended codes. Thus the buffer must provide two bytes in memory for each key-
stroke. For one-byte codes, the first byte holds the ASCII code, and the second, the
key’s scan code. For the extended codes, the first byte holds ASCII @ and the second
byte holds the code number. This code number is usually the key’s scan code, but
not always, since some keys combine with shift keys to produce more than one
code.

The buffer is designed as a circular queue, also known as a first-in first-out
(FIFO) buffer. Like any buffer, it occupies a range of contiguous memory ad-
dresses. But no particular memory location is the “front of the line” in the buffer.
Rather, two pointers keep track of the ‘head’ and ‘tail’ of the string of characters
currently in the buffer. New keystrokes are deposited at the position following the
tail (towards higher addresses in memory) and the tail pointer is adjusted accord-
ingly. Once the highest memory location of the buffer space is filled, the insertion
of new characters wraps around to the low end of the buffer; thus, the head of the
string in the buffer will sometimes be at a higher memory location than the tail.
Once the buffer is full, additional incoming characters are discarded; the keyboard
interrupt beeps the speaker when this happens. Figure 3-2 diagrams some possible
configurations of data in the buffer.

While the head pointer points to the first keystroke, the tail pointer points to the
position after the last keystroke. When the two pointers are equal, the buffer is
empty. To allow for fifteen keystrokes, a sixteenth, dummy position is required,
and its two bytes always contain a carriage return (ASCII 13), and the scan code
for <enter>, which is 28. This dummy position immediately precedes the head of
the keystroke string. The 32 bytes of the buffer begin at memory location 0040:00
1E. The head and tail pointers begin at 0040:001A and 0040:001C, respectively.
Although the pointers are two bytes long, only the lower, least significant byte is
used. The values of the pointers vary from 30 to 60, corresponding to positions
within the BIOS data area. Simply set the value of 0040:001A equal to the value in
0040:001C to “clear” the buffer.

Note that it is possible for a program to insert characters into the buffer, ending
the string with a carriage return and adjusting the buffer pointers accordingly. If
this is done right before exiting a program, when control returns to DOS the char-
acters are read and another program may be loaded automatically.

High Level

In BASIC use PEEK and POKE to fetch and change the values of the buffer
pointers:

100 DEF SEG=&H40 'set segment to bottom of memory
110 POKE &H1C,PEEK(&H1A) 'equalize the pointers

92



Clear the keyboard buffer 3.1.1

0040:003C ‘F
3A ‘F’
38 ‘E’
36 ‘R’
34| ‘B
21V
301 ‘F
2E]| ‘F
2C| ‘¥
2A| ‘R’
28
26
24
22
20 ‘B’
1E ‘v
1C | 28 j==—Tail Pointer—s={ 34

0040:001A | 34 j-=—Head Pointer 20

Figure 3-2. Keyboard Buffer Configurations.

This method is not reliable. Some applications may create a buffer elsewhere in
memory, and there is also a slight possibility that the keyboard interrupt will break
in in the midst of line 110, changing the tail pointer. For these reasons, it is better to
leave the buffer pointers alone. Instead, read from the buffer until null is returned,
discarding the keystrokes:

100 IF INKEY$<'"" THEN 100 ‘take another keystroke if not null

Middle Level

Function C of INT 21H performs any of the DOS keyboard input functions 1, 6,
7, 8, and A (described elsewhere in this section) but clears the keyboard buffer first.
Simply place the number of the input function in AL (here it is 1):

;———CLEAR BUFFER BEFORE AWAITING KEYSTROKE:

MOV AH,O@CH ;select DOS function @CH
MOV AL,1 ;select key input function
INT 21H ;clears buffer, waits for keystroke

93



3.1.1 Clear the keyboard buffer

Low Level

As in the high level example, make the tail pointer equal to the head pointer. To
avoid interference by the keyboard interrupt, disable interrupts while the change is
made:

;———EQUALIZE THE HEAD AND TAIL POINTERS:

CLI ;disable interrupts

SUB AX,AX smake AX=0

MOV  ES,AX ;set ES to bottom of memory
MOV - AL,ES:[41AH] ;move head pointer to AL
MOV ES:[41CH],AL ;place in tail pointer

STI ;reenable interrupts
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3.1.2 Check the buffer for keystrokes

You can check whether or not there has been keyboard input without actually
removing a character from the keyboard buffer. The buffer uses two poirters that
show the front and end of the queue of characters currently in the buffer. When the
two pointers are equal, the buffer is empty. Simply compare memory locations
0040:001A and 0040:001C for equality. (One can not merely check for a character
at the “front” of the queue, because the buffer is formed as a circular queue, and
the “front” is constantly changing position [3.1.1]).

High Level

Simply use PEEK to read the two bytes, and compare them:

100 DEF SEG=&H40 'set the memory segment to @
110 IF PEEK(&H1A) <>PEEK(&H1C) THEN... '...then acharacter has arrived...

Middle Level

Function B or INT 21H returns FFH in the AL register when the keyboard buffer
holds one or more characters, and it returns @ when the buffer is empty:

7———CHECK IF A CHARACTER IS IN THE BUFFER:

MOV AH,0@BH s function number

INT 21H scall interrupt 21

CMP AL,OFFH ;compare to FF

JE  GET_KEYSTROKE ; jump to input routine if char present

Function 1 of BIOS interrupt 16H provides the same service, but in addition it
shows what the character is. The zero flag (ZF) is set to 1 if the buffer is empty, or
to 0 if a character is waiting. In the latter case, a copy of the character at the head
of the buffer is placed in AX without removing it from the buffer. AL returns the
character code for one-byte ASCII characters, or it returns ASCII @ for extended
codes, in which case the code number appears in AH. '

;=--FIND OUT IF THERE IS A CHARACTER:

MOV AH,1 ;set function number
INT 16H ;check if character in buffer
JZ  NO_CHARACTER sjump if zero flag = 1
;——-THERE IS A CHARACTER, SO SEE WHAT IT IS:
CMP AL,OQ ;is it an extended code?
JE  EXTENDED_CODE :if so, go to extended code routine

;otherwise, take character from AL

Low Level

As with the high level example, simply compare the two buffer pointers:
;==—COMPARE HEAD AND TAIL POINTERS:

MOV AX,0 ;use the extra segment

MOV ES,AX ;set the segment to @

MOV AL,ES:[41AH] ;get one pointer

MOV AH,ES:[41CH] ;get other pointer

CMP AH,AL ;compare the pointers

JNE GET_KEYSTROKE ;jump to input routine if unequal
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3.1.3 Wait for a keystroke and do not echo it on the
screen

Normally, incoming keystrokes are echoed on the screen to show what has been
typed. But sometimes automatic echoing is undesirable. One-keystroke menu selec-
tions need no echo, for example. And sometimes incoming characters may need
error-checking before they are sent to the screen. In particular, any program that
accepts extended codes must be cautious of automatic echoing, since the first byte
(ASCII 0) of these codes will be displayed, leaving spaces between the characters.

High Level

The INKEY$ function of BASIC does not echo. It returns a string that is one byte
long for ASCII characters and two bytes long for extended characters. INKEY$
does not wait for a keystroke unless it is placed within a loop that cycles again and
again until a character arrives. The loop functions by invoking INKEY$ and then
assigning the string it returns to a variable, here C$. When no keystrokes have been
received, INKEY$ returns the null string, which is a string that is @ characters long,
denoted by two quotation marks with nothing between (). So long as INKEY$
returns “, the loop repeats: 100 C$ = INKEY$:IF C$ =“” THEN 100.

The example below assumes that the incoming keystrokes are menu selections
and that each selection sends the program to a particular subroutine. The selections
are made by striking A,B,C... (resulting in one-byte ASCII codes) or ALT-A, ALT-
B, ALT-C... (resulting in two-byte extended codes). To tell the difference, use the
LEN function to check whether the string is one or two characters long. If a one-
byte ASCII code, a series of IF...THEN statements immediately begin to test the
identity of the keystroke, sending the program to the appropriate subroutine. In the
case of two-byte codes, control transfers to a separate routine. There the RIGHT$
function eliminates the lefthand character, which, of course, is nothing more than
the @ that identifies extended codes. The ASC function is then used to convert the
character from string form to numeric form. Finally, a second series of IF... THEN
statements checks the resulting number against those corresponding to ALT-A,
ALT-B, etc.

100 C$ = INKEYS$: IF C$=""' THEN 100 'wait for a keystroke

110 IF LEN(C$) = 2 THEN 500 'if extended code, jump

120 IF C$=""a" OR C$="A"" THEN GOSUB 1100 'is it menu selectiona?

130 IF C$=""b" OR C$="B'' THEN GOSUB 1200 'b?

140 IF C$=""c" OR C$=""C'' THEN GOSUB 1300 'c?

500 C$=RIGHT$(C$,1) 'get 2nd byte of extended code
510 C=ASC(C$) 'convert to numeric value

520 IF C=30 THEN GOSUB 2100 'is it menuselectionAlt-A?
530 IF C=48 THEN GOSUB 2200 'AlLt-B?

540 IF C=46 THEN GOSUB 2300 'Alt-C?

Note that line 120 (and those following) could instead have used the numeric values
for the ASCII codes for “a” and “A”, and so on:
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120 IF €=97 OR C=65 THEN GOSUB 1100

Of course, first C$ would need to be converted to integer form, exactly as in line
510. In programs with a long sequence of these statements, you can save space by
changing C so that it always represents either the lower- or upper-case form of a
letter. First do some error checking to be sure that the ASCII value of C$ is in the
correct range. Then find out if the number is below 91, in which case it is upper
case. If so, add 32 to convert it to lower case. Otherwise, do nothing. Then a
shorter statement such as IF C =97 THEN... will suffice. Here is the code:

500 C=ASC(C$) 'get ASCII number of the character
510 IF NOT((C>64 AND C<91) OR (C>96 AND C<123)) THEN...

'...thenout of range, ignore it
520 IF C<91 THEN C=C+32 'add 32 to value of upper-case letters
530@ IF C=97 THEN... ‘... thenbeginto test the values...

Middle Level

Functions 7 and 8 of INT 21H wait for a character if none is in the keyboard
buffer, and when one arrives, it is not echoed on the screen. Function 8 detects
Ctrl-Break (and initiates the Ctrl-Break routine [3.2.8]), while function 7 does not.
In both cases, the character is returned in AL. When AL contains ASCII 0, an
extended code has been received. Repeat the interrupt and the second byte of the
code appears in AL.

7==—GET A KEYSTROKE:

MOV AH,7 ;set function number
INT 21H ;wait for character
CMP AL,O ;see if extended code
JE  EXTENDED_CODE ;90 to extended code routine if so
. ;otherwise, take character fromAL
;———EXTENDED CODE ROUTINE:

EXTENDED_CODE: INT 21H - ;now the extended code number is in AL
CMP AL,75 ;check if '"cursor-lLeft"
JNE CR ;if not, check next possibility
JMP  CURSOR_LEFT ;if so, go to routine

C_R: CMP  AL,77 ;..-etc...

BIOS provides a service that matches the DOS function. Place ® in AH and call
INT 16H. The function waits for a character and returns it in AL. In this case,
extended codes require calling the interrupt only once. If @ appears in AL, an
extended code number is found in AH. Ctrl-Break is not detected.

;==—GET A KEYSTROKE:

MOV AH,0 ; function number to intercept keystroke
INT 16H ;get the keystroke

CMP AL,O ;is it an extended code?

JE  EXTENDED_CODE ;if so, go to special routine

;otherwise, take ASCII char from AL

;———EXTENDED CODE ROUTINE:
EXTENDED_CODE: CMP AH,75 ;take extended code from AH
;...etc...
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3.1.4 Wait for a keystroke and echo it on the screen

With text or data entry, keystrokes are normally echoed on the screen. In echo-
ing, characters like the carriage return or backspace are interpreted by moving the
cursor accordingly rather than displaying the ASCII symbols for the characters.
The echoing begins at whatever point the cursor is currently set, and the text auto-
matically wraps around from the last column to the next line. The wrap requires
no special coding because the characters are simply deposited at the next position in
the video buffer, and the buffer is essentially one long line containing the 25 lines of
the screen.

High Le\}el

In BASIC, intercept a keystroke using INKEY$, as shown at [3.1.3]. Then print it
before returning to intercept another. Either use the PRINT statement, or else
POKE the keystroke directly into the video buffer, using the memory mapping
techniques shown at [4.3.1] (the buffer starts at memory segment &HB@@0 for the
monochrome adaptor and at &HB800 for the color adaptor). If you use PRINT, be
sure to end the statement with a semicolon, or a carriage return will occur automat-
ically. Below are examples of each method. No attempt is made here to sort out
non-character keystrokes. The variable KEYSTROKES$ collects the incoming key-
strokes into a data string.

100 ' ' 'method using PRINT:

110 LOCATE 10,40 'set the cursor to row 10, col 40
120 KEYSTROKES$="""* 'clear variable that holds incoming string
130 C$=INKEY$:IF C$=""" THEN 130 'get a keystroke
140 KEYSTROKES$=KEYSTROKES$+C$ 'add the keystroke to a string variable
150 PRINT C$; 'print the character
160 GOTO 130 'get next character
100 ' ' 'method using POKE (monochrome adaptor):
110 DEF SEG=&HBO0O 'set segment offset to start of buffer
120 POINTER=1678 'positionof 10,40 = (2% ((10%8@)+4 0))-2
130 KEYSTROKES$=""" ‘clear variable holding incoming string
140 C$=INKEY$:IF C$=""" THEN 140 'get a keystroke
150 KEYSTROKES$=KEYSTROKES$+C$ 'add the keystroke to astring variable
16@ POKE POINTER, ASC(C$) 'poke ASCII number of char into buffer
170 POINTER=POINTER+2 'up pointer by 2 (skip attribute byte)
180 GOTO 140 'get next character

Middle Level

Function 1 of INT 21H waits for a character if none is found in the keyboard
buffer, then echos it on the screen at the current cursor position. Ctrl-Break is inter-
cepted so that the (programmable) Ctrl-Break routine is executed [3.2.8]. Charac-
ters are returned in AL. In the case of extended codes, AL holds ASCII @. Repeat
the interrupt to bring the second byte of the code into AL.

;==-GET A KEYSTROKE:
MOV AH,1 ;set the function number
INT 21H ;wait for a character
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CMP AL,0 ;extended code?
JE  EXTENDED_CODE ;if so, jump to special routine
. ;else, take ASCII character from AL
;———EXTENDED CODE ROUTINE:
INT 21H ;bring the code number into AL
CMP AL,77 ;check if '"cursor-right"
JNE C_R ;ifnot, check next possibility
JMP  CURSOR_RIGHT ;if so, gotoroutine
C_R: CMP AL,75 j...etc...

This function completely ignores the escape key. It interprets a tab keystroke
normally. The backspace key causes the cursor to move back one space, but the
character in that position is not erased. The enter key causes the cursor to move to
the start of the current line (there is no automatic line feed).
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3.1.5 Intercept a keystroke without waiting

Some real-time applications cannot stop to wait for incoming keystrokes; they
take keystrokes from the keyboard buffer only when it is convenient for the pro-
gram to do so. For example, idling the CPU while awaiting a keystroke would stop
all screen action in a video game. Note that it is easy to test whether or not the key-
board buffer is empty, using the methods shown at [3.1.2].

High Level
Simply use INKEY$ without nesting it within a loop:

1@0 C$=INKEY$ 'check for a character

110 IF C$ <> "' THEN... 'there is a character, so...

120... 'else, there is no character
Middle Level

Function 6 of INT 21H is the only interrupt that receives keystrokes without
waiting. The function does not echo characters on the screen, nor does it sense
Ctrl-Break. FFH must be placed in DL before calling this interrupt. Otherwise func-
tion 6 serves an entirely different purpose—it prints at the current cursor position
whatever character is found in DL. The zero flag is set to 1 if there are no charac-
ters in the buffer. When a character is intercepted, it is placed in AL. Should the
character be ASCII 0, an extended code is indicated, and a second call is needed to
bring in the code number.

MOV AH,6 ;D0S function é

MOV DL,OFFH ;request function for keyboard input

INT 21H ;get character

JZ  NO_CHAR ; jump to NO_CHAR if no keystroke

CMP AL,O0 ;see if character is ASCII O

JE  EXTENDED_CODE ;if so, go toextended code routine

sASCII character now in AL
EXTENDED_CODE: INT 21H ;get 2nd byte of extended code

;code number now in AL
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3.1.6 Intercept a string of keystrokes

Both BASIC and DOS provide routines to intercept strings of keystrokes. They
automatically repeat the single-keystroke input routines described in previous sec-
tions, watching for a carriage return to tell that the string is complete. Of course,
memory must be allocated to hold each character of the string, and the length of
each string must be recorded in order to delimit one string from another. This is
done using string descriptors, which consist of one or more bytes that hold the
address and/or the length of the string. In BASIC the first two bytes of string
descriptors hold the address of the string, and the descriptors are kept in an array
that is apart from the strings themselves. The string length is held in the third byte
of the three-byte descriptors. The DOS function, on the other hand, places the
string length at the start of the actual string, and it is up to the program to keep
track of the string’s location in memory.

High Level

BASIC can intercept strings both with and without automatic echoing of the
string on the screen. Echoing is easiest, since it is performed by the ready-made
string input function, INPUT. INPUT automatically collects the incoming key-
strokes, placing each on the screen as it is received. When the enter key is pressed,
the input ends and the string is assigned to a specified variable (the ASCII 13 code
sent by the enter key is not appended to the string). INPUT incorporates the DOS
line-editing features, so that typing errors may be corrected before the string is
entered. INPUT receives numbers in string form, and it will automatically convert
them to numeric form if you specify a numeric variable name for the input. Finally,
INPUT can prompt the user for the desired information by automatically writing a
string on the screen. The string may be up to 254 characters long. If this length is
exceeded, the excess characters are ignored. The basic form is INPUT“prompt”,
variable__name. See the BASIC manual for variations.

11@ INPUT"Enter your name: ',NAME$ 'wait for character string, assign to NAME$

120 INPUT"Enter your age: '',AGE% 'wait for numeric character string, convert

' it tonumeric form, assign it to AGE%

The INPUT statement is inadequate when the incoming flow of keystrokes may
contain extended codes, as for the cursor movements of a full-screen text processor.
Instead, the non-echoing INKEY$ function must intercept each keystroke one by
one, then check for extended codes, then check for control codes like the carriage
return, and then place only those characters on the screen that belong there. These
screen-bound characters are also added, one at a time, to the end of a string vari-
able. Text files are comprised of whole arrays of these string variables. You will
find at [3.1.8] an extensive keyboard input routine that shows INKEY$ used this
way.

Middle Level

Function @AH of INT 21H inputs strings of up to 254 characters, echoing the
input on to the display. This routine continues to add incoming keystrokes to the
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string until the enter key is struck. DS:DX points to the place in memory where the
string will be deposited. On entry, the first byte at this location must contain the
number of bytes alloted to the string. After the string is entered, the second byte is
given the number of characters actually received. The string itself begins from the
third byte.

Allocate just enough memory for the desired string length plus two bytes for the
string descriptor and one extra byte for the carriage return. When you set the maxi-
mum string length in the first byte, add 1 for the carriage return. The carriage
return code—ASCII 13—is entered as the final character of the string, but it is not
counted in the character tally placed by the function in the second byte of the string
descriptor. Thus, to receive a 50-character string, allocate 53 bytes of memory and
place ASCII 51 in the first byte. If 50 characters are entered, on return the second
byte will contain ASCII 50 and the 53rd byte of allocated memory will contain
ASCII 13.

;———IN THE DATA SEGMENT:
STRING DB 53 DUP(?) ;space for 5@ char string
; (2chars for descriptor, 1 for CR)

;———RECEIVE A STRING FROM THE KEYBOARD:

LEA DX,STRING ;DS:DX points to string space
MOV BX,DX ;make BX also point tostring
MOV AL,51 ;set string length (+1 for CR)
MOV [BX],AL ;place in first byte of descriptor
MOV  AH,Q@AH ; function number of string routine
INT 21H ;receive the string
;———CHECK THE LENGTH OF THE STRING:
MOV AH, [BX1+1 ; Length now in AH

This routine makes use of the DOS line editing functions. Striking the backspace
or cursor-left keys deletes the prior character on the screen, and eliminates it from
memory as well. The tab key works, extended codes are ignored, and empty strings
are permitted (that is, a carriage return without any preceding keystrokes). On the
monitor, strings wrap at the end of a line, and the screen scrolls upward when a
string reaches the bottom right corner. When keystrokes exceed the alloted length
of the string, they are ignored, and the speaker sounds.

DOS provides a second way of receiving a string, and in this case it does not
echo it on to the screen. Function 3FH of INT 21H is a general purpose input func-
tion that is most commonly used in disk operations. It requires a predefined
handle, which is a code number used by the operating system to designate an I/O
device. The handle for the keyboard is the number @, and it must be placed in BX.
Point DS:DX at the place where the string is to reside, place the maximum string
length in CX, and call the function:

;———READ STRING WITHOUT ECHOING:

MOV AH,3FH ; function number

Mov BX,0 ;handle number

LEA DX,STRING_BUFFER  ;DS:DX points to buffer
MOV CX,100 smaximum Length of string
INT 21H ;wait for input
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String input terminates when the Enter key is struck, and DOS adds two characters
to the end of the string: a carriage return and line feed (ASCII 13 and ASCII 10).
Because of these additional characters, when the length of a string is specified as
100 characters, it may occupy up to 102 bytes of memory. The length of the string
entered is returned in AX, and this value includes the two terminating characters.
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3.1.7 Check/set the status of the toggle and shift keys

The two bytes found at memory locations 0040:0017 and 0040:0018 hold bits
showing the status of the shift and toggle keys, as follows:

Bit Key Meaning when bit=1
0040:0017 7 Insert Insert mode “on”
6 CapsLock CapsLock mode “on”
5 NumLock NumLock mode “on”
4 ScrollLock ScrollLock mode “on”
3 Alt shift key down
2 Ctrl shift key down
1 Lefthand shift key down
0 Righthand shift key down
0040:0018 7 Insert key down
6 CapsLock key down
5 NumLock key down
4 ScrollLock key down
3 Ctrl-NumLock  Ctrl-NumLock mode “on”
(others unused)

The keyboard interrupt immediately updates these status bytes if a toggle or shift
keystroke occurs, even if no keystrokes have been read from the keyboard buffer.
This is true for the Ins toggle key as well, which is the only one of the eight keys
that places a code in the buffer (the Ins status setting is changed even if there is no
room for the character in the buffer). Note that bit 3 of 0040:0018 is set to 1 while
the Ctrl-Numlock hold state is in effect; since a program is suspended during this
state, the bit is of no significance.

The keyboard interrupt checks these status bits before interpreting incoming key-
strokes, so when a program changes one of the bits the effect is the same as physi-
cally striking the corresponding key. You may wish to set the state of the NumLock
and CapsLock keys to assure that input is of the desired kind. Conversely, your
programs may need to read the status of the keys, perhaps to echo the current sta-
tus on the screen. Note that the AT keyboard keeps its toggle indicator lights set
correctly even when the status register settings are made by software.

High Level

Here, the NumLock key is made to activate the cursor keys by setting bit 5 of
0040:0017 to 0. This is done by ANDing the value at this address with 223 (the bit
pattern 11011111B - see Appendix B for the logic behind bit operations). The result
is placed in the status byte. The example then sets the bit back to 1 by ORing it
with 32 (00100000B).
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100 DEF SEG = &H40 'set memory segment to BIOS data area
110 STATUSBYTE=PEEK (&H17) 'get status byte

120 NEWBYTE=STATUSBYTE AND 223 'set bit 5 to @

13@ POKE (&H17 ,NEWBYTE) 'place new value in the status register

Alternatively, to turn the bit ON:

120 NEWBYTE=STATUSBYTE OR 32 'setbit5to1
130 POKE (&H17 ,NEWBYTE) 'place new value in the status register

Lines 110-130@ may be condensed to the form:

110 POKE (8H417,PEEK(&H417) AND 223)
<. OF...
110 POKE (&H417,PEEK (&H417) OR 32)

Middle Level

Function 2 of INT 16H gives access to one—but only one—of the status bytes.
This is the byte at 0040:017H, which contains the more useful information. The
byte is returned in AL.

;———CHECK STATUS OF INSERT MODE

MOV AH,2 ;set function number

INT 16H ;get the status byte

TEST AL,100000008 ;testbit?

Jz INSERT_OFF ;ifbit is @ then INSERT is off

Low Level

Here the insert mode is forced on by turning on bit 7 of the status byte at
0040:0017 (here addressed as 2000:0417).

SUB AX,AX . ;set the extra segment to @

MOV ES,AX H

MOV AL,100000008 ;prepare to turn on bit 7

OR  ES:[417H],AL ;directly change the status byte
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3.1.8 Write a general-purpose keyboard input routine

The system of codes used by the keyboard defies simple interpretation. The
codes may be one or two bytes long, and there is no simple correspondence
between the code length and whether it is for a character or for hardware control.
Not all keystroke combinations even produce a unique code, and extra care must
be taken to differentiate them. Neither the ASCII codes nor the extended codes are
numbered in a fashion that facilitates grouping and error checking. In a word, a
general keyboard input routine makes for messy programming.

Examples are given here in BASIC and using INT 16H. They show how to put
together much of the information given in this chapter. The general algorithm is
shown in Figure 3-3.

( Get Character)« CNext Charac@
A

Is It an
Extended Code?
(First Byte Is 0)

Yes Routine to
Analyze Second
Byte of Code

No (It Is an ASCII Code)

Islta
Control Code?
(Less than 32)

Routine to
Process ASCII
Character Codes

Routine to
Process ASCII
Control Codes

Is It Scan
Code for
Ctrl-H, | or M?

Routine to Analyze
Ctri-H
Ctril
and Ctrl-M

Figure 3-3. Flow Chart For A General Input Routine.
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High Level

A keyboard input routine written in BASIC can do all that an assembly language
routine can, but with one exception. The INKEY$ function does not have access to
scan codes. This means that it is difficult to tell whether ASCII codes 8, 9, 13, and
27 have arisen from the backspace, tab, enter, and escape keys, or from Ctrl-H, I,
M and [. The distinction can instead be made by checking the Ctrl key status bit at
0040:0017 at the time the key is pressed. But this ploy fails if the keystroke is stored
in the keyboard buffer for any length of time.

100 C$=INKEY$:IF C$=""" THEN 100 'get a character

110 IF LEN(C$)=2 THEN 700 'if extended code, go to its routine
120 C=ASC(C$) 'else ASCII character, get its number
130 IF C<32 THEN 300 'if control code, go to its routine
140 IF C<65 OR C>123 THEN 100 'accept only typewriter keystrokes
158 '''C is a typewriter keystroke --do with it what youwill, for example:

160 S$=S$+C$ 'make character the next inastring
170 PRINT C$; 'echo it on the screen

180 '''...etc...

190 GOTO 100 'get next keystroke

1;: '""TASCII control code routine

310 DEF SEG=0 'point to bottomof memory (BIOS area)
320 REGISTER=PEEK(&H417) 'get the shift key register

330 X = REGISTER AND 4 'X=4 ifbit5ison

340 IF X=0 THEN 500 'CTRL not down, so go to 4-key routine
350'''CisacCtrl-alphacombination--dowith it what youwill, for example:
360 IF C=8 then GOSUB 12000 'Ctrl-H, socreate "HELP screen'
370'''...etc...

380 GOTO 100 'get next keystroke

500 '''4-key routine: decodes ASCII codes 8, 9, 13, and 27 when the Ctrl

510 key is up (i.e. as backspace, tab, enter, and escape)

520 IF C=8 THEN GOSUB 5000 'go to backspace routine

530 IF C=9 THEN GOSUB 6000 'go to tab routine

540 IF C=13 THEN GOSUB 7000 'go to carriage return routine
550 IF C=27 THEN GOSUB 8000 'go to Esc routine

560 GOTO 100 'get next keystroke

700 ' ' 'extended code routine

710 C$=RIGHT$(CS$,1) 'make C$ = 2nd character only
720 C=ASC(C$) 'change to numerical form

730 '''C is an extended code number —- do with it what youwill, for example:
740 IF C<71 OR C>81 THEN 100 'accept only cursor keystrokes
750 IF C=72 THEN GOSUB 3500 'go to 'cursor up' subroutine
760'''...etc...

770 GOTO 100 'get next keystroke

Middle Level

This example differs from the one above in the way that the four special cases for
Ctrl-H, I, M and [ are treated. Here, when the question arises as to whether the
code arises from a single key or a Ctrl key combination, the scan code is checked.
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This method is more reliable than checking the Ctrl key status bit, since the scan
code is stored in the keyboard buffer, whereas the setting of the Ctrl key status bit
is transient.

:———GET A KEYSTROKE AND DETERMINE ITS TYPE:

NEXT: MOV AH,0 ;select BIOS keyboard input function
INT 16H ;get a keystroke
CMP AL,OQ ;check if extended code
JE  EXTENDED_CODE ;if so, jump to its routine
CMP  AL,32 ;check if control code
JL  CONTROL_CODE ;if so, jump to its routine
CMP AL,65 ;see if below range of typewriter chars
JL  NEXT ;i1f so, get another character
CMP  AL,123 ;see if above range of typewriter chars
JG  NEXT ;i1f so, get another character
;-==-NOW PROCESS CHARACTER IN AL:
STOSB ;save character inmemory at ES:DI ptr
MOV AH,2 ;choose DOS function todisplay char
MOV DL,AL ;put character in DL, as required:
INT 21H ;display character (cursor forwards)
. ;etc.
JMP  NEXT ;get next character
;———ANALYZE CONTROL CODES (start with special cases)
CONTROL_CODE: CMP AL,13 ;is the code ASCII 13?
JNE TAB ;if not, check next special case
CMP AH,28 ;it's 13 -- was scan code for CR?
JNE CM ;ifnot, gotoCtrl-Mcase
CALL CARRIAGE_RETURN ;perform carriage return routine
JMP  NEXT ;9o get next keystroke
C_M: CALL CTRL_M ;perform Ctrl-M routine
JMP  NEXT ;9o get next keystroke
TAB: CMP AL,9 ;check whether TABor Ctril-I...
CMP AL,10 ;after special cases, check others
REJECT: JMP NEXT ;default: go get another keystroke
;———ANALYZE EXTENDED CODES (2nd byte of code is in AH):
EXTENDED_CODE: CMP . AH,71 ;check number against bottom of range
JL  REJECT ;if below, get next char via REJECT
CMP AH,81 ;check number against top of range
JG REJECT ;if above, get next char via REJECT
+===AH HAS A CURSOR CODE —— ANALYZE IT:
CMP AH,72 ;see if ‘cursor up'
JE CU ;if so, goto 'cursor up' routine
CMP AH,80 ;see if 'cursor down'
JE COD ;if so, go to 'cursor down' routine
C_u: CALL CURSOR_UP ;perform 'cursor up' routine
JMP  NEXT ;get next keystroke
c_D: CALL CURSOR_DOWN ;perform 'cursor down' routine
JMP  NEXT ;get next keystroke
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3.1.9 Reprogram the keyboard interrupt

When the keyboard microprocessor deposits a scan code in Port A of the 8255
chip (at port address 60H—see [1.1.1]), it invokes INT 9. The job of this interrupt
is to convert the scan code to a character code on the basis of the shift and toggle
key settings, and to place the code in the keyboard buffer. (When the scan code is
for a shift or toggle key, no character code goes to the buffer (except for <Ins>);
instead, the interrupt makes changes in two status bytes located in the BIOS data
area [3.1.7]). The BIOS and DOS “keyboard interrupts” are really only “keyboard
buffer interrupts.” They do not actually “read” keystrokes. Rather, they read the
interpretations of keystrokes that INT 9 provides. Note that the PCjr uses a special
routine (INT 48H) to convert input from its 62 keys into the 83-key protocol used
by the other IBM machines. The results of this routine are passed on to INT 9,
which performs its work as usual. Via INT 49H, the PCjr also provides for special
non-key scan codes that could potentially be set up for peripheral devices that
would make use of the infrared (cordless) keyboard link.

It takes a very unusual application to make it worthwhile to reprogram this
interrupt, especially considering that DOS allows you to reprogram any key of the
keyboard [3.2.6]. Still, if you must reprogram INT 9, this section will give you a
start. Read [1.2.3] first to understand in general how interrupts are programmed.
There are three basic steps in the keyboard interrupt:

1. Read a scan code and send an acknowledge signal to the keyboard.

2. Convert the scan code into a code number or into a setting in the shift/toggle
key status register.

3. Place a key code in the keyboard buffer.

At the time the interrupt is invoked, a scan code will be in Port A. So first the
code is read and saved on the stack. Then Port B (port 61H) is used to very briefly
issue the “acknowledge” signal to the keyboard microprocessor. Simply change bit
7 to 1, then immediately change it back to @. Note that bit 6 of Port B controls the
clock signal of the keyboard. It must always be 1, or the keyboard is effectively
turned off. These port addresses apply to the AT as well, even though it does not
have an 8255 interface chip.

The scan code is first analyzed to see whether the key was depressed (the “make”
code) or released (the “break” code). Except on the AT, a break code is indicated
when bit 7 of the scan.code is set to 1. On the AT, where bit 7 is always 0, a break
code is two bytes: first 9FOH and then the scan code. All break codes are thrown
away except those for shift and toggle keys, for which the appropriate changes are
made in the shift/toggle status bytes. On the other hand, all make codes are proc-
essed. Here again the shift/toggle status may be changed. But in the case of charac-
ter codes, the status bytes must be consulted to see whether, for example, the scan
code 30 indicates an upper or lower case A.

Once an incoming character has been identified, the keyboard routine must find
its ASCII code or extended code. The example here is much too short to show all
cases. In general, the scan code is correlated with an entry in a data table that is
accessed by the XLAT instruction. XLAT takes a number from 0-255 in AL and

109



3.1.9 _Reprogram the keyboard interrupt

returns in AL a corresponding one-byte value from a 256-byte table that is pointed
to by DS:BX. The table may be set up in the data segment. If AL initially contains
scan code 30, then AL receives byte number 30 of the table (the 31st byte, since
we're counting from @). This byte of the table should have been set to 97, giving the
ASCII code for a. Of course, a second table would be required for capital A, and it
would be called instead should the routine find that the shift state is “on”. Or, alter-
natively, some other part of a single table could hold the capital letters, in which
case the scan code would need to have an offset added to it.

@et Scan Code)

Is It a Shift
or Toggle Key?

Yes Set BIOS
Status Bytes

Is Key

Released
2

Is Key

Released
2

- -Place ¢ and
Ana(ljygre Srl"ft Extended Code @
and Toggle |
Key Status n Keyboard Buffer
Yes .
_ Place ASCII
Select Code Is It an Code and
Number from Extended Scan Code
Table Code ? in Buffer

Figure 3-4. The Keyboard Interrupt.
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Finally, code numbers must be placed in the keyboard buffer. The routine must
first check to see if there is any room in the buffer for another character. [3.1.1]
shows how the buffer is constructed as a circular queue. Memory location
0040:001A contains the pointer for the head of the buffer, and 0040:001C contains
the pointer for the tail. The word-length pointers are offsets within the BIOS data
area (which starts at segment 40H), ranging from 30 to 60. New characters are
inserted at higher memory positions in the buffer, and when the upper limit is
reached, the insertion wraps around to the low end of the buffer. When the buffer
is full, the tail pointer is 2 less than the head pointer—except when the head pointer
equals 30 (is at the top of the buffer) in which case the buffer is full if the value of
the tail pointer is 60.

To insert a character in the buffer, place it at the position pointed to by the tail
pointer, then increase the tail pointer by 2; if the tail pointer equals 60, change it
instead to 30. That is all there is to it. Figure 3-4 diagrams the keyboard interrupt.

Low Level

An efficient routine requires much thought. This example gives only the rudi-
ments. It intercepts only the lower- and upper-case letters, loading them both into
the same table, with the capital letters 100 bytes higher in the table than their sib-
lings. Only the left shift key is attended to, and the current status of the CapsLock
is ignored.

;===IN THE DATA SEGMENT:
TABLE DB 16 DUP (@) ;skip first 16 bytes of table

DB ‘'quertyuiop',?,0,0,0 ;top row (scan code #16=q)
DB 'asdfghjkl',0,0,0,0,0;middle row
DB 'zxcvbnm' sbottom row
DB 16 dup(@) ;offset upper case to 100 bytes higher
DB 'QUERTYUIOP',0,0,0,0 ;caps for top row
DB 'ASDFGHJKL',0,0,0,0,0;caps for middle row

DB 'ZXCVBNM' ;caps for bottom row
;—=—AT BEGINNING OF THE PROGRAM, INSTALL THE INTERRUPT:
CLI ;disable interrupts
PUSH DS ;save DS
MOV AX,SEG NEW_KEYBOARD ;make DS:DX point to interrupt routine
MOV DS,AX
MOV DX,OFFSET NEW_KEYBOARD
MOV AL,9 snumber of interrupt vector to change
MOV  AH,25H ;D0S function to change vector
INT 21H ;change the vector
POP DS ;restore DS
STI sreenable interrupts

(The program continues, perhaps ending and staying resident [1.3.4])
;==—HERE IS THE KEYBOARD INTERRUPT ITSELF:

NEW_KEYBOARD PROC FAR ;hardware interrupts are far procedures
PUSH AX ;save all changed registers
PUSH BX ;
PUSH CX H
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3.1.9 Reprogram the keyboard interrupt

PUSH
PUSH

DI
ES

’
;———GET THE SCAN CODE AND SEND AN ACKNOWLEDGE SIGNAL:

IN
Mov
PUSH
IN
OR
out
AND
ouTt

AL,60H

AH,AL

AX

AL,61H
AL,100000008
61H,AL
AL,011111118
61H,AL

;=—-POINT ES TO BIOS DATA AREA:

MoV
MoV
POP

AX, 40H
ES,AX
AX

;———CHECK IF SHIFT KEY:

KEY_UP:

NEXTKEY:

cMp
JNE
MoV
OR

JMP
cMP
JNE
Mov
AND
JMP

AL, 42

KEY_UP

BL,7
ES:[17H],BL
QuIT

AL,170
NEXTKEY
BL,111111108
ES:[17H],BL
QuIT

;get the scan code from Port A

;place a copy inAH

;save the scan code

;get the current reading of Port B
;turnbit 7 on

;place the changed byte in Port B
;turnbit 7 back off

;return Port Bto itsoriginal reading

;set ES to bottom of memory

’
;restore scan code to AL

; Lleft shift down?

;if not, try mext possibility

;if so, prepare to set register bit1
;OR the status register directly
;quit the routine

; left shift up?

;if not, try next possibility

:if so, prepare to set registerbit1
;AND the status register directly
;quit the routine

;continue for all shift/toggle keys

;-=-IT'S A CHARACTER KEY = INTERPRET THE SCAN CODE:

CONVERT_CODE:

TEST
JNZ
MOV
TEST
Jz
ADD
MOV
XLAT
cMp
JE

AL,100000008
QUIT
BL,ES:[17H]
BL,000000118
CONVERT_CODE
AL,100

BX,OFFSET TABLE

TABLE
AL,0
QuIT

;code from releasing key?

;if so, quit the routine

;otherwise, get shift status byte

;is either shift key down?

;if not, jump ahead

;elsecapital letter, add TABLE offset
;get ready for table exchange

;convert scan code to ASCII code

;@ returned?

;ifso, noentry intable - quit

;=——KEY CODE READY - FIND OUT IF KEYBOARD BUFFER FULL:

HIGH_END:

MoV
MoV
Mov
CcMp
JE

INC
INC
CMP
JE

JMp
cMp
JE

BX,1AH
CX,ES:[BX]
DI,ES:[BX1+2
cX, 60
HIGH_END
cX

cX

cX,DI
QUIT

GO AHEAD
01,30
QuIT

;offset of head ptr in BIOS data area
;get head pointer

;get tail pointer

;is head pointer at top of buffer?
;if so, jump to special case
;increase head pointer by 2

’

;compare it to the tail pointer

;if equal, the buffer is full-quit
;else, jump over special case
;head ptr is 60, is tail ptr 30?

;if so, the buffer is full—quit

s ———BUFFER IS NOT FULL -- INSERT THE CHARACTER:

;———END THE INTERRUPT:
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GO_AHEAD:

NO_WRAP:

QUIT:

MoV
CcMP
JNE
MOV
ADD
MoV

POP

ES:[DI],AL
DI,60
NO_WRAP
01,28

0I,2
ES:[BX1+2,DI

ES

;place char inbuffer at tail position
;tail at top of buffer?

;if not, jump ahead

;if so, set tail to28+2=30

;add 2 toget new tail position

;place new tail pointer in BIOS data

;restoreall changed registers
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POP DI
POP CX
POP BX
POP AX
MOV AL,20H ;signal end of hardware interrupt
OUT 20H,AL .

IRET ;interrupt return

NEW_KEYBOARD ENDP

e we we w0
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Section 2: Access Particular Keys

A keystroke input routine must watch for a variety of keystroke types and con-
ditions, since both one- and two-byte codes may arrive in combination with the
shift and toggle keys. Not all keys are logically grouped by the kind of code they
issue. The backspace key, for example, generates a one-byte ASCII code, but the
delete key makes a two-byte extended code. The Ctrl key produces one-byte codes
in combination with the alphabet keys, but two-byte codes otherwise. These irreg-
ularities result from the limitations of the ASCII character set: the keyboard inter-
rupt follows the ASCII conventions when possible, but improvises its own codes
when not.

This section lists the various key groupings, gives their codes, and explains any
anomalies. For the most part, the same information is less conveniently available in
the tables of the ASCII codes and extended codes that are found in Section 3 of this
chapter. Also discussed here are special features added by BASIC to the keys and
special facilities within DOS interrupts that interpret particular keystrokes (such as
the backspace).
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3.2.1 Use the Backspace, Enter, Escape, and Tab keys

The enter, escape, backspace, and tab keys are the only four non-character keys
that generate one-byte ASCII codes. Their codes are among the control codes
[7.1.9] that comprise the first 32 numbers of the ASCII set. These four codes may
also be produced by combinations of letter keys and Ctrl:

ASCII. 8 backspace CTRL+H
9 tab CTRLE+1
13 enter CTRL+M
27 escape CTRL+ [

Section [3.2.2] shows how to avoid a mixup between the single keystrokes and the
CTRL combinations. Note that the back-tab is produced by a Shift + Tab combi-
nation, resulting in the extended code 9;15.

Some of the keyboard input interrupts automatically interpret these four special
codes. In BASIC, the INPUT function responds to the backspace, tab, and enter
keys. The INKEY$ function does not interpret any of the command codes, since it
does not automatically echo on the screen. Your code must do the work. Remem-
ber that BASIC provides the TAB function to facilitate cursor movements. Of the
BIOS and DOS interrupts, any that echo on the screen also interpret the backspace
and tab in their cursor movements. After the code is so interpreted, the ASCII code

still appears in AL, to be included in a data string or to be ignored, as the case may
be.
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3.2.2 Use the Shift Keys: Shift, Ctrl, and Alt

The three kinds of shift key cause only some of the other keys of the keyboard to
generate different codes. Shift combinations generally produce extended codes. But
in two cases they give rise to ASCII codes: (1) when the typewriter-style shift
changes the input from the ordinary typewriter keys, and (2) for Ctrl-A to Ctrl-Z,
resulting in ASCII codes 1-26. All other combinations result in extended codes, as
listed at [3.3.5]. The PCjr has some exceptions which are discussed below.

Inadmissible key combinations produce no code at all. Except in the case of the
special Ctrl-Alt combinations, simultaneous depression of the shifts results in only
one being effective, with priority given to Alt, then Ctrl, and then Shift. [3.1.7]
shows how to check whether a shift key is currently depressed. [3.2.3] explains
how to use the Scroll Lock key (a toggle key), as a shift key with any key on the
keyboard. Other shift key combinations are made possible only by writing a com-
pletely new keyboard interrupt that replaces the BIOS routine [3.1.9].

There is a special problem with certain Ctrl key combinations, since Ctrl + H, I,
M, and [ produce ASCII codes identical to those of the backspace, tab, enter, and
escape keys. [3.1.8] shows how an assembly language program can check the scan
code of the keystroke to find out whether it was the control key or the letter key
that was pressed (the scan code is found in AH when the keystroke is received by
INT 16H). Unfortunately, BASIC programs do not have this capability. In this case
a program can distinguish between the two by checking the shift status register to
see if the Ctrl key is down or not. When bit 2 at address 0040:0017H is set to 1, the
Ctrl key is depressed. This method works only at the moment that the keystroke is
made, and not if the key code is read out of the keyboard buffer some time later.

The PCjr keyboard has only 62 keys, compared to 83 on a PC or XT, or 84 on an
AT. Certain shift key combinations make up for some of the missing keys (combi-
nations using the function keys are shown at [3.2.5]):

PCjr Keystrokes PC/XT/AT Equivalents

Alt + Fn + 0-9 0-9 (scan codes from numeric keypad)
Alt + / N

Alt + ' &

Alt + | !

Alt + | ~

Alt + . * (scan code when from PrtSc key)
Shift + Del . (scan code from numeric keypad)
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The PCjr keyboard also offers the following unique shift key combinations:

Fn + Shift + Esc

Ctrl + Alt + CapsLock
Ctrl + Alt + Ins

Ctrl + Alt + Cursor left
Ctrl + Alt + Cursor right

toggles number keys to function keys
toggles keyboard click feature

runs diagnostics

shifts screen leftwards

shifts screen rightwards
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3.2.3 Use the Toggle Keys: NumLock, CapsLock, Ins, and
ScrollLock

With the exception of the Ins key, the toggle keys do not produce a code number
that is placed in the keyboard buffer. Rather, they make changes in two status
bytes in the BIOS data area at 0040:0017 and 0040:0018. The keyboard interrupt
checks these settings before it assigns a code to an incoming keystroke. Your pro-
grams can access the status register and change the setting of any toggle key, as
explained at [3.1.7].

Other settings in the register show whether a toggle key is currently depressed.
This feature allows a program to use toggle keys as shift keys. While no new key
codes are created, there are potential applications. For example, < ScrollLock>
could be used to add yet another set of shift + function key combinations. A pro-
gram would receive an ordinary function key code, would check whether or not
< ScrollLock > is down, and then would interpret the keystroke accordingly. Note
that either of the < Shift> keys reverse the setting of the NumLock key.

The <Ins> key places the code 0;82 in the keyboard buffer, to be read when-
ever your program chooses. The setting for <Ins> in the status bytes changes
immediately, however. Even if there is no room for the <Ins> code in the buffer,
the status settings are changed when the key is struck. Both <Ins> and
<ScrollLock> have no effect on the other keys of the keyboard (unlike
<NumLock> and <CapsLock>). You may define any role you please to them.
The IBM Technical Reference Manuals state that <ScrollLock> should be used to
toggle in and out of the state where the cursor keys scroll the screen rather than
move the cursor.

Of course, you may create all the toggle keys your program needs by simply
dedicating keys to that purpose. Although there is no ready-made status register,
you can simply assign a variable to each that flags “on” by equalling -1 and “off”
by equalling 0. For example, to use F10 to toggle the variable CLOCK on and off:

100 '''''Interpret Extended Codes (C =2nd byte of code) :

110 CLOCK=-1 'start with status on
110 IF X <= 10@ THEN NOT CLOCK 'toggles the variable CLOCK
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3.2.4 Use the numeric keypad and cursor keys

On a PC or XT, the numeric keypad includes the number keys, the Ins and Del
keys, and the + and - keys. The AT adds the “System Request” (Sys Req) key,
while the PCjr has only the four cursor keys (the others may be emulated by special
<shift> and <Fn> combinations, shown at [3.2.2] and [3.2.5]). <NumLock>
switches between the cursor and number functions. <Ins> and <Del> operate
only when <NumLock> is “on,” that is, locked on to the numbers. The + and -
keys issue the same codes no matter how <NumLock > is set.

The number keys of the numeric keypad issue exactly the same one-byte codes as
the number keys at the top row of the keyboard—that is, ASCII codes 48-57 for the
numerals 0-9. So do the + and - keys. Assembly language programmers can differ-
entiate between the two key sets by checking the key scan codes, which are found
in AH on return from both the INT 16H and INT 21H single-key input routines.
Note that either of the typewriter shift keys shifts the keypad keys to the mode
opposite that set by the NumLock key. The setting of the CapsLock key has no
effect. The “5” key in the center is active only as a number key, and it produces no
code number when <NumLock > is set to cursor mode.

Besides the four familiar arrows, the cursor keys include the Home, End, PgUp,
and PgDn keys, which often are used to jump the cursor by whole lines or pages.
All produce a two-byte extended code. These keys have no direct control over the
cursor. They merely issue a cqode like any other key, and it is the programmer’s job
to convert the codes to cursor movements on the screen.

Some combinations of the keypad keys and the Ctrl key are available.
<NumLock> must be set to cursor-control for these combinations to work. See
[3.1.7] for how to make your program set the NumLock key automatically. Here is
a summary of the relevant key codes:

ASCII codes:

43 +
45 -

46

48 - 57 0-9

Extended codes:

72,75, 77, 80 Cursor Up, Left, Right, & Down
71, 73, 79, 81 Home, PgUp, End, PgDn

82, 83 Ins, Del

115, 116 Ctrl-cursor left, -cursor right

117, 118, 119, 132 Ctrl-end, -PgDn, -Home, -PgUp

The AT has an 84th key, Sys Req, which is unique in its function. The key is
intended for multiuser systems as a way to enter the main system menu. When the
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key is pressed down, the code 8500H appears in AX, and INT 15H is executed.
Upon release of the key, 8501H shows up in AX, and INT 15H is executed once
again. The AT BIOS provides no code for functions 84H and 85H in INT 15H; a
simple return is made. But system software can replace the interrupt vector for 15H
so that it points to the Sys Req routine. Such a routine must first read AL to see if
the Sys Req key has been depressed (AL =0) or released (AL =1). Note that INT
15H provides a number of services, some of which might be required of a program
using SYS REQ. In this case, the SYS REQ routine must reestablish the interrupt
vector it overlays, and if a function number different from 84H or 85H is found in
AH, the routine should pass control to the usual INT 15H routine [1.2.4].
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3.2.5 Use the function keys

The ten function keys issue different codes in combinations with the Shift, Ctrl
and Alt keys, given 40 possible keystrokes. In all cases, the resulting code is a two-
byte extended code, where the first byte is always ASCII 0 and the second byte is
an arbitrary number as follows:

Code Keystroke
59-68 F1-F10 (alone)
84-93 Shift + F1-F10
94-103 Ctrl + F1-F10
104-113 Alt + F1-F10

Too many shift + function key combinations can confuse a program user. But
should you need one more group of ten, consider using <ScrollLock> + <Fn>
combinations, as explained at [3.2.3].

The PCjr keyboard has only 62 keys, compared to 83 on a PC or XT, or 84 on an
AT. Certain function key combinations make up for some of the missing keys, as
follows:

PC Jr Keystrokes PC/XT/AT Equivalents

Fn + 1-0 F1-F10

Fn + B Break

Fn + E Ctrl + PrtSc

Fn + P Shift + PrtSc

Fn + Q Ctrl + NumLock

Fn + S ScrollLock

Fn + Cursor left PgUp

Fn + Cursor right PgDn

Fn + Cursor up Home

Fn 4+ Cursor down End

Fn + - - (numeric keypad scan code)

Fn + = + (numeric keypad scan code)
(Combinations using the shift keys are shown at [3.2.2])

121



3.2.6 Reprogram individual keys

3.2.6 Reprogram individual keys

To reprogram a key means to cause it to produce a different code. But by the
time programs receive keystroke codes, the keyboard interrupt has already inter-
preted the incoming scan code and converted it to some predefined ASCII code or
extended code. Fortunately, beginning from version 2.0, DOS contains a utility for
reprogramming the code assignments. This utility operates only when the key-
strokes are intercepted by the DOS keyboard input functions—the INT 16H func-
tions of BIOS continue to interpret the keystrokes normally.

The DOS utility operates by an escape sequence. A short string that begins with
the escape character (ASCII 27) is “output to the standard device,” that is, it is
treated as if it were being sent to the video display. But owing to the escape code,
no characters ever reach the monitor. Rather, the string causes DOS to thereafter
reinterpret a particular key that is named in the string. Each key alteration requires
its own string, and the same code may be assigned to as many keys as you like.

The general form for the strings is first the escape character (ASCII 27), then [,
then the code number for the key that is to be changed, then a semicolon, then the
new code number to be assigned to the key, and finally the character p. Thus
27,'(65;97p" changes A (ASCII 65) to a (ASCII 97). Extended codes are written
showing both bytes, with the initial zero byte followed by a semicolon.
27,'(0;68;0;83p’ gives F10 (0;68) the same code as Delete (0;83). You may only
assign extended codes found in the extended code table [3.3.5].

There are a number of variants on the basic string. First, character keys may be
specified by typing the character itself within quotation marks. Thus 27,'[“A”;"“a"p’
also changes A to a. Second, whole strings of codes (“macros”) can be assigned to a
single key by simply writing the characters or their code numbers into the expres-
sion. 27,'[“A”;”A is for Apple” p’ writes A is for Apple whenever a capital A is
typed. In fact, these escape sequences are really nothing more than a single string in
which the first character or code number tells which key is to be redefined, and the
remainder of the string shows what is to be assigned. Remember that the code num-
bers must always be separated by semicolons, and characters must always be sur-
rounded by quotation marks. Codes and characters may be freely mixed. The key-
reassignment utility requires that the file ANSI.SYS (a device driver) be loaded
when DOS is booted. Otherwise the escape sequences are ignored. Appendix E
shows how.

Some aspects of keyboard functioning are programmable on a PCjr or AT. The
AT procedures are mainly of interest to systems programmers; because these proce-
dures are quite involved and are useful to very few programmers, they are not cov-
ered here. See the AT Technical Reference Manual. In the case of the PCjr, BIOS
INT 16H has been given two extra functions' (AH=3 and AH =4), the first of
which sets the typematic rate. The “typematic rate” is the frequency at which a key
sends its code when it is continuously held down. The second function turns the
keyboard click sound on and off. For function 3, place @ in AL to return to the
default typematic rate, 1 to increase the initial delay before typematic action
begins, 2 to cut the typematic rate by half, 3 to invoke features 1 and 2, and 4 to
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turn off the typematic feature. For function 4, place 0 in AL to turn the keyboard
click off and 1 to turn it on.

High Level

Unfortunately, the PRINT and WRITE statements in BASIC do not work with
escape sequences. BASIC programs must incorporate a simple assembly language
subroutine that makes use of the DOS output interrupt discussed below under
“Middle Level.” Appendix D shows how to integrate assembly routines into BASIC
programs. The example here assumes that the routine will be poked into memory
starting at memory address 2000:0800. The DATA statements contain the assembly
code. Add a $ sign to the end of the macro code string.

100 DATA &H55,8H8B, &HEC, &H8B, &HSE , &HD6 , &HBB, &H57

110 DATA &HO1,8&HB4 ,&HO9,&HCD, &H21,&H5D, &8HCA, &HO2, &HOD
120 'poke the routine into memory at 2000: 0000

130 DEF SEG=&H2000 'point to 20000

140 FORN=0 TO 16 'the routine is 17 bytes
150 READ Q ‘read one byte

160 POKEN, Q 'poke it in

170 NEXT '

180 '*'*'change A to a: '

190 Q$=CHR$ (27)+''[65;97p$" 'set up the string

200 ROUTINE=0 'point to the string
210 CALL ROUTINE(Q$) 'call the routine

Middle Level

Use function 9 of DOS interrupt 21H to send the string to the “standard output
device.” DS:DX must point to the first character of the string in memory, and the
string must end with the $ character (24H). Here, F2 (0;60) is changed so that it
functions as Del (9;83).

;———IN THE DATA SEGMENT:
CHANGE_KEY DB 27,'[0;60;0;83p$’

7 ——=TO CHANGE THE KEY ASSIGNMENT:

LEA DX, CHANGE_KEY ;point DS:DX to string
MOV AH,9 ;set the function number
INT 21H ;and now the key is reassigned
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3.2.7 Assign keyboard macros to individual keys

A keyboard macro is a string of characters that originates from a single key-
stroke. Macros are programmed into the BASIC interpreter or into the operating
system to cut down on typing. Since the string may contain control codes, such as
the character for a carriage return (ASCII 13), a single macro can perform a chain
of commands. To speed program development, for example, one might write a
macro that contains all the keystrokes required to compile and link a particular
program.

The keyboard macros provided by BASIC work both within BASIC programs
and at BASIC’s command level. For example, if you program a key to output the
word “Orangutan,” the INPUT function will receive the whole string when the key
is pressed, and an INKEY$ loop will successively read in the nine characters. On
the other hand, the DOS macro facility always works at DOS command level, but
it works within programs only when the programs use the DOS keyboard input
functions. Since much commercial software uses BIOS INT 16H, the DOS macros
are of limited utility. Of course, macro-like features within programs are easily set
up in the keystroke input routine. For example, to allow a program user to set a
macro for F1, request the string and place it in MACRO1$, and then (in BASIC)
write something like:

1000 '''Extended Code Input Routine (C = 2nd byte of code)
1010 IF C = 59 THEN LOCATE X,Y:PRINT MACRO1$

High Level

BASIC has its own macro facility, but it allows you to program only the 10 func-
tion keys, and the strings may be only 15 characters long. The function keys are
referred to as “soft keys” in BASIC. The KEY statement assigns the macros to the
keys. KEY 5,“END” causes function key #5 to send the word END to the current
cursor position of the screen.

The characters that make up the strings may be written either as strings or as
ASCII codes (using CHR$) or as a combination of both. KEY 5,”A” and KEY
5,CHR$(65) are equivalent. To enter a string - as if by the Enter key - add ASCII
character 13 to the end. The FILES command, which shows the disk directory, is
invoked by F1 once you enter KEY 1,“FILES” + CHR$(13).

BASIC preprograms the ten function keys with common BASIC expressions.
You may disable a key by assigning a null string to it. KEY 1,”“ causes F1 to do
nothing when pressed. The first six characters of each string are automatically
shown on the bottom line of the screen by the BASIC interpreter. You can turn this
display on and off using KEY ON and KEY OFF. To fill the screen with the full
string assignments, enter KEY LIST. Here are some examples:

KEY 1,''"ERASE" ;now F1 inputs ""ERASE"

KEY 1@,"LIST'"+CHR$(13) ;now F10@ Lists the program

KEY 7,'"" ;disables F7

KEY OFF sturns off thedisplay on Line 25

KEY ON ;turns line 25 back on

KEY LIST ;Llists the full strings of all 1@ keys
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To assign macros to other keys in BASIC, you must use the DOS utility described
at [3.2.6].

Middle Level

Macros are created in DOS using the key-reprogramming facility described at
[3.2.6]. The only difference is that the escape sequence assigns more than one char-
acter to a particular keystroke. The string may be comprised of characters written
within quotation marks, or of code numbers, or of both in combination. Here are
some examples:

27, '["A";""SET'"p" ;assigns SET to capital A
27, ' ["ASET"p' ;variant of above (1st char is key)
27,'[27;'"dir";13p" ;assigns dir <enter> to the escape key

27,'[0;59;copy *.*b:'";13p' ;assigns copy *.*b: <enter> to F1
27,'00;68;0;72;0;72;0;72p' ;makes F1@ move cursor up three lines
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3.2.8 Set up the Ctrl-Break routine

When the Ctrl-Break key combination is entered, the keyboard interrupt sets up
a flag indicating that there is need for the Ctrl-Break routine to come into action.
Control is given to the Ctrl-Break routine only at the time that the program uses a
DOS function that is capable of sensing this flag. Normally, only the standard
DOS input-output functions can detect Ctrl-Break (numbers 1 - C of INT 21H, but
not 6 & 7). But by placing the line BREAK = ON in either the AUTOEXEC.BAT or
CONFIG.SYS files used by DOS at start up, all DOS functions are caused to check
for Ctrl-Break whenever they are called. This action slightly slows program execu-
tion.

The Ctrl-Break routine exists as a way of exiting a program at any time. When a
DOS function senses the Ctrl-Break status, control is directed to the routine
pointed to by interrupt vector 23H. DOS sets up the routine to terminate the pro-
gram in progress. But the routine may be rewritten to any specifications you like.
A programmable routine is required so that crucial adjustments can be made before
terminating the program. The stack may require adjustment so that SP points to
the second word from the top (first word in COM programs) prior to the final RET
instruction. Interrupt vectors changed by the program may be restored, and open
1/0 devices may be closed. If interrupts have been disabled, they can be reenabled.
All of this ensures that the computer will be ready to manage another program
after the Ctrl-Break termination. Alternatively, the Ctrl-Break routine may simply
contain an IRET instruction, which effectively disables the Ctrl-Break feature.

Middle Level

This example exits a program after adjusting the stack. The routine ends with
RET rather than IRET, since the effect of the return is to be the same as that of the
RET instruction that terminates a program normally. At the time it is used, the
stack. pointer (SP) must point to the second word on the stack. This assumes that
the program is in .EXE form. Remember that the stack places its first word at the
highest memory location within the stack segment, the second word below that
one, and so on. If the stack size is 400 bytes, point SP to 396. For COM programs,
set the stack pointer to the first word on the stack, or simply end the Ctrl-Break
routine with INT 20H to terminate.

;———HERE IS THE NEW CTRL-BREAK ROUTINE:

cB PROC FAR
MOV AX,396 ;value of 2nd word on the stack
MOV SP,AX ;adjust stack pointer for return
RET ;return to DOS

cB ENDP

;———CHANGE THE INTERRUPT VECTOR:

PUSH DS ;DS is destroyed
MOV AX,SEGC_B ;place segment of routine in DS
MOV  DS,AX ;
MOV DX,OFFSETC_B ;place offset of routine in DX
MOV AH,25H ; function to change interrupt vector
MOV AL,23H ;number of the vector
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Set up the Ctrl-Break routine 3.2.8

INT 21H ;change the vector
POP DS ;restore DS

A program can check at any time if a “request” for the Ctrl-Break routine has
been made. Place 0 in AL and call function 33 of INT 21H. On return, DL will hold
1 if the status is “on” and 0 if it is not. Placing 1 in AL at entry sets the status. In

this case, before calling the function, place 1 or @ in DL to turn the status “on” or
lloff.ll
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3.2.9 Reprogram the PrtSc key

The PrtSc key produces an asterisk (ASCII 42) when struck alone, and it issues
extended code 114 when struck in combination with < Ctrl>. But the <Shift> +
<PrtSc> combination has a special status all its own. Other keystrokes cause the
keyboard interrupt to deposit their codes in the keyboard buffer (or, for toggle and
shift keys, to record their status [3.1.7]). A keystroke can have no impact upon the
program in progress until the program gets around to reading it from the buffer.
But the <Shift> + <PrtSc> combination causes the keyboard interrupt to
immediately turn control over to whatever routine is pointed to by the vector for
INT 5. In this way it functions like a hardware interrupt.

Interrupt 5 is preprogrammed to dump the contents of the screen onto a printer.
But the interrupt vector can be pointed to a procedure dedicated to an entirely dif-
ferent use. For example, an involved simulation program that takes hours to run
could be interrupted at any time by Shift + PrtSc to issue a report of preliminary
results. You might also want to reprogram PrtSc so that it will send graphics
screens to the printer. Another possibility is to use PrtSc as a way to access a pro-
gram that is loaded and left resident when DOS is booted [1.3.4]. This strategy
allows you to write a utility program that can be operated from within other
software.

Low Level

Here is the basic form in which to reprogram the routine. Be sure to replace the
original interrupt vector (F000:FF54) when you leave the program. Should you fail,
all will seem to be well until Shift-PrtSc is pressed, and then the computer will
crash (see the more complete example of interrupt programming at [1.2.3]).

;-==CHANGE THE PRTSC INTERRUPT VECTOR
CLI ;disable interrupts

MOV  AX,SEG NEW_ROUTINE ;get the segment of the routine
MOV DS,AX ;put the segment in DS

MOV  DX,OFFSET NEW_ROUTINE ;put the routine offset in DX
MOV AL,5 ;choose the vector to replace
MOV AH,25H ;DOS function to replace vector
INT 21H ;change the vector

STI ;reenable interrupts

+=—=SET UP THE PRTSCRN ROUTINE:
NEW_ROUTINE PROC FAR
STI ;reenable interrupts
PUSH AX ;saveall registers

MOV CX,100

...your routine

e e ws e we

l50P AX ;restoreall registers
IRET ;perform interrupt return
NEW_ROUTINE ENDP
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Section 3: Look Up Key Codes and
Applications

The various key codes and character codes can become confusing. The tables
that follow list them all. Watch for the following anomalies:

® The Ins key is the one key that, when struck, both issues a character code to
the keyboard buffer and makes a change in the shift and toggle key status
registers.

® There are four ASCII codes which can be produced in two ways. ASCII 8 is
produced by both the backspace key and by Ctrl-H, ASCII 9 by the tab
key or Ctrl-I, ASCII 13 by the enter key or Ctrl-M, and ASCII 27 by the
Esc key or Ctrl-[.

® The symbols that correspond to the 32 ASCII control codes are not printed
on the screen by those key input functions that automatically echo charac-
ters. They must be displayed by function 10H of INT 10H or by direct
memory mapping (both are discussed at [4.3.1]).

® The Ctrl key combinations with the letters of the alphabet all produce one-
byte (ASCII) codes. All other Ctrl combinations produce two-byte (ex-
tended) codes.

® The <5> key of the keypad is not operational when the NumLock key is set
to cursor control.

® The Shift-PrtSc and Ctrl-Alt combinations (and on the AT, the SYS REQ
key) are the only cases where key combinations are set up to immediately
invoke special routines. Of these, only the former is reprogrammable. The
Ctrl-Break interrupt (also reprogrammable) is brought about only when
the the Ctrl-Break status is detected by a DOS routine.

® Any ASCII code except @ can be entered by holding down the Alt key, typing
the ASCII number on the keypad, and then letting up the Alt key. Since 0
is excepted, extended codes cannot be entered this way.

Note that there is little you can do to overcome the limitations imposed by inad-
missible keystroke combinations. For example, you can not detect < Ctrl-Cursor
Up> by intercepting the <Cursor Up> code and then checking the shift status
register to see if <Ctrl> is down. Should <Ctrl> be down, no key code would be
issued at all.
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3.3.1 Assign uses to the keys

There are certain conventions in the use of the keys that should be followed by
all programs. These are laid down by the Technical Reference Manual, and if pro-
grammers would always observe them, it would be easier for users to move from
one program to another. Note, however, the IBM’s own software does not rigidly
follow these guidelines. The conventions are:

SCROLL LOCK Toggles the cursor keys in and out of a state where
they scroll the screen rather than move the cursor.
CTRL 4/6 Moves the cursor left or right by one word.

Alternatively, scrolls the screen horizontally one
tab-width to the left or right.

Pg Up Scrolls backward 25 lines.

Pg Dn Scrolls forwards 25 lines.

CTRL END Deletes all text from the cursor to the end of the
line.

CTRL PgDn Deletes all text from the cursor to the bottom of the
screen.

HOME In text, moves cursor to the start of a line, or

alternatively, to the start of the document. In
menus, switches to the topmost menu.

CTRL HOME Clears the screen and positions the cursor at top
left.
END Moves cursor to the end of the line, or

alternatively, to the end of the document.

BACKSPACE/DELETE DELETE removes the character under the cursor
and moves all that follows one space left.
BACKSPACE removes the character to the left of
the cursor, moves the cursor to that position, and
shifts leftward all that follows.

INS Toggles in and out of a mode where text is inserted
in the midst of other text.

TAB/BACKTAB Jumps the cursor rightward when Tab alone is
struck; jumps the cursor leftward when Shift +
Tab.

ESC Exits from a program or program routine.
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3.3.3 Look up an ASCII code

3.3.3 Look up an ASCII code

Code numbers 0 - 31, the control codes, are explained in greater detail at [7.1.9].
Note that any ASCII code from 1 to 255 can be entered from the keyboard by hold-
ing down the Alt key while typing in the code number on the numeric keypad (with
NumLock properly set). When the Alt key is then released, the code is input.

symbol decimal hex binary symbol decimal

{null) ) 00 00000000 ) 48
©)] 1 01 00000001 1 49
() 2 02 00000010 2 50
v 3 03 00000011 3 51
. 4 04 00000100 4 52
e 5 05 00000101 5 53
* 6 26 00000110 6 54
° 7 07 00000111 7 55
[ - | 8 08 00001000 8 56
& 9 09 00001001 9 57
O] 10 0A 00001010 : 58
d 11 0B 00001011 ; 59
Q 12 oC 00001100 < 60
F 13 oD 00001101 = 61
44 14 0E 00001110 > 62
Fel 15 oF 00001111 ? 63
- 16 10 00010000 @ 64
- 17 11 00010001 A 65
} 18 12 00010010 B 66
" 19 13 00010011 C 67
T 20 14 00010100 D 68
§ 21 15 00010101 E 69
- 22 16 00010110 F 70
1 23 17 00010111 G 71
4 24 18 00011000 H 72
} 25 19 00011001 1 73
- 26 1A 00011010 ] 74
- 27 1B 00011011 K 75
. 28 1C 00011100 L 76
- 29 1D 00011101 M 77
. 30 1E 00011110 N 78
v 31 1F 00011111 o 79
(space) 32 20 00100000 P 80
! 33 21 00100001 Q 81
" 34 22 00100010 R 82
# 35 23 00100011 S 83
$ 36 24 00100100 T 84
% 37 25 00100101 U 85
& 38 26 00100110 \Y 86
’ 39 27 00100111 w 87
( 10 28 00101000 X 88
) 41 29 00101001 Y 89
* 42 2A 00101010 z 90
+ 43 2B 00101011 [ 91
, 44 2C 00101100 N 92
- 45 2D 00101101 ] 93
. 46 2E 00101110 A 94
/ 47 2F 00101111 _ 95

binary

20110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
20111020
20111001
00111010
20111011
20111160
00111101
20111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001600
01001001
01001010
01601011
01001120
01001101
01001110
01601111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
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Look up a box-graphic code 3.3.4

3.3.4 Look up a box-graphic code

For convenience, these diagrams summarize the ASCII code numbers of the sym-
bols used to construct lines and boxes.

218 194 191 213 209 184
195 197 180 198 216 181
179
192 193 217 212 207 190
=196 205 ==
214 210 183 201 203 187
199 215 182 1|8 |6 204 206 185

211 208 189 200 202 188
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3.3.5 Look up an extended code

VALUE OF 2ND BYTE CORRESPONDING KEYSTROKE

15
16-25
30-38
44-50
59-68
71

72

73

75

77

79

80

81

82

83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132

Shift + Tab (“back-tab”)

Alt + Qto Alt + P (the top row of letters)
Alt + A to Alt + L (the middle row of letters)
Alt + Z to Alt + M (the bottom row of letters)
Function keys 1 to 10

Home

Cursor-up

PgUp

Cursor-left

Cursor-right

End

Cursor-down

PgDn

Ins

Del

Function keys 1 to 10 with the Shift key down
Function keys 1 to 10 with the Ctrl key down
Function keys 1 to 10 with the Alt key down
Ctrl + PrtSc

Ctrl + Cursor-left

Ctrl + Cursor-right

Ctrl + End

Ctrl + PgDn

Ctrl + Home

Alt + 1to Alt + = (the top row of the keyboard)
Ctrl + PgUp
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4
The Video Display

Section 1: Control the Video Display

This chapter covers the monochrome adaptor, the color graphics adaptor, the
PCjr video system, and the enhanced graphics adaptor (EGA). All four video sys-
tems are centered upon the Motorola 6845 CRTC (cathode ray tube controller)
chip; the EGA in fact uses a custom chip that is based on the 6845 design. The 6845
manages a number of technical tasks that are not ordinarily of concern to program-
mers. However, it also sets the screen mode, generates and controls the cursor, and
(on the color graphics adaptor) assigns colors. The chip is easy to program directly,
although operating system routines can handle most of its operations. The PCjr has
an auxiliary video chip, the video gate array, which is discussed along with 6845 in
this section. The EGA uses an architecture that is quite different from the others,
and it is discussed separately. There is a general compatibility among the non-EGA
systems in their use of port addresses, but there are some important differences.
The EGA shares few port addresses with the other systems.

All of the video systems use buffers in which the data for the screen image are
mapped. The screen is periodically updated by a scan of this data. The size and
memory locations of these buffers varies by the system, by the screen mode, and
by the amount of memory dedicated. When multiple screen images are held in the
buffer, each image is referred to as a “page.” Here is a summary:

Monochrome Adaptor The monochrome adaptor has 4K bytes of on-board mem-
ory, starting from memory address B80@OH (that is, at
B000:0000). This memory provides enough space for only
one 80-column page of text.

Color Graphics Adaptor
The color graphics adaptor has 16K of on-board memory,
starting from memory address B880OH. This is enough
memory for one graphics screen, with no paging, or four
to eight text screens, depending on whether they are 40 or
80 columns.

PCjr The PCjr has a video system that is essentially an ad-
vanced version of the color graphics adaptor. It is unique
in using ordinary system RAM for the video buffer. When
BIOS initializes the system, the top 16K of installed mem-
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4.1.0 Control the Video Display

ory is assigned to the buffer. Thus the location of the
buffer varies depending on whether the system is outfitted
for 64K or 128K. Additional blocks of memory can be set
aside for more video pages, or the original allocation of
16K may be whittled down to 4K to support only a single
text screen.

EGA The EGA may be equipped with 64K, 128K, or 256K of
RAM. Besides serving as the video buffer, this memory
also holds the data for the patterns of up to 1024 charac-
ters (as explained at [4.3.4]). The starting address of the
buffer is itself programmable, so that it begins at AOGOH
for the advanced graphics modes, and at BO0@H and
B800H for compatability with the standard monochrome
and color graphics modes. At most, the EGA occupies the
two segments from AG0PH to BFFFH, even when 256K of
RAM is present. This is possible because in some modes
two or more bytes of video memory are accessed by the
same memory address. The number of pages available
depends both on the screen mode and on the amount of
memory present. Owing to its complexity, the EGA has
16K of ROM that replaces and extends the BIOS video
routines. The ROMs start at C000:0000.

In text modes the buffers begin with the data for the top row of the screen, start-
ing from the left end. The succession of data wraps around from the right end of
one row to the left end of the next, as if the screen were really only one very long
row—and from the viewpoint of the buffer, it is nothing more. In graphics modes,
however, the video buffer may be divided into two or four parts. On the color
graphics card and the PCjr the different parts of the buffer hold data for every sec-
ond or every fourth line of dots on the screen. In the EGA each part of the buffer
holds one bit of the two or four bits that define the color of a pixel.

The various video systems all operate in the same way when displaying text.
4000 bytes are allocated so that there are two bytes for each of the 2600 screen posi-
tions (25 rows x 80 columns). The first byte holds an ASCII code. Video circuitry
converts the ASCII code number to its associated symbol and sends it to the screen.
The second byte (the attribute byte) holds information about how the character is
to appear. On the monochrome monitor, it sets whether the character is shown
underlined, intensified, in reverse-image, or as a combination of these attributes.
On color systems the attribute byte sets the foreground and background colors of a
character. In all cases your programs may write data directly to the buffer, a prac-
tice that speeds up screen operations considerably.

All systems but the monochrome card offer a variety of color graphics modes
which vary both in resolution and in the number of colors that can be simulta-
neously displayed. Both the PCjr and the EGA can display up to 16 colors simulta-
neously, and the EGA can choose the 16 from a palette of 64. When 16 colors are
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Control the Video Display 4.1.0

used, every pixel requires four bits of memory, since four bits can hold a number
from 0-15. Similarly, four-color graphics require only two bits per pixel. Two-color
graphics can pack the representation of eight pixels into a single byte in the video
buffer. The amount of memory required for a particular screen mode is easily cal-
culated by figuring out how many pixels there are and how many bits they require.
Text is readily combined with graphics (BIOS draws the characters on to the graph-
ics screen), and you can create your own special characters.
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4.1.1_Program the 6845 video controller

4.1.1 Program the 6845 video controller

All of the video systems are built around the Motorola 6845 cathode ray tube
controller (the EGA uses a custom chip that is based on the 6845). The chip is used
in much the same way in the monochrome card, the color card, and the PCjr; but
the EGA is not as compatible, and for this reason it is advised that you avoid pro-
gramming the chip directly when BIOS can do the job for you. Generally speaking,
the 6845 sets up the CRT to operate in one of several alphanumeric or graphics
modes. It performs the basic job of interpreting ASCII code numbers and retrieving
the data for the corresponding characters from onboard ROM chips (and some-
times from RAM). It decodes the values for attributes or colors and adjusts the
screen accordingly. And it creates and controls the cursor. The EGA archtecture
divides some of these functions among other chips.

The 6845 has 18 control registers, numbered @ - 17. The first ten registers fix the
horizontal and vertical display parameters. These generally are of no concern to
programmers, since the values in the registers are automatically adjusted by BIOS
when the screen mode is changed. It is unwise to experiment with these registers
since there is a possibility of damage to the monitor. The registers are eight bits
long, and some are paired to hold 16-bit values. Numbers 10 & 11 and 14 & 15 set
the shape [4.2.4] and location [4.2.1] of the cursor. Numbers 12 & 13 handle paging
[4.5.3]. And numbers 16 & 17 report the light pen position [7.3.2]. Most of the reg-
isters are write-only; only the cursor address register is read/write, and only the
light pen register is read-only. The EGA has six additional registers that are
devoted to technical aspects. Number 20 is of most interest; it determines which
scan line in a row of characters is used for an underscore.

The 18 registers are accessed by the same port address, which on the mono-
chrome card is 3B5H. It is 3D5H on the color card or PCjr (Note that all port
addresses of the monochrome card are the same as for the color systems, except
that the middle digit is B rather than D.) The EGA uses either address, depending
on whether it is connected to a monochrome or color monitor. To write to a regis-
ter on the monochrome card, an address register located at port 3B4H (3D4H color)
must first be sent the number of the desired register. Then the next byte sent to port
address 3B5H will be directed to that particular register. Since the registers that
concern programmers are used in pairs, you must first write to the address register,
then to one register, then again to the address register, and then to the second regis-
ter. Because the port numbers are adjacent, it is easiest to address them using INC
and DEC, is in the following example:

;-—-WRITE TO 6845 REGISTERS 11 & 12 (DATA IS INBX):
;———SELECT THE LOW-BYTE REGISTER:

MOV DX,3B4H ;port address of the address register
MOV AL,11 ;select the register for the Low byte
OuUT DX,AL soutput to 3B5H goes to #11
;—=-SEND THE BYTE:
INC DX ;increase port address to 3B5H
MOV AL,BL ;put Llowbyte in AL
OuUT DX,AL ;put lowbyte inregister #11
;———SELECT THE HIGH-BYTE REGISTER:
DEC DX ;reset port address to 3B4H
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MOV AL,12 ;select the register for the high byte

ouUT DX,AL ;now output to 3B5H goes to #12
;=—=SEND THE BYTE:

INC DX ;again increase port address to 3BSH

MOV AL,BH ;put high byte in AL

OuT DX,AL ;now second byte is inplace

On the monochrome and color adaptor there are three other ports that are of
importance to programmers. They are numbered 3B8H, 3B9H, and 3BAH on the
monochrome adaptor, and 3D8H, 3D9H, and 3DAH on the color adaptor. The
first sets the screen mode, the second is primarily concerned with setting screen col-
ors, and the third reports useful information about the display’s status.

The PCjr does not use all of these port addresses in the same way. Rather, it
keeps some of the information they access in a video gate array chip, which was
added primarily to give extra control over screen colors. The video gate array is
accessed via port address 3DAH. On the color card this port returns a status byte;
on the PCjr the port also returns a status byte when IN (or INP) is used, but it
accesses the gate array when OUT is used. The registers of the video gate array are
as follows:

number purpose

0 mode control 1

1 palette mask

2 border color

3 mode control 2

4 reset

10H-1FH palette color assignments

All registers are reached through port 3DAH. First send to the port the number
of the register to be accessed, and then send the value for the register. The port tog-
gles back and forth between these address and data functions. Read the port to
reset it so that it awaits an address. The registers are discussed under the various
headings in this chapter.

Of particular interest are the 16 palette registers from 10H-1FH. Each register is
only four bits long, allowing just enough space to hold the 16 code numbers used
by the 16 possible colors. For every character position or dot position on the screen
the video buffer contains data that specifies in which color the character is to be
displayed. This information is referred to as attribute data. Unlike on the color
graphics card, the PCjr does not use the attribute data to directly determine the
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